Skip to main content

Abstract

Gene therapy became a clinical reality when Rosenberg et al. (1) treated two young patients with adenine deaminase (ADA) deficiency with a retroviral vector that had been biotechnologic ally manipulated to encode for human ADA. Since 1990, approx 300 clinical trials, with a total of over 2000 volunteers or patients participating, have been conducted. Viral vectors predominate over synthetic approaches, which account for approx 25% of the 2100 patients enrolled in clinical gene therapy protocols worldwide (2). Although originally conceived as a therapy for genetic diseases, i.e., replacement of a defect or missing gene, the concept of gene therapy has since been dramatically expanded to include the gene as a drug and the gene as a vaccine. Acute inflammatory diseases, such as adult respiratory distress syndrome could benefit from the temporary overexpression of genes that produce antioxidants, e.g., superoxide dismutase/catalase, or interact with the prostaglandin/leukotriene cascade (3). Transfection of cells, specifically, cancer cells, with genes that generate presentation of nonself immune-responsive moieties at the cell surface, has led to the development of DNA vaccines, to date perhaps the most successful and promising subfield within the area of gene therapy (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaese, M. R., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., et al. (1995) T lymphocyte-directed gene therapy for ADA sup minus SCID: initial trial results after 4 years. Science 270, 475–480.

    Article  PubMed  CAS  Google Scholar 

  2. Marcel, T. and Grausz, J. D. (1997) TMC worldwide gene therapy enrollment report, end 1996. Hum. Gene Ther. 8, 775–800.

    Article  PubMed  CAS  Google Scholar 

  3. Conary, J. T., Parker, R. E., Christman, B. W., Faulks, R. D., King, G. A., Meyrick, B. O., and Brigham, K. L. (1994) Protection of rabbit lungs from endotoxin injury by in vivo hyperexpression of the prostaglandin G/H synthase gene. J. Clin. Invest. 93, 1834–1840.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, B., Godillot, A. P., Madaio, M. P., Weiner, D. B., and Williams, W. V. (1998) Vaccination against pathogenic cells by DNA inoculation. Curr. Top. Microbiol. Immunol. 226, 21–35.

    Article  PubMed  CAS  Google Scholar 

  5. Roemer, K. and Friedmann, T. (1992) Concepts and stratagies for human gene therapy. Eur. J. Biochem. 208, 211–225.

    Article  PubMed  CAS  Google Scholar 

  6. Crystal, R. G., McElvaney, N. G., Rosenfeld, M. A., Chu, C.-S., Mastrangeli, A., Hay, J. G., et al. (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8, 42–51.

    Article  PubMed  CAS  Google Scholar 

  7. Li, S., Brisson, M., He, Y., and Huang, L. (1997) Delivery of a PCR amplified DNA fragment into cells: a model for using synthetic genes for gene therapy. Gene Ther. 4, 449–454.

    Article  PubMed  CAS  Google Scholar 

  8. Valenzuela, M. S., Ikpeazu, E. V., and Siddiqui, K. A. I. (1996) E. coli growth inhibition by a high copy number derivative of plasmid pBR322. Biochem. Biophys. Res. Commun. 219, 876–883.

    CAS  Google Scholar 

  9. Liang, X., Hartikka, J., Sukhu, L., Manthorpe, M., and Hobart, P. (1996) Novel, high expressing and antibiotic-controlled plasmid vectors designed for use in gene therapy. Gene Ther. 3, 350–356.

    PubMed  CAS  Google Scholar 

  10. Liu, Y., Liggitt, D., Zhong, W., Tu, G., Gaensler, K., and Debs, R. (1995) Cationic liposome-mediated intravenous gene delivery. J. Biol. Chem. 270, 24,864–24, 870.

    Google Scholar 

  11. Yew, N. S., Wysokenski, D. M., Wang, K. X., Ziegler, R. J., Marshall, J., McNeilly, D., et al. (1997) Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum. Gene Ther. 8, 575–584.

    Article  PubMed  CAS  Google Scholar 

  12. Manthorpe, M., Cornefert-Jensen, F., Hartikka, J., Feigner, J., Rundell, A., Margalith, M., and Dwarki, V. (1993) Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum. Gene Ther. 4, 419–431.

    Article  PubMed  CAS  Google Scholar 

  13. Samulski, R. J., Zho, X., Xioa, X., Brook, J. D., Housman, D. E., Epstein, H., and Hunter, L. A. (1992) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10, 3941–3950.

    Google Scholar 

  14. Muzyczka, N. (1992) Use of adeno-associated virus as a general transduction factor for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129.

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  16. Caplen, N. J., Gao, X., Hayes, P., Elaswarapu, R., Fisher, G., Kinrade, E., et al. (1994) Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: the production of resources and the regulatory process. Gene Ther. 1, 139–147.

    PubMed  CAS  Google Scholar 

  17. Schorr, J., Moritz, P., Seddon, T., and Schleef, M. (1995) Plasmid DNA for human gene therapy and DNA vaccines. Ann. NY Acad. Sci. 772, 271–273.

    Google Scholar 

  18. Horn, N. A., Meek, J. A., Budahazi, G., and Marquet, M. (1995) Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Hum. Gene Ther. 6, 565–573.

    Article  PubMed  CAS  Google Scholar 

  19. Cotton, M., Baker, A., Saltik, M., Wagner, E., and Buschle, M. (1994) Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1, 239–246.

    Google Scholar 

  20. Cotton, M. and Saltik, M. (1997) Intracellular delivery of lipopolysaccharide during DNA transfections activates a lipid-A dependent cell death response that can be prevented by polymixin B. Hum. Gene Ther. 8, 555–561.

    Article  Google Scholar 

  21. Wagner, E., Cotton, M., Foisner, R., and Birnstiel, M. L. (1991) Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA. 88, 4255–4259.

    Article  PubMed  CAS  Google Scholar 

  22. Wagner, E., Plank, C., Zatloukal, K., Cotton, M., and Birnstiel, M. L. (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA. 89, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  23. Vitiello, L., Chonn, A., Wasserman, J. D., Duff, C., and Worton, R. G. (1996) Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells. Gene Ther. 3, 396–404.

    PubMed  CAS  Google Scholar 

  24. Mahato, R. I., Takakura, Y., and Hashida, M. (1997) Nonviral vectors for in vivo gene delivery: physicochemical and pharmacokinetic considerations. Crit. Rev. Ther. Drug Carrier Syst. 14, 133–172.

    Google Scholar 

  25. Kawabata, K., Takakura, Y., and Hashida, M. (1995) Fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. 12, 825–830.

    Article  PubMed  CAS  Google Scholar 

  26. Osaka, G., Carey, K., Cuthbertson, A., Godowski, P., Patapoff, T., Ryan, A., Gadek, T., and Mordenti, J. (1996) Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [33P]DNA following intravenous administration of DNA/cationic lipid complexes in mice: use of a novel radionuclide approach. J. Pharm. Sci. 85, 612–618.

    Article  PubMed  CAS  Google Scholar 

  27. Lew, D., Parker, S. E., Latimer, T., Abai, A. M., Kuwahara-Rundell, A., Doh, S. G., et al. (1995) Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA following injection in mice. Hum. Gene Ther. 6, 553–564.

    Article  PubMed  CAS  Google Scholar 

  28. Yang, J.-P. and Huang, L. (1996) Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Ther. 3, 542–548.

    PubMed  CAS  Google Scholar 

  29. Budker, V., Zhang, G., Knechtle, S., and Wolff, J. A. (1996) Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther. 3, 593–598.

    PubMed  CAS  Google Scholar 

  30. Hickman, M. A., Malone, R. W., Lehmann-Bruinsma, K., Sih, T. R., Knoell, D., Szoka, F. C., et al. (1994) Gene expression following direct injection of DNA into liver. Hum. Gene Ther. 5, 1477–1483.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz, B., Benoist, C., Abdallah, B., Rangara, R., Hassan, A., Scherman, D., and Demeneix, B. A. (1996) Gene transfer by naked DNA into adult mouse brain. Gene Ther. 3, 405–411.

    PubMed  CAS  Google Scholar 

  32. Sikes, M., O’Malley, B. W., Finegold, M. J., and Ledley, F. D. (1994) In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum. Gene Ther. 5, 837–844.

    Article  PubMed  CAS  Google Scholar 

  33. Yovandich, J., O’Malley, B. W., Sikes, M., and Ledley, F. D. (1995) Gene transfer to synovial cells by intra-articular administration of plasmid DNA. Hum. Gene Ther. 6, 603–610.

    Article  PubMed  CAS  Google Scholar 

  34. Hengge, U. R., Walker, P. S., and Vogel, J. C. (1996) Expression of naked DNA in human, pig, and mouse skin. J. Clin. Invest. 97, 2911–2916.

    Article  PubMed  CAS  Google Scholar 

  35. Takehara, T., Hayashi, N., Yamamoto, M., Miyamoto, Y., Fusamoto, H., and Kamada, T. (1996) In vivo gene transfer and expression in rat stomach by submucosal injection of plasmid DNA. Hum. Gene Ther. 7, 589–593.

    Article  PubMed  CAS  Google Scholar 

  36. Meyer, K. B., Thompson, M. M., Levy, M. Y., Barron, L. G., and Szoka, F. C. (1995) Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics. Gene Ther. 2, 450–460.

    PubMed  CAS  Google Scholar 

  37. Hartikka, J., Sawdey, M., Cornefert-Jensen, F., Margalith, M., Barnhart, K., Nolasco, et al. (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 7, 1205–1217.

    Article  PubMed  CAS  Google Scholar 

  38. Levy, M.Y., Barron, L. G., Meyer, K. B., and Szoka, F. C. (1996) Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood. Gene Ther. 3, 201–211.

    PubMed  CAS  Google Scholar 

  39. Wolff, J., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P. L. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Google Scholar 

  40. Ledley, F. D. (1996) Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13, 1595–1614.

    Article  PubMed  CAS  Google Scholar 

  41. Wolfert, M. A., Schacht, E. H., Toncheva, V., Ulbrich, K., Nazarova, O., and Seymour, L. W. (1996) Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum. Gene Ther. 7, 2123–2133.

    Article  PubMed  CAS  Google Scholar 

  42. Demeneix, B. A. and Behr, J.-P. (1996) Proton sponge: a trick the viruses did not exploit, in Artificial Self-Assembling Systems for Gene Delivery ( Feigner, P. L., Heller, M. J., Lehn, P., Behr, J. P., and Szoka, F. C., eds.), American Chemical Society, Washington, DC, pp. 146–151.

    Google Scholar 

  43. Boussif, O., Lezoualeh, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J.-P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  44. Abdallah, B., Hassan, A., Benoist, C., Goula, D., Behr, J. P., and Demeneix, B. A. (1996) Powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7, 1947–1954.

    Article  PubMed  CAS  Google Scholar 

  45. Service, R. F. (1995) Dendrimers: dream molecules approach real applications. Science 267, 458–459.

    Article  PubMed  CAS  Google Scholar 

  46. Haensler, J. and Szoka, F. C. (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379.

    Article  PubMed  CAS  Google Scholar 

  47. Kukowska-Latallo, J. F., Bielinska, A. U., Johnson, J., Spindler, R., Tomalia, D. A., and Baker, J. R. (1996) Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA. 93, 4897–4902.

    Article  PubMed  CAS  Google Scholar 

  48. Tang, M. X., Redemann, C. T., and Szoka, F. C. (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703–714.

    Article  PubMed  CAS  Google Scholar 

  49. Karakaya, B., Claussen, W., Gessler, K., Saenger, W., and Schlüter, A.-D. (1997) Toward dendrimers with cylindrical shape in solution. J. Am. Chem. Soc. 119, 3296–3301.

    Article  CAS  Google Scholar 

  50. Dunlap, D. D., Maggi, A., Soria, M. R., and Monaco, L. (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 25, 3095–3101.

    Article  PubMed  CAS  Google Scholar 

  51. Gao, X. and Huang, L. (1996) Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 35, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  52. Matsuo, K., Mitsui, Y., Iitaka, Y., and Tsuboi, M. (1968) Interaction of poly-L-ly sine with nucleic acid: an infrared and X-ray examination. J. Mol. Biol. 38, 129–132.

    Article  PubMed  CAS  Google Scholar 

  53. Shapiro, J. T., Leng, M., and Felsenfeld, G. (1969) Deoxyribonucleic acidpolylysine complexes. Structure and nucleotide specificity. Biochemistry 8, 3219–3232.

    Article  PubMed  CAS  Google Scholar 

  54. Stankovics, J., Crane, A. M., Andrews, E., Wu, C. H., Wu, G. Y., and Ledley, F. D. (1994) Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polyly sine/DNA complexes. Hum. Gene Ther. 5, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  55. Ross, G. F., Morris, R. E., Ciraolo, G., Huelsman, K., Bruno, M., Whitsett, J. A., Baatz, J. E., and Korfhagen, T. R. (1995) Surfactant protein A-polylysine conjugates for delivery of DNA to airway cells in culture. Hum. Gene Ther. 6, 31–40.

    Article  PubMed  CAS  Google Scholar 

  56. Edwards, R. J., Carpenter, D. S., and Minchin, R. F. (1996) Uptake and intracellular trafficking of asialoglycoprotein-polylysine-DNA complexes in isolated rat hepatocytes. Gene Ther. 3, 937–940.

    PubMed  CAS  Google Scholar 

  57. Erbacher, P., Roche, A. C., Monsigny, M., and Midoux, P. (1995) Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjug. Chem. 6, 401–410.

    Article  PubMed  CAS  Google Scholar 

  58. Kollen, W. J. W., Midoux, P., Erbacher, P., Yip, A., Roche, A. C., Monsigny, M., Glick, M. C., and Scanlin, T. F. (1996) Gluconoylated and glycosylated polylysines as vectors for gene transfer into cystic fibrosis airway epithelial cells. Hum. Gene Ther. 7, 1577–1586.

    Article  PubMed  CAS  Google Scholar 

  59. Wu, G. Y. and Wu, C. H. (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432.

    PubMed  CAS  Google Scholar 

  60. Wu, G. Y. and Wu, C. H. (1988) Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry 27, 887–892.

    Article  PubMed  CAS  Google Scholar 

  61. Wu, G. Y. and Wu, C. H. (1988) Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 263, 14,621–14, 624.

    Google Scholar 

  62. Wu, C. H., Wilson, J. M., and Wu, G. Y. (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264, 16,985–16, 987.

    Google Scholar 

  63. Wu, G. Y., Wilson, J. M., Shalaby, F., Grossman, M., Shafritz, D. A., and Wu, C. H. (1991) Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J. Biol. Chem. 226, 14,338–14, 342.

    Google Scholar 

  64. Ferkol, T., Lindberg, G. L., Chen, J., Perales, J. C., Crawford, D. R., Ratnoff, O. D., and Hanson, R. W. (1993) Regulation of the phosphoenolpyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer. FASEB J. 7, 1081–1091.

    PubMed  CAS  Google Scholar 

  65. Midoux, P., Mnedes, C., Legrand, A., Raimond, J., Mayer, R., Monsogny, M., and Roche, A. C. (1993) Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21, 871–878.

    Article  PubMed  CAS  Google Scholar 

  66. Plank, C., Zatloukal, K., Cotten, M., Mechtler, K., and Wagner, E. (1992) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3, 533–539.

    Article  PubMed  CAS  Google Scholar 

  67. Merwin, J. R., Noell, G. S., Thomas, W. L., Chiou, H. C., DeRome, M. E., McKee, T. D., Spitalny, G. L., and Findeis, M. A. (1994) Targeted delivery of DNA using YEE(Ga1NAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjug. Chem. 5, 612–620.

    Article  PubMed  CAS  Google Scholar 

  68. Remy, J.-S., Kichler, A., Mordvinov, V., Schuber, F., and Behr, J.-P. (1995) Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc. Natl. Acad. Sci. USA 92, 1744–1748.

    Article  PubMed  CAS  Google Scholar 

  69. Harris, C. E., Agarwal, S., Hu, P., Wagner, E., and Curiel, D. T. (1993) Receptor-mediated gene transfer to airway epithelial cells in primary culture. Am. J. Resp. Cell Mol. Biol. 9, 441–447.

    CAS  Google Scholar 

  70. Lozier, J. N., Thompson, A. R., Hu, A. R., Read, M., Brinkhous, K. M., High, K. A., and Curiel, D. T. (1994) Efficient transfection of primary cells in a canine hemophilia B model using adenovirus-polylysine-DNA complexes. Hum. Gene Ther. 5, 313–322.

    Article  PubMed  CAS  Google Scholar 

  71. Gao, L., Wagner, E., Cotten, M., Agarwal, S., Harris, C., Romer, M., Miller, L., Hu, P. C., and Curiel, D. (1993) Direct in vivo gene transfer to airway epithelium employing adenovirus-polylysine-DNA complexes. Hum. Gene Ther. 4, 17–24.

    Article  PubMed  Google Scholar 

  72. Curiel, D. T., Wagner, E., Cotten, M., Birnstiel, M. L., Agarwal, S., Li, C.-M., Loechel, S., and Hu, P. C. (1992) High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum. Gene Ther. 3, 147–154.

    Article  PubMed  CAS  Google Scholar 

  73. Wagner, E., Zatloukal, K., Cotten, M., Kirlappos, H., Mechtler, K., Curiel, D. T., and Birnstiel, M. L. (1992) Coupling of adenovirus to transferrinpolylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc. Natl. Acad. Sci. USA 89, 6099–6103.

    Article  PubMed  CAS  Google Scholar 

  74. Curiel, D. T., Agarwal, S., Romer, M. U., Wagner, E., Cotten, M., and Birnsteil, M. L. (1992) Gene transfer to respiratory epithelial cells via the receptor-mediated endocytosis pathway. Am. J. Resp. Cell. Mol. Biol. 6, 247–252.

    CAS  Google Scholar 

  75. Cheng, P.-W. (1996) Receptor ligand-facilitated gene transfer: enhancement of liposome-mediated gene transfer and expression by transferrin. Hum. Gene Ther. 7, 275–282.

    Article  PubMed  CAS  Google Scholar 

  76. Yin, W. and Cheng, P. W. (1994) Lectin conjugate-directed gene transfer to airway epithelial cells. Biochem. Biophys. Res. Commun. 205, 826–833.

    Article  PubMed  CAS  Google Scholar 

  77. Trubetskoy, V. S., Torchillin, V.P., Kennel, S. J., and Huang, L. (1992) Use of N-terminal modified poly-L-lysine)-antibody conjugated as a carrier for targeted gene delivery in mouse lung epithelial cells. Bioconjug. Chem. 3, 323–327.

    Article  PubMed  CAS  Google Scholar 

  78. Rojanasakul, Y., Wang, L. Y., Malanga, C. J., Ma, J. K., and Liaw, J. (1994) Targeted gene delivery to alveolar macrophages via Fc receptor-mediated endocytosis. Pharm. Res. 11, 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  79. Chen, J., Gamou, S., Takayanagi, A., and Shimizu, N. (1994) Novel gene delivery system using EGF receptor-mediated endocytosis. FEBSLett. 338, 167–169.

    Article  CAS  Google Scholar 

  80. Thurnher, M., Wagner, E., Clausen, H., Mechtler, K., Rusconi, S., Dinter, A., et al. (1994) Carbohydrate receptor-mediated gene transfer to human T leukaemic cells. Glycobiology 4, 429–435.

    Article  PubMed  CAS  Google Scholar 

  81. Levesque, J. P., Sansilvestri, P., Hatzfeld, A., and Hatzfeld, J. (1991) DNA transfection in COS cells: a low-cost serum-free method compared to lipofection. Biotechniques 11, 316–318.

    Google Scholar 

  82. Legendre, J. Y. and Szoka, F. C. (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm. Res. 9, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  83. Feigner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., Ramsey, P., Martin, M., and Feigner, P. L. (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    Google Scholar 

  84. Farhood, H., Serbina, S., and Huang, L. (1995) Role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235, 289–295.

    Article  PubMed  Google Scholar 

  85. Baru, M., Axelrod, J. H., and Nur, I. (1995) Liposome-encapsulated DNA-mediated gene transfer and synthesis of human factor IX in mice. Gene 161, 143–150.

    Article  PubMed  CAS  Google Scholar 

  86. Erbacher, P., Roche, A. C., Monsigny, M., and Midoux, P. (1997) The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta 1324, 27–36.

    Google Scholar 

  87. Curiel, D. T., Agarwal, S., Wagner, E., and Cotten, M. (1991) Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. USA 88, 8850–8854.

    Article  PubMed  CAS  Google Scholar 

  88. Mellman, I., Fuchs, R., and Helenius, A. (1986) Acidification of the endocytotic and exocytotic pathways. Ann. Rev. Biochem. 55, 663–700.

    Article  PubMed  CAS  Google Scholar 

  89. Parente, R. A., Nir, S., and Szoka, F. C. (1990) Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29, 8720–8728.

    Article  PubMed  CAS  Google Scholar 

  90. Legendre, J.-Y. and Szoka, F. C. (1993) Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA 90, 893–897.

    Article  PubMed  CAS  Google Scholar 

  91. Gottschalk, S., Sparrow, J. T., Hauer, J., Mims, M. P., Leland, F. E., Woo, S. L. C., and Smith, L. C. (1996) Novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther. 3, 448–457.

    PubMed  CAS  Google Scholar 

  92. Fominaya, J. and Wels, W. (1996) Target cell-specific DNA transfer mediated by a chimeric multidomain protein. J. Biol. Chem. 271,10, 560–10, 568.

    Google Scholar 

  93. Wadhwa, M. S., Collard, W. T., Adami, R. C., McKenzie, D. L., and Rice, K. G. (1997) Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug. Chem. 8, 81–88.

    Article  PubMed  CAS  Google Scholar 

  94. Wilke, M., Fortunati, E., van den Broek, M., Hoogeveen, A. T., and Scholte, B. J. (1996) Efficiency of a peptide-based gene delivery system depends on the mitotic activity. Gene Ther. 3, 1133–1142.

    PubMed  CAS  Google Scholar 

  95. Vigneron, J.-P., Oudrhiri, N., Fauquet, M., Vergely, L., Bradley, J.-C., Basseville, M., Lehn, P., and Lehn, J.-M. (1996) Guanidium-cholesterol cationic lipids: Effecient vectors for the transfection of eukaryotic cells. Proc. Natl. Acad. Sci. USA 93, 9682–9686.

    Article  PubMed  CAS  Google Scholar 

  96. Felgner, P. L. and Ringold, G. M. (1989) Cationic-liposomes mediated transfection. Nature 337, 387–388.

    Article  PubMed  CAS  Google Scholar 

  97. Guo, L. S. S., Radhakrishnan, R., and Redemann, C. T. (1990) Adhesion of positively charged liposomes to mucosal tissues. J. Liposome Res. 1, 319–337.

    Article  CAS  Google Scholar 

  98. Li, L.H. and Hui, S.W. (1997) Effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim. Biophys. Acta 1323, 105–116.

    Article  PubMed  CAS  Google Scholar 

  99. Caplen, N. J., Alton, E. W. F. W., Middleton, P. G., Dorin, J. R., Stevenson, B. J., Gao, X., et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Med. 1, 39–46.

    Article  PubMed  CAS  Google Scholar 

  100. Malone, R. W., Feigner, P. L., and Verma, I. M. (1989) Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. USA 86, 6077–6081.

    Article  PubMed  CAS  Google Scholar 

  101. Bennett, C. F., Chiang, M. Y., Chan, H., Shoemaker, J. E., and Mirabelli, C. K. (1992) Cationic lipids enhance cellular uptake and activity of phos- phorothioate antisense oligonucleotides. Mol. Pharmacol. 41, 1023–1033.

    PubMed  CAS  Google Scholar 

  102. Jääskeläinen, I., Mönkkönen, J., and Urtti, A. (1994) Oligonucleotide-cationic liposome interactions. a physiochemical study. Biochim. Biophys. Acta 1195, 115–123.

    Article  PubMed  Google Scholar 

  103. Litzinger, D. C., Brown, J. M., Wala, I., Kaufman, S. A., Van, G. Y., Farrell, C. L., and Collins, D. (1996) Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochim. Biophys. Acta 1281, 139–149.

    Article  PubMed  Google Scholar 

  104. Sells, M. A., Li, J., and Chernoff, J. (1995) Delivery of protein into cells using cationic liposomes. Biotechniques 19, 72–78.

    PubMed  CAS  Google Scholar 

  105. Legendre, J.-Y. and Szoka, F. C. (1995) Liposomes for gene therapy, in Liposomes, ( Puisieux, F., Couvreur, P., Delattre, J., and Devissaguel, J.-P., eds.), Editions de Santè, France, pp. 667–692.

    Google Scholar 

  106. Sternberg, B., Sorgi, F. L., and Huang, L. (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 356, 361–366.

    Article  PubMed  CAS  Google Scholar 

  107. Minsky, A., Ghiriando, R., and Gershon, H. (1996) Structural features of DNA-cationic liposome complexes and their implications for transfection. in Nonmedical Applications of Liposomes ( Lasic, D. D. and Barenholz, Y., eds.), CRC, Boca Raton, FL, pp. 7–30.

    Google Scholar 

  108. Schreier, H. and Sawyer, S. M. (1996) Liposomal DNA vectors for cystic fibrosis gene therapy. Current applications, limitations, and future directions. Adv. Drug Del. Rev. 19, 73–87.

    Article  CAS  Google Scholar 

  109. Sorgi, F. L. and Huang, L. (1996) Large scale production of DC-Choi liposomes by microfluidization. Int. J. Pharm. 144, 131–139.

    Article  CAS  Google Scholar 

  110. Crook, K., McLachlan, G., Stevenson, B. J., and Porteous, D. J. (1996) Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolization. Gene Ther. 3, 834–839.

    PubMed  CAS  Google Scholar 

  111. Farhood, H., Gao, X., Son, K., Yang, Y.-Y., Lazo, J. S., and Huang, L. (1994) Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann. NY Acad. Sci. 716, 23–35.

    Article  PubMed  CAS  Google Scholar 

  112. Cristiano, R. J. and Curiel, D. T. (1996) Strategies to accomplish gene delivery via the receptor-mediated endocytosis pathway. Cancer Gene Ther. 3, 49–57.

    PubMed  CAS  Google Scholar 

  113. Lee, E. R., Marshall, J., Siegel, C. S., Jiang, C., Yew, N. S., Nichols, M. R., et al. (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. 7, 1701–1717.

    Article  PubMed  CAS  Google Scholar 

  114. Feigner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  Google Scholar 

  115. Zhou, X. and Huang, L. (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta 1189, 195–203.

    Article  PubMed  CAS  Google Scholar 

  116. Wrobel, I. and Collins, D. (1996) Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235, 296–304.

    Google Scholar 

  117. Friend, D. S., Papahadjopoulos, D., and Debs, R. J. (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochem. Biophys. Acta 1278, 41–50.

    Article  PubMed  Google Scholar 

  118. Machy, P. and Leserman, L. D. (1983) Small liposomes are better than large liposomes for specific drug delivery in vitro. Biochem. Biophys. Acta 730, 313–320.

    Article  PubMed  CAS  Google Scholar 

  119. Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., and Welsh, M. J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18,997–19, 007.

    Google Scholar 

  120. Xu, Y. and Szoka, F. C. (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623.

    Article  PubMed  CAS  Google Scholar 

  121. Capecchi, M. R. (1980) High efficiency transformation by direct micro-injection of DNA into cultured mammalian cell. Cell 22, 479–488.

    Article  PubMed  CAS  Google Scholar 

  122. Staggs, D. R., Burton, D. W., and Deftos, L. J. (1996) Importance of liposome complexing volume in transfection optimization. BioTechniques 21, 792–797.

    PubMed  CAS  Google Scholar 

  123. Gershon, H., Ghirlando, R., Guttman, S. B., and Minsky, A. (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 32, 7143–7151.

    Article  PubMed  CAS  Google Scholar 

  124. Reimer, D. L., Zhang, Y., Kong, S., Wheeler, J. J., Graham, R. W., and Bally, M. B. (1995) Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry 34, 12, 877–12, 883.

    Google Scholar 

  125. Gustafsson, J., Arvidson, G., Karlsson, G., and Almgren, M. (1995) Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochem. Biophys. Acta 1235, 305–312.

    Article  PubMed  Google Scholar 

  126. Redler, J. O., Koltover, I., Salditt, T., and Safinya, C. R. (1997) Structure of DNA—cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814.

    Article  Google Scholar 

  127. Lasic, D. D., Strey, H., Stuart, M. C. A., Podgornik, R., and Frederik, P. M. (1997) Structure of DNA-liposome complexes. J. Am. Chem. Soc. 119, 832–833.

    Article  CAS  Google Scholar 

  128. Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H., and Scheule, R. K. (1997) Biophysical characterization of cationic lipid: DNA complexes. Biochim. Biophys. Acta 1325, 41–62.

    Article  PubMed  CAS  Google Scholar 

  129. Sorgi, F. L. and Huang, L. (1997) Drug delivery applications of liposomes containing non-bilayer forming phospholipids, in Lipid Polymorphism and Membrane Properties, Current Topics in Membranes, vol. 44 ( Epand, R. M., ed.), Academic, San Diego, CA, pp. 449–475.

    Google Scholar 

  130. Wong, F. M. P., Reimer, D. L., and Bally, M. B. (1996) Cationic lipid binding to DNA: characterization of complex formation. Biochemistry 35, 5756–5763.

    Article  PubMed  CAS  Google Scholar 

  131. Mahato, R. I., Kawabata, K., Nomura, T., Tanakura, Y., and Hashida, M. (1995) Physiochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J. Pharm. Sci. 84, 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  132. Ciccarone, V., Hawley-Nelson, P., and Jessee, J., (1993) Cationic liposome-mediated transfection: effect of serum on expression and efficiency. Focus 15, 80–83.

    Google Scholar 

  133. Feigner, P. (1996) Improvements in cationic liposomes for in vivo gene transfer. Hum. Gene Ther. 7, 1791–1793.

    Article  Google Scholar 

  134. Thierry, A. R., Rabinovich, P., Peng, B., Mahan, L. C., Bryant, J. L., and Gallo, R. C. (1997) Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 4, 226–237.

    Article  PubMed  CAS  Google Scholar 

  135. Egilmaz, N. K., Iwanuma, Y., and Bankert, R. B. (1996) Evaluation and optimization of different cationic liposome formulations for in vivo gene transfer. Biochem. Biophys. Res. Commun. 221, 169–173.

    Article  Google Scholar 

  136. Schwartz, B., Benoist, C., Abdallah, B., Scherman, D., Behr, J.-P., and Demeneix, B. A. (1995) Lipospermine-based gene transfer into the newborn mouse brain is optimized by a low lipospermine/DNA charge ratio. Hum. Gene Ther. 6, 1515–1524.

    Article  PubMed  CAS  Google Scholar 

  137. Saeki, Y., Matsumoto, N., Nakano, Y., Mori, M., Awai, K., and Kaneda, Y. (1997) Development and characterization of cationic liposomes conjugated with HVJ (Sendai Virus): reciprocal effect of cationic lipid for in vitro and in vivo gene transfer. Hum. Gene Ther. 8, 2133–2141.

    Article  PubMed  CAS  Google Scholar 

  138. Zhu, N., Liggitt, D., Liu, Y., and Debs, R. (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209–211.

    Article  PubMed  CAS  Google Scholar 

  139. Keogh, M.-C., Chen, D., Lupu, F., Shaper, N., Schmitt, J. F., Kakkar, V. V., and Lemoine, N. R. (1997) High efficiency reporter gene transfection of vascular tissue in vitro and in vivo using a cationic lipid-DNA complex. Gene Ther. 4, 162–171.

    Article  PubMed  CAS  Google Scholar 

  140. Parker, S. E., Ducharme, S., Norman, J., and Wheeler, C. J. (1997) Tissue distribution of the cytofectin component of a plasmid-DNA/cationic lipid complex following intravenous administration in mice. Hum. Gene Ther. 8, 393–401.

    Article  PubMed  CAS  Google Scholar 

  141. Yang, J. P. and Huang, L. (1997) Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 4, 950–960.

    Article  PubMed  CAS  Google Scholar 

  142. Bennett, M. J., Nantz, M. H., Balasubramaniam, R. P., Gruemert, D., and Malone, R. W. (1995) Cholesterol enhances cationic liposome-mediated DNA transfection of human respiratory epithelial cells. Biosci. Rep. 15, 47–53.

    Article  PubMed  CAS  Google Scholar 

  143. Son, K. and Huang, L. (1994) Exposure of human ovarian carcinoma to cisplatin transiently sensitizes the tumor cells for liposome mediated gene transfer. Proc. Natl. Acad. Sci. USA 91, 12,669–12, 672.

    Google Scholar 

  144. Hong, K., Zheng, W., Baker, A., and Papahadjopoulos, D. (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400, 233–237.

    Article  PubMed  CAS  Google Scholar 

  145. Liu, F., Qi, H., Huang, L., and Liu, D. (1997) Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4, 517–523.

    Article  PubMed  CAS  Google Scholar 

  146. Liu, Y., Mounkes, L. C., Liggitt, H. D., Brown, C.S., Solodin, I., Heath, T. D., and Debs, R. J. (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nature Biotech. 15, 167–173.

    Article  CAS  Google Scholar 

  147. Lui, F., Yang, J.-P., Huang, L., and Liu, D. (1996) New cationic lipid formulations for gene transfer. Pharm. Res. 13, 1856–1860.

    Article  Google Scholar 

  148. Hofland, H. E. J., Shephard, L., and Sullivan, S. M. (1996) Formation of stable cationic lipid/DNA complexes for gene transfer. Proc. Natl. Acad. Sci. USA 93, 7305–7309.

    Article  PubMed  CAS  Google Scholar 

  149. Hofland, H. E. J., Nagy, D., Liu, J.-J., Spratt, K., Lee, Y.-L., Danos, O., and Sullivan, S. M. (1997) In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm. Res. 14, 742–749.

    Article  PubMed  CAS  Google Scholar 

  150. Zhang, Y.-P., Reimer, D. L., Zhang, G., Lee, P. H., and Bally, M. B. (1997) Self-assembling DNA-lipid particles for gene transfer. Pharm. Res. 14, 190–196.

    Article  PubMed  CAS  Google Scholar 

  151. Bhattacharya, S. and Haldar, S. (1996) Effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochim. Biophys. Acta 1283, 21–30.

    Article  PubMed  Google Scholar 

  152. Thierry, A. R., Lunardi-Iskandar, Y., Bryant, J. L., Rabinovich, P., Gallo, R. C., and Mahan, L. C. (1995) Systemic gene delivery: biodistribution and long-term expression of a transgene in mice. Proc. Natl. Acad. Sci. USA 92, 9742–9746.

    Article  PubMed  CAS  Google Scholar 

  153. Deshmukh, H. M. and Huang, L. (1997) Liposome and polylysine mediated gene transfer. New J. Chem. 21, 113–124.

    CAS  Google Scholar 

  154. Koiv, A., Palvimo, J., and Kinnunen, P. K. J. (1995) Evidence for ternary complex formation by histine H1, DNA, and liposomes. Biochemistry 34, 8018–8027.

    Article  PubMed  CAS  Google Scholar 

  155. Fritz, J. D., Herweijer, H., Zhang, G., and Wolff, J. A. (1996) Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum. Gene Ther. 7, 1395–1404.

    Article  PubMed  CAS  Google Scholar 

  156. Sorgi, F. L., Bhattacharya, S., and Huang, L. (1997) Protamine sulfate enhances lipid mediated gene transfer. Gene Ther. 4, 961–968.

    Article  PubMed  CAS  Google Scholar 

  157. Li, S. and Huang, L. (1997) In vivo gene transfer via intravenous administration of cationic lipid/protamine/DNA (LPD) complexes. Gene Ther. 4, 891–900.

    Article  PubMed  CAS  Google Scholar 

  158. Jarnagin, W. R., Debs, R. J., Wang, S.-S., and Bissell, D. M. (1992) Cationic lipid-mediated transfection of liver cells in primary culture. Nucleic Acids Res. 20, 4205–4211.

    Article  PubMed  CAS  Google Scholar 

  159. Gould-Fogerite, S., Mazurkiewicz, J. E., Raska, K., Voelkerding, K., Lehman, J. M., and Mannino, R. J. (1989) Chimerasome-mediated gene transfer in vitro and in vivo. Gene 84, 429–438.

    Article  PubMed  CAS  Google Scholar 

  160. Liu, D. and Huang, L. (1990) pH-sensitive, plasma-stable liposomes with relatively prolonged residence in circulation. Biochem. Biophys. Acta 1022, 348–354.

    Google Scholar 

  161. Rose, J. K., Buonocore, L., and Whitt, M. A., (1991) New cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10, 520–525.

    PubMed  CAS  Google Scholar 

  162. Stewart, M. J., Plautz, G. E., Buono, L. D., Yang, Z. Y., Xu, L., Gao, X., et al. (1992) Gene transfer in vivo with DNA-liposome complexes: safety and acute toxicity in mice. Hum. Gene Ther. 3, 267–275.

    Article  PubMed  CAS  Google Scholar 

  163. Smith, J. G., Walzern, R. L., and German, J. B. (1993) Liposomes as agents of DNA transfer. Biochem. Biophys. Acta 1154, 327–340.

    Article  PubMed  CAS  Google Scholar 

  164. Schnierle, B. S. and Groner, B. (1996), Retroviral targeted delivery. Gene Ther. 3, 1069–1073.

    PubMed  CAS  Google Scholar 

  165. Salmons, B. and Günzburg, W. H. (1993) Targeting of retroviral vectors for gene therapy. Hum. Gene Ther. 4, 129–141.

    Article  PubMed  CAS  Google Scholar 

  166. Squinto, S. P., Rollins, S. A., Springhorn, J. P., Fodor, W. L., and Rother, R. P. (1995) Injectable retroviral particles for human gene therapy. Adv. Drug Del. Rev. 17, 213–226.

    Article  CAS  Google Scholar 

  167. Kaplan, J. M., St George, J. A., Pennington, S. E., Keyes, L. D., Johnson, R. P., Wadsworth, S. C., and Smith, A. E. (1996) Humoral and cellular immune responses on nonhuman primates to long-term repeated lung exposure to Ad2/CFTR-2. Gene Ther. 3, 117–127.

    PubMed  CAS  Google Scholar 

  168. St. George, J. A., Pennington, S. E., Kaplan, J. M., Peterson, P. A., Kleine, L. J., Smith, A. E., and Wadsworth, S. C. (1996) Biological response of nonhuman primates to longterm repeated lung exposure to Ad2/CFTR-2. Gene Ther. 3, 103–116.

    Google Scholar 

  169. Kass-Eisler, A., Leinwand, L., Gall, J., Bloom, B., and Falck-Pedersen, E. (1996) Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther. 3, 154–162.

    PubMed  CAS  Google Scholar 

  170. Yang, Y., Jooss, K. U., Su, Q., Ertl, H. C. J., and Wilson, J. M. (1996) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3, 137–144.

    PubMed  Google Scholar 

  171. Chander, R. and Schreier, H. (1992) Artificial viral envelopes containing recombinant human immunodeficient virus (HIV) gp160. Life Sci. 50, 481–489.

    Article  PubMed  CAS  Google Scholar 

  172. Schreier, H., Moran, P., and Caras, I. W. (1994) Targeting of liposomes to cells expressing CD4 using glycosylphosphatidylinositol-anchored gp 120. J. Biol. Chem. 269, 9090–9098.

    PubMed  CAS  Google Scholar 

  173. Stecenko, A. A., Walsh, E. E., and Schreier, H. (1992) Fusion of artificial viral envelopes containing respiratory syncytial virus (RSV) attachment (G) and fusion (F) glycoproteins with Hep-2-cells. Pharm. Pharmacol. Lett. 1, 127–129.

    CAS  Google Scholar 

  174. Wang, C.-Y. and Huang, L. (1987) Plasmid DNA adsorbed to pH-sensitive liposomes efficiently transforms the target cells. Biochem. Biophys. Res. Commun. 147, 980–985.

    Article  PubMed  CAS  Google Scholar 

  175. Wang, C.-Y. and Huang, L. (1987) pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. USA 84, 7851–7855.

    Article  Google Scholar 

  176. Wang, C.-Y. and Huang, L. (1989) Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28, 9508–9514.

    Article  PubMed  CAS  Google Scholar 

  177. Lee, R. J. and Huang, L. (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271, 8481–8487.

    Article  PubMed  CAS  Google Scholar 

  178. Bahnson, A. B., Dunigan, J. T., Baysal, B. E., Mohney, T., Atchison, R. W., Nimgaonkar, M. T., Ball, E. D., and Barranger, J.A. (1995) Centrifigul enhancement or retroviral-mediated gene transfer. J. Virol. Methods 54, 131–143.

    Article  PubMed  CAS  Google Scholar 

  179. Cometta, K. and Anderson, W. F. (1989) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene transfer: implications for human gene therapy. J. Virol. Methods 23, 187–194.

    Article  Google Scholar 

  180. Andreadis, S. and Palsson, B. O. (1997) Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Hum. Gene Ther. 8, 285–291.

    Article  PubMed  CAS  Google Scholar 

  181. Arcasoy, S. M., Latoche, J. D., Gondor, M., Pitt, B. R., and Pilewski, J. M. (1997) Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 4, 32–38.

    Article  PubMed  CAS  Google Scholar 

  182. Vieweg, J., Boczkowski, D., Roberson, K. M., Edwards, D. W., Philip, M., Philip, R., et al. (1995) Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res. 55, 2366–2372.

    PubMed  CAS  Google Scholar 

  183. Fasbender, A., Zabner, J., Chillon, M., Moninger, T. O., Puga, A. P., Davidson, B. L., and Welsh, M. J. (1997) Complexes of adenovirus with polycationic polymers and cationic liposomes increase the efficiency of gene transfer in vitro and in vivo. J. Biol. Chem. 272, 6479–6489.

    Article  PubMed  CAS  Google Scholar 

  184. Hodgson, C. P. and Solaiman, F. (1996) Virosomes: cationic liposomes enhance retroviral transduction. Nature Biotech. 14, 339–342.

    Article  CAS  Google Scholar 

  185. Swaney, W. P., Sorgi, F. L., Bahnson, A. B., and Barranger, J. A. (1997) Effect of cationic lipid pretreatment and centrifugation on retroviral-mediated gene transfer. Gene Ther. 4, 1379–1386.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sorgi, F.L., Schreier, H. (1999). Nonviral Gene Delivery. In: Wu-Pong, S., Rojanasakul, Y. (eds) Biopharmaceutical Drug Design and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-705-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-705-5_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4644-0

  • Online ISBN: 978-1-59259-705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics