Skip to main content
Book cover

Lupus pp 65–78Cite as

Clustering and Proteolytic Cleavage of Autoantigens in Surface Blebs of Apoptotic Cells

Implications for Pathogenesis of SLE

  • Chapter

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

There is now a persuasive body of evidence demonstrating that the highly specific humoral immune response to autoantigens in systemic lupus erythematosis (SLE) is T-cell—dependent, and that flares in SLE result when this primed immune system is rechallenged with self antigen (reviewed in refs. 1–3). However, the mechanisms responsible for the initiation of the primary immune response to these molecules, and for subsequently stimulating the secondary response to targeted antigens, remain unclear (4,5). Several recent studies demonstrate that a potential for T-cell autoreactivity resides in the immunologic nonequivalency of different areas of self molecules, since tolerance is only induced to dominant determinants, which are generated and presented at suprathreshold concentrations during the natural processing of whole protein antigens (reviewed in refs. 6 and 7). Those determinants that are not generated at all, or are generated at subthreshold levels during antigen processing (termed “cryptic”), do not tolerize T cells, allowing potentially autoreactive T cells recognizing this cryptic self to persist. The hypothesis that autoimmunity arises when normally cryptic determinants become visible to the immune system has received increased attention in the past several years, and several experimental systems have now provided clear evidence that the balance of dominant vs cryptic epitopes in a self molecule can be profoundly influenced by forces that alter the “immunologic” structure of molecules (7). Examples include the revelation of cryptic epitopes through novel cleavage (8,9), or through altered conformation induced by high-affinity ligand binding (e.g., to an antibody or receptor molecule [10–12]). The unique, high-titer autoantibody responses that characterize different autoimmune diseases can therefore be viewed as the immunologic impression of the initiating events that revealed suprathreshold concentrations of nontolerized structure in a proimmune context, thus satisfying the stringent criteria for the initiation of a primary immune response (13). We have proposed that high-titer autoantibodies to the very specific group of cellular molecules targeted in SLE might therefore reflect this common feature (14). The corollary of this proposal is that if the perturbed state can be re-created in vitro, autoantigens will be unified by alterations of concentration, distribution, and structure. We have therefore used high-titer autoantibodies as probes of the cell biology and biochemistry of autoantigens during different clinically relevant perturbed states, to search for those circumstances in which autoantigens become clustered, concentrated, and structurally modified (14–19). This chapter highlights apoptosis as the perturbed state underlying the initiation and propagation of SLE, and focuses attention on the alterations in the cell biology and biochemistry that unify lupus autoantigens during this form of cell death. These studies raise numerous questions about the normal immune consequences of apoptosis in tissues during different forms of apoptosis. In addition, the likely focus of future studies is also outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radic, M. Z. and Weigert, M. (1994) Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu. Rev. Immunol. 12, 487–520.

    Article  PubMed  CAS  Google Scholar 

  2. Diamond, B., Katz, J. B., Paul, E., Aranow, C., Lustgarten, D., and Scharff, M. D. (1992) The role of somatic mutation in the pathogenic anti-DNA response. Ann. Rev. Immunol. 10, 731–757.

    Article  CAS  Google Scholar 

  3. Burlingame, R.W., Rubin, R. L., Balderas, R. S., and Theofilopoulos A. N. (1993) Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self-antigen. J. Clin. Invest. 91, 1687–1696.

    Article  PubMed  CAS  Google Scholar 

  4. Sercarz, E. E. and S. K. Datta. (1994) Mechanisms of autoimmunization: perspective from the mid-90s. Curr. Opin. Immunol. 6, 875–881.

    Article  PubMed  CAS  Google Scholar 

  5. Bach, J. F. and S. Koutouzov. (1997) New clues to systemic lupus. Lancet 350, 11.

    Article  Google Scholar 

  6. Sercarz, E. E., Lehmann, P. V., Ametani, A., Benichou, G., Miller, A., and Moudgil, K. (1993) Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 11, 729–766.

    Article  PubMed  CAS  Google Scholar 

  7. Lanzavecchia, A. (1995) How can cryptic epitopes trigger autoimmunity? J. Exp. Med. 181, 1945–1948.

    Article  PubMed  CAS  Google Scholar 

  8. Bockenstedt, L. K., Gee, R. J., and Mamula, M. J. (1995) Self-peptides in the initiation of lupus autoimmunity. J. Immunol. 154, 3516–3524.

    PubMed  CAS  Google Scholar 

  9. Mamula, M. J. (1993) The inability to process a self-peptide allows autoreactive T cells to escape tolerance. J. Exp. Med. 177, 567–571.

    Article  PubMed  CAS  Google Scholar 

  10. Simitsek, P. D., Campbell, D. G., Lanzavecchia, A., Fairweather, N., and Watts, C. (1995) Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J. Exp. Med. 181, 1957–1963.

    Article  PubMed  CAS  Google Scholar 

  11. Watts, C. and Lanzavecchia., A. (1993) Suppressive effect of an antibody on processing of T cell epitopes. J. Exp. Med. 178, 1459–1463.

    Article  PubMed  CAS  Google Scholar 

  12. Salemi, S., Caporossi, A. P., Boffa, L., Longobardi, M. G., and Barnaba, V. (1995) HIVgp120 activates autoreactive CD4-specific T cell responses by unveiling of hidden CD4 peptides during processing. J. Exp. Med. 181, 2253–2257.

    Article  PubMed  CAS  Google Scholar 

  13. Casciola-Rosen, L. and Rosen, A. (1997) Ultraviolet light-induced keratinocyte apoptosis: a potential mechanism for the induction of skin lesions and autoantibody production in LE. Lupus 6, 175–180.

    Article  PubMed  CAS  Google Scholar 

  14. Casciola-Rosen, L.A., Anhalt, G., and Rosen, A. (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330.

    Article  PubMed  CAS  Google Scholar 

  15. Casciola-Rosen, L., Rosen, A., Petri, M., and Schlissel, M. (1996) Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 93, 1624–1629.

    Article  PubMed  CAS  Google Scholar 

  16. Casciola-Rosen, L., Wigley, F., and Rosen, A. (1997) Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions: implications for pathogenesis. J. Exp. Med. 185, 71–79.

    Article  PubMed  CAS  Google Scholar 

  17. Casciola-Rosen, L. A., Anhalt, G. J., and Rosen, A. (1995) DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634.

    Article  PubMed  CAS  Google Scholar 

  18. Casciola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A. (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30,757–30, 760.

    Google Scholar 

  19. Casciola-Rosen, L. A., Nicholson, D. W., Chong, T., Rowan, K. R., Thornberry, N. A., Miller, D. K., and Rosen, A. (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. 183, 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  20. Provost, T. T. (1981) The lupus band test. Int. J. Dermatol. 20, 475–481.

    Article  PubMed  CAS  Google Scholar 

  21. LeFeber, W. P., Norris, D. A., Ryan, S. R., Huff, J. C., Lee, L. A., Kubo, M., Boyce, S. T., Kotzin, B. L., and Weston, W. L. (1984) Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J. Clin. Invest. 74, 1545–1551.

    Article  PubMed  CAS  Google Scholar 

  22. Golan, T. D., Elkon, K. B., Gharavi, A. E., and Krueger, J. G. (1992) Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet A irradiation. J. Clin. Invest. 90, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  23. Martin, S. J., Finucane, D. M., Amarante-Mendes, G. P., O’Brien, G. A., and Green, D. R. (1996) Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J. Biol. Chem. 271, 28,753–28, 756.

    Google Scholar 

  24. Koopman, G., Reutelingsperger, C. P., Kuitjen, G. A., Keehnen, R. M., Pals, S. T., and van Oers, M. H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.

    PubMed  CAS  Google Scholar 

  25. Salvesen, G. and Dixit, V. M. (1997) Caspases: Intracellular signaling by proteolysis. Cell 91, 443–446.

    Article  PubMed  CAS  Google Scholar 

  26. Nicholson, D. W. and Thornberry, N. A. (1997) Caspases: killer proteases. TIBS 22, 299–306.

    PubMed  CAS  Google Scholar 

  27. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993) Specific proteolytic cleavage of poly-(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976–3985.

    PubMed  CAS  Google Scholar 

  28. Sarin, A., Adams, D. H., and Henkart, P. A. (1993) Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J. Exp. Med. 178, 1693–1700.

    Article  PubMed  CAS  Google Scholar 

  29. Sarin, A., Nakajima, H., and Henkart, P. A. (1995) A protease-dependent TCR-induced death pathway in mature lymphocytes. J. Immunol. 154, 5806–5812.

    PubMed  CAS  Google Scholar 

  30. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to the mammalian interleukin-113-converting enzyme. Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  31. Greidinger, E. L., Miller, D. K., Yamin, T. -T., Casciola-Rosen, L., and Rosen, A. (1996) Sequential activation of three distinct ICE-like activities in Fas-ligated Jurkat cells. FEBS Lett. 390, 299–303.

    Article  PubMed  CAS  Google Scholar 

  32. Waterhouse, N., Kumar, S., Song, Q. H., Strike, P., Sparrow, L., Dreyfuss, G., Alnemri, E. S., Litwack, G., Lavin, M., and Watters, D. (1996) Heteronuclear ribonucleoproteins Cl and C2, components of the spliceosome, are specific targets of interleukin 1n-converting enzyme-like proteases in apoptosis. J. Biol. Chem. 271, 29,335–29, 341.

    Google Scholar 

  33. Casiano, C. A., Martin, S. J., Green, D. R., and Tan, E. M. (1997) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J. Exp. Med. 184, 765–770.

    Google Scholar 

  34. Chambers C. A. and Allison, J. P. (1997) Costimulation in T cell responses. Curr. Opin. Im-munol. 9, 396–404.

    Article  CAS  Google Scholar 

  35. Lenschow D. J., Walunas, T. L., and Bluestone, J. A. (1996) CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258.

    Article  PubMed  CAS  Google Scholar 

  36. Rudin, C. M. and Thompson, C. B. (1997) Apoptosis and disease: regulation and clinical relevance of programmed cell death. Ann. Rev. Med. 48, 267–281.

    Article  PubMed  CAS  Google Scholar 

  37. Mori, I., Komatsu, T., Takeuchi, K., Nakakuki, K., Sudo, M., and Kimura, Y. (1995) In vivo induction of apoptosis by influenza virus. J. Gen.Virol. 76, 2869–2873.

    CAS  Google Scholar 

  38. Morey, A. L., Ferguson, D. J. P., and Fleming, K. A. (1993) Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. J. Pathol. 169, 213–220.

    Article  PubMed  CAS  Google Scholar 

  39. Levine, B., Huang, Q., Isaacs, J. T., Reed, J. T., Griffin, D. E., and Hardwick, J. M. (1993) Conversion of lytic to persistent alphavirus infection by the bc1–2 cellular oncogene. Nature 361, 739–742.

    Article  PubMed  CAS  Google Scholar 

  40. Dong, X., Hamilton, K. J., Satoh, M., Wang, J., and Reeves, W. H. (1994) Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen. J. Exp. Med. 179, 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  41. Singh, N. K., Atreya, C. D., and Nakhasi, H. L. (1994) Identification of calreticulin as a rubella virus RNA binding protein. Proc. Natl. Acad. Sci. USA 91, 12,770–12, 774.

    Google Scholar 

  42. Rosen, A., Casciola-Rosen, L., and Ahearn, J. (1995) Novel packages of viral and self-antigens are generated during apoptosis. J. Exp. Med. 181, 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  43. Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223–254.

    PubMed  CAS  Google Scholar 

  44. Ellis, R. E., Yuan, J., and Horvitz, H. R. (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698.

    Article  PubMed  CAS  Google Scholar 

  45. Utz, P. J., Hottelet, M., Schur, P. H., and Anderson, P. (1997) Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J. Exp. Med. 185, 843–854.

    Article  PubMed  CAS  Google Scholar 

  46. Song, Q. Z., Lees-Miller, S. P., Kumar, S., Zhang, N., Chan, D. W., Smith, G. C. M., Jackson, S. P., Alnemri, E. S., Litwack, G., Khanna, K. K., and Lavin, M. F. (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15, 3238–3246.

    PubMed  CAS  Google Scholar 

  47. Martin, S. J., O’Brien, G. A., Nishioka, W. K., McGahon, A. J., Mahboubi, A., Saido, T. C., and Green, D. R. (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270, 6425–6428.

    Article  PubMed  CAS  Google Scholar 

  48. Orth, K., Chinnaiyan, A. M., Garg, M., Froelich, C. J., and Dixit, V. M. (1996) The CED3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271, 16,443–16, 446.

    Google Scholar 

  49. Gueth-Hallonet, C., Weber, K., and Osborn, M. (1997) Cleavage of the nuclear matrix protein NuMA during apoptosis. Exp. Cell. Res. 233, 21–24.

    Article  PubMed  CAS  Google Scholar 

  50. Weaver, V. M., Carson, C. E., Walker, P. R., Chaly, N., Lach, B., Raymond, Y., Brown, D. L., and Sikorska, M. (1996) Degradation of nuclear matrix and DNA cleavage in apoptotic thymocytes. J. Cell. Sci. 109, 45–56.

    PubMed  CAS  Google Scholar 

  51. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  52. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T., Yu, V. L., and Miller, D. K. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.

    Article  PubMed  CAS  Google Scholar 

  53. Tewari, M., Quan, L., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M. (1995) Yama/CPP3213, a mammalian homologue of CED3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809.

    Article  PubMed  CAS  Google Scholar 

  54. Casiano, C. A., Martin, S. J., Green, D. R., and Eng, M. T. (1996) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO- 1)-mediated T cell apoptosis. J. Exp. Med. 184, 765–770.

    Article  Google Scholar 

  55. Hemmann, M., Voll, R. E., Zoller, O. M., Hagenhofer, M., Ponner, B. B., and Kalden, J. R. (1998) Impaired phagocytosis of apoptotic material by monocyte derived macrophages from patients with systemic lupus erythematosus. Arth. Rheum. 41, 1241–1250.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosen, A., Casciola-Rosen, L. (1999). Clustering and Proteolytic Cleavage of Autoantigens in Surface Blebs of Apoptotic Cells. In: Kammer, G.M., Tsokos, G.C. (eds) Lupus. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-703-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-703-1_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5686-9

  • Online ISBN: 978-1-59259-703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics