Skip to main content

Targeting Costimulatory and Other Signaling Molecules in Murine Lupus

  • Chapter
Lupus

Part of the book series: Contemporary Immunology ((CONTIM))

  • 172 Accesses

Abstract

Recent advances in the understanding of T-cell activation and effector func­tion have made it possible to consider novel strategies to treat diseases that are in part mediated by the immune system. Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of autoantibodies that are deposited as immune complexes in the kidneys and other organs, and is associated with an inflammatory response. A number of T-cell abnormalities exist in patients with SLE and in mouse lupus models, which can contribute to the pro­gression of this autoimmune disorder. One method of treating SLE involves blocking T-cell function. Since activated T cells are already present in SLE, this would involve downregulation of effector T-cell activity as well as the inhibition of memory T-cell activation. Such treatment could abrogate the ongoing disease but may also cause generalized immunosuppression, increasing susceptibility to infections. Identifying treatments that block autoimmune disease but sustain immune competence will be an important goal in the development of future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller, D. L., Jenkins, M. D., and Schwartz, R. H. (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480.

    Article  PubMed  CAS  Google Scholar 

  2. Perez, V. L., Parijs, L. V., Bluckians, A., Zheng, X. X., Strom, T. B., and Abbas, A. K. (1997) Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417.

    Article  PubMed  CAS  Google Scholar 

  3. Kuchroo, V. K., Das, M. P., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H. (1995) B7–1 and B7–2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80, 707–718.

    Article  PubMed  CAS  Google Scholar 

  4. Lenschow, D. J., Ho, S. C., Sattar, H., Rhee, L., Gray, G., Nababvi, N., Herold, K. C., and Bluestone, J. A. (1995) Differential effects of anti-B7–1 and anti-B7–2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  5. Shahinian, A., Pfeffer, K., Lee, K. P., Kundig, T. M., Kishihara, K., Wakeham, A., Kawai, K., Ohashi, P. S., Thompson, C. B., and Mak, T. W. (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, D. R., Green, J. M., Moskowitz, N. H., Davis, M., Thompson, C. B., and Reiner, S. L. (1996) Limited role of CD28-mediated signals in T helper subset differentiation. J. Exp. Med. 184, 803–809.

    Article  PubMed  CAS  Google Scholar 

  7. June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T., and Thompson, C. B. (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481.

    PubMed  CAS  Google Scholar 

  8. Lucas, P. J., Negishi, I., Nakayama, K. I., Fields, L. E., and Loh, D. Y. (1995) Naive CD28deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768.

    PubMed  CAS  Google Scholar 

  9. Mittrucker, H. W., Shahinian, A., Bouchard, D., Kundig, T. M., and Mak, T. W. (1996) Induction of unresponsiveness and impaired T cell expansion by staphylococcal enterotoxin B in CD28-deficient mice. J. Exp. Med. 183, 2481–2488.

    Article  PubMed  CAS  Google Scholar 

  10. Green, J. M., Noel, P. J., Sperling, A. I., Walunas, T. L., Gray, G. S., Bluestone, J. A., and Thompson, C. B. (1994) Absence of B7-dependent response in CD28-deficient mice. Immunity 1, 501–508.

    Article  PubMed  CAS  Google Scholar 

  11. Ferguson, S. E., Han, S., Kelsoe, G., and Thompson, C. B. (1996) CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581.

    PubMed  CAS  Google Scholar 

  12. Lenschow, D. J., Walunas, T. L., and Bluestone, J. A. (1996) CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14, 233–259.

    Article  PubMed  CAS  Google Scholar 

  13. Gause, W. C., Greenwald, R., Halvorson, M. J., Lu, P., Zhou, X., Chen, S., Morris, S. C., Lee, K. P., June, C. H., Finkelman, F. D., Urban, J. F., and Abe, R. (1997) CD28-dependence of T cell differentiation to IL-4 production varies with the particular type 2 immune response. J. Immunol. 158, 4082–4087.

    PubMed  CAS  Google Scholar 

  14. Gross, J. A., St. John, T., and Allison, J. P. (1990) The murine homologue of the T lymphocyte antigen CD28. molecular cloning and cell surface expression. J. Immunol. 144, 3201–3210.

    PubMed  CAS  Google Scholar 

  15. Rudd, C. E. (1996) Upstream-downstream: CD28 cosignaling pathways and T cell function. Immunity 4, 527–534.

    Article  PubMed  CAS  Google Scholar 

  16. Ward, S. G. (1996) CD28: a signalling perspective. Biochem. J. 318, 361–377.

    PubMed  CAS  Google Scholar 

  17. Edmead, C. E., Patel, Y. I., Wilson, A., Boulougouris, G., Hall, N. D., Ward, S. G., and Sansom, D. M. (1996) Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals. J. Immunol. 157, 3290–3297.

    PubMed  CAS  Google Scholar 

  18. Brunet, J. -F., Denizot, F., Luciani, M.- F., Roux-Dosseto, M., Suzan, M., Mattei, M.-G., and Golstein, P. (1987) A new member of the immunoglobulin superfamily. Nature 328, 267–270.

    Article  PubMed  CAS  Google Scholar 

  19. Linsley, P. S., Greene, J. L., Tan, P., Bradshaw, J., Ledbetter, J. A., Anasetti, C., and Damle, N. K. (1992) Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176, 1595–1604.

    Article  PubMed  CAS  Google Scholar 

  20. Stein, P. H., Fraser, J. D., and Weiss, A. (1994) The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3’-kinase. Mol. Cell. Biol. 14, 3392–3402.

    PubMed  CAS  Google Scholar 

  21. Tivol, E. Borriello, A. F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., and Sharpe, A. H. (1995) Loss of CTLA-4 leads to massive lymphoproliferations and fetal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547.

    Article  PubMed  CAS  Google Scholar 

  22. Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., Thompson, C. B., Griesser, H., and Mak, T. W. (1995) Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 932, 933.

    Google Scholar 

  23. Gribben, J. G., Freeman, G. J., Boussiotis, V. A., Rennert, P., Jellis, C. L., Greenfield, E., Barber, M., Restivo, V. A., Ke, X. Y., Gray, G. S., and Nadler, L. M. (1995) CTLA4 mediates antigen-specific apoptosis of human T cells. Proc. Natl. Acad. Sci. USA 92, 811–815.

    Article  PubMed  CAS  Google Scholar 

  24. Perez, V. L., Parijs, L. V., Biuckians, A., Zheng, X. X., Strom, T. B., and Abbas, A. K. (1997) Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, Y., Guo, Y., Huang, A., Zheng, P., and Liu, Y. (1997) CTLA-4-B7 interaction is sufficient to costimulate T cell clonal expansion. J. Exp. Med. 185, 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  26. Bergman, M. C., Attrep, J. F., Grammer, A. C., and Lipsky, P. E. (1996) Ligation of CD40 influences the function of human Ig-secreting B cell hybridomas both positively and negatively. J. Immunol. 156, 3118–3132.

    PubMed  CAS  Google Scholar 

  27. Lynch, D. H., Ramsdell, F., and Alderson, M. R. (1995) Fas and FasL in the homeostatic regulation of immune responses. Immunol. Today 16, 569–574.

    Article  PubMed  CAS  Google Scholar 

  28. Dariavach, P., Mattei, M. G., Go’stein, P., and Lefranc, M. P. (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur. J. Immunol. 18, 1901–1905.

    Article  PubMed  CAS  Google Scholar 

  29. Schneider, H., Prasad, K. V., Shoelson, S. E., and Rudd, C E. (1995) CTL-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351–355.

    Article  PubMed  CAS  Google Scholar 

  30. Marengere, L. E. Waterhouse, M. P., Duncan, G. S., Mittrucker, H.-W., Feng, G.-S., and Mak, T. W. (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  31. Scharenberg, A. M. and Kinet, J. P. (1996) The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP? Cell 87, 961–964.

    Article  PubMed  CAS  Google Scholar 

  32. Cambier, J. C. (1997) Inhibitory receptors abound? Proc. Natl. Acad. Sci. USA 94, 5993–5995.

    Article  PubMed  CAS  Google Scholar 

  33. Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., and Peach, R. (1994) Human B7–1(CD80) and B7–2(CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801.

    Article  PubMed  CAS  Google Scholar 

  34. Doty, R. T. and Clark, E. A. (1996) Subcellular localization of CD80 receptors is dependent on an intact cytoplasmic tail and is required for CD28-dependent T cell costimulation. J. Immunol. 157, 3270–3279.

    PubMed  CAS  Google Scholar 

  35. Hirokawa, M., Kitabayashi, A., Kuroki, J., and Miura, A. B. (1995) Signal transduction by B7/BB 1 expressed on activated T lymphocytes: cross-linking of B7/BB 1 induces protein tyrosine phosphorylation and synergizes with signalling through T-cell receptor/CD3. Immunology 86, 155–161.

    PubMed  CAS  Google Scholar 

  36. Linsley, P. S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N. K., and Ledbetter, J. A. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569.

    Article  PubMed  CAS  Google Scholar 

  37. Linsley, P. S., Wallace, P. M., Johnson, J., Givson, M. G., Greene, J. L., Ledbetter, J. A., Singh, C., and Tepper, M. A. (1992) Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795.

    Article  PubMed  CAS  Google Scholar 

  38. Lu, P., Zhou, X., Chen, S. J., Moorman, M., Morris, S. C., Finkelman, F. D., Linsley, P., Urban, J. F., and Gause, W. C. (1994) CTLA-4 ligands are required in an in vivo interleukin 4 response to a gastrointestinal nematode parasite. J. Exp. Med. 180 693–698.

    Google Scholar 

  39. Lu, P., Zhou, X., Chen, S., Moorman, M., Schoneveld, A., Morris, S., Finkelman, F. D., Linsley, P., Claassen, E., and Gause, W. C. (1995) Requirement of CTLA-4 counter receptors for IL-4 but not IL-10 elevations during a systemic in vivo immune response. J. Immunol. 154, 1078–1087.

    PubMed  CAS  Google Scholar 

  40. Keane-Myers, A., Gause, W. C., Linsley, P. S., Chen, S.-J., and Wills-Karp, M. (1997) B7CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic responses to inhaled antigens. J. Immunol. 158, 2042–2049.

    PubMed  CAS  Google Scholar 

  41. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E., and Noelle, R. J. (1996) Immune regulation by CD40 and its ligand gp39. Annu. Rev. Immunol. 14, 591–617.

    Article  PubMed  CAS  Google Scholar 

  42. Noelle, R. J. (1996) CD40 and its ligand in host defense. Immunity 4, 415–419.

    Article  PubMed  CAS  Google Scholar 

  43. Shu, U., Kiniwa, M., Wu, C. Y., Maliszewski, C., Vezzio, N., Hakimi, J., Gately, M., and Delespesse, G. (1995) Activated T cells induce interleukin-12 production by monocytes via CD40–CD40 ligand interaction. Eur. J. Immunol. 25, 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y. and Wilson, J. M. (1996) CD40 ligand-dependent T cell activation: requirement of B7–CD28 signaling through CD40. Science 273, 1862–1864.

    Article  PubMed  CAS  Google Scholar 

  45. Lu, P., Urban, J. F., Zhou, X., Chen, S., Morris, S. C., Finkelman, F. D., and Gause, W. C. (1996) CD40-mediated costimulation contributes to lymphocyte proliferation, antibody production, eosinophilia, and mastocytosis during an in vivo type 2 response, but is not required for T cell IL-4 production. J. Immunol. 156, 3327–3333.

    PubMed  CAS  Google Scholar 

  46. Ishida, T., Kobayashi, N., Tojo, T., Ishida, S., Yamamoto, T., and Inoue, J. (1995) CD40 signaling-mediated induction of Bel-XL, Cdk4, and Cdk6: implication of their cooperation in selective B cell growth. J. Immunol. 155, 5527–5535.

    PubMed  CAS  Google Scholar 

  47. Berberich, I., Shu, G. L., and Clark, E. A. (1994) Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J. Immunol. 153 4357–4366.

    Google Scholar 

  48. Mosialos, G., Birkenbach, M., Yalamanchili, R. Van Arsdale, T., Ware, C., and Kieff, E. (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389–399.

    CAS  Google Scholar 

  49. Cheng, G., Cleary, A. M., Ye, Z. S., Hong, D. I., Lederman, S., and Baltimore, D. (1995) Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 267, 1494–1498.

    Google Scholar 

  50. Ishida, T., Mizushima S., Azuma, S., Kobayashi, N., Tojo, T., Suzuki, K., Aizawa, S., Watanabe, T., Mosialos, G., Kieff, E., Yamamoto, T., and Inoue, J. (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 271, 28,745–28, 748.

    Google Scholar 

  51. Ishida, T. K., Tojo, T., Aoki, T., Kobayashi, N., Ohishi, T., Watanabe, T., Yamamoto, T., and Inoue, J. (1996) TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA 93, 9437–9442.

    Article  PubMed  CAS  Google Scholar 

  52. Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V. (1995) TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269, 1424–1427.

    Article  PubMed  CAS  Google Scholar 

  53. Hanissian, S. H. and Geha, R. S. (1997) Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells. Immunity 6, 379–387.

    Article  PubMed  CAS  Google Scholar 

  54. Zimmermann, C., Seiler, P., Lane, P., and Zinkernagel, R. M. (1997) Antiviral immune responses in CTLA4 transgenic mice. J. Virol. 71, 1802–1807.

    PubMed  CAS  Google Scholar 

  55. Oxenius, A., Campbell, K. A., Maliszewski, C. R., Kishimoto, T., Kikutani, H., Hengartner, H., Zinkernagel, R. M., and Bachmann, M. F. (1996) CD40–CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J. Exp. Med. 183, 2209–2218.

    Article  PubMed  CAS  Google Scholar 

  56. Bachmann, M. F., Sebzda, E., Kundig, T. M., Shahinian, A., Speiser, D. E., Mak, T. W., and Ohashi, P. S. (1996) T cell responses are governed by avidity and co-stimulatory thresholds. Eur. J. Immunol. 26, 2017–2022.

    Article  PubMed  CAS  Google Scholar 

  57. Vella, A. T., Mitchell, T., Groth, B., Linsley, P. S., Green, J. M., Thompson, C. B., Kappler, J. W., and Marrack, P. (1997) CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J. Immunol. 158, 4714–4720.

    PubMed  CAS  Google Scholar 

  58. Pape, K. A., Khoruts, A., Mondino, A., and Jenkins, M. K. (1997) Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J. Immunol. 159, 591–598.

    PubMed  CAS  Google Scholar 

  59. Cross, A. H., Girard, T. J., Giacoletto, K. S., Evans, R. J., Keeling, R. M., Lin, R. F., Trotter, J. L., and Karr, R. W. (1995) Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation. J. Clin. Invest. 95, 2783–2789.

    Article  PubMed  CAS  Google Scholar 

  60. Perrin, P. J., Scott, D., Quigley, L., Albert, P. S., Feder, O., Gray, G. S., Abe, R., June, C. H., and Racke, M. K. (1995) Role of B7:CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J. Immunol. 154, 1481–1490.

    PubMed  CAS  Google Scholar 

  61. Racke, M. K., Scott, D. E., Quigley, L., Gray, G. S., Abe, R., June, C. H., and Perrin, P. J. (1995) Distinct roles for B7–1 (CD-80) and B7–2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest. 96, 2195–2203.

    Article  PubMed  CAS  Google Scholar 

  62. Lenschow, D. J., Herold, K. C., Rhee, L., Patel, B., Koons, A., Qin, H. Y., Fuchs, E., Singh, B., Thompson, C. B., and Bluestone, J. A. (1996) CD28/B7 regulation of Thl and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293.

    Article  PubMed  CAS  Google Scholar 

  63. Corry, D. B., Reiner, S. L., Linsley, P. S., and Locksley, R. M. (1994) Differential effects of blockade of CD28–B7 on the development of Thl or Th2 effector cells in experimental Leishmaniasis. J. Immunol. 153, 4142–4148.

    PubMed  CAS  Google Scholar 

  64. Perrin, P., Scott, D., Davis, T. A., Gray, G. S., Doggett, M. J., Abe, R., June, C. H., and Racke, M. K. (1996) Opposing effects of CTLA-4Ig and anti-CD80 (B7–1) plus anti-CD86 (B7–2) on experimental allergic encephalomyelitis. J. Neuroimmunol. 65, 31–39.

    Article  PubMed  CAS  Google Scholar 

  65. Guerder, S. and Flavell, R A. (1995) Costimulation in tolerance and autoimmunity. Int. Rev. Immunol. 13, 135–146.

    Article  PubMed  CAS  Google Scholar 

  66. Stuber, E., Strober, W., and Neurath, M. (1996) Blocking the CD4OL-CD40 interactions in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J. Exp. Med. 183, 693.

    Article  PubMed  CAS  Google Scholar 

  67. Griggs, N. D., Agersborg, S. S., Noelle, R. J., Ledbetter, J. A., Linsley, P. S., and Tung, K. S. (1996) The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expansion and pathogenic acquisition of self-reactive T cells. J. Exp. Med. 183, 801–810.

    Article  PubMed  CAS  Google Scholar 

  68. Durie, F. H., Fava, R. A., Foy, T. M., Aruffo, A., Ledbetter, J. A., and Noelle, R. J. (1993) Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261, 1328–1330.

    Article  PubMed  CAS  Google Scholar 

  69. Grewal, I. S., Foellmer, H. G., Grewal, K. D., Xu, J., Hardardottir, F., Baron, J. L., Janeway, C. A. Jr., and Flavell, R. A. (1996) Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 273, 1864–1867.

    Article  PubMed  CAS  Google Scholar 

  70. Steinberg, A. D., Gourley, M. F., Klinman, D. M., Tsokos, G. C., Scott, D. E., and Krieg, A. M. (1991) NIH conference: systemic lupus erythematosus. Ann. Intern. Med. 115, 548–559.

    Article  PubMed  CAS  Google Scholar 

  71. Finck, B. K., Linsley, P. S., and Wofsy, D. (1994) Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  72. Gause, W. C., Lu, P., Zhou, X., Chen, S., Madden, K. B., Morris, S. C., Linsley, P. S., Finkelman, F. D., and Urban, J. F. (1996) H. polygyrus: B7-independence of the secondary type 2 response. Exp. Parasitol. 84, 264–273.

    Google Scholar 

  73. Nakajima, A., Azuma, M., Kodera, S., Nuriya, S., Terashi, A., Abe, M., Hirose, S., Shirai, T., Yagita, H., and Okumura, K. (1995) Preferential dependence of autoantibody production in murine lupus on CD86 costimulatory molecule. Eur. J. Immunol. 25, 3060–3069.

    Article  PubMed  CAS  Google Scholar 

  74. Early, G. S., Zhao, W., and Burns, C. M. (1996) Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand Black x New Zealand White mice: response correlates with the absence of an anti-antibody response. J. Immunol. 157, 3159–3164.

    PubMed  CAS  Google Scholar 

  75. Mohan, C., Shi, Y., Laman, J. D., and Datta, S. K. (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halvorson, M.J., Gause, W.C. (1999). Targeting Costimulatory and Other Signaling Molecules in Murine Lupus. In: Kammer, G.M., Tsokos, G.C. (eds) Lupus. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-703-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-703-1_39

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5686-9

  • Online ISBN: 978-1-59259-703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics