Skip to main content

T Cell Autoimmunity in Lupus

Ignorance, Anergy, and Activation

  • Chapter
Lupus

Part of the book series: Contemporary Immunology ((CONTIM))

  • 173 Accesses

Abstract

Lupus autoimmunity is the product of interactions of a vast array of self tissues, lymphopoetic cells, self antigens, and soluble macromolecules. Clearly, the immune system evolved to enhance the survival of the species, not for the generation of autoimmune syndromes. This has led the scientific community to seek specific immunologic defects or irregularities that may be responsible for this aberrant response. Unfortunately, no single overwhelming defect has been identified as a specific trigger in spite of the fact that lupus autoimmunity is not subtle in its expression. In the absence of obvious malfunctions of the immune system, is it possible that the immune system is functioning in a manner in which it was designed with the exception that the target of the response is self antigen, not a foreign pathogen? With few exceptions, the central features of immunity to foreign antigens are identical to those important in experimental models of lupus autoimmunity. For example, autoimmune-prone mice depleted of either B or T lymphocytes fail to exhibit the typical immunologic or pathologic outcomes of this disease (1–3). However, these mice also fail to respond to pathogens or conventional immunization with foreign protein as compared with unmanipulated mice (4). If all the components of immunity, or indeed autoimmunity, are in place, why are autoimmune diseases still an uncommon occurrence? This chapter examines the selection and activation of lymphocytes as they arise in the immune system with particular relevance to those forms of self antigen and costimulatory components that may impinge on the response to self antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santoro, T. J., Portanova, J. P., and Kotzin, B. L. (1988) The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL 1pr/lpr mice. J. Exp. Med. 167, 713–721.

    Article  Google Scholar 

  2. Peng, S. L., Madaio, M. P., Hughes, D. P. M., Crispe, N., Owen, M. J., Wen, L. Hayday, A. C., and Craft, J. C. (1996) Murine lupus in the absence of oc13 T cells. J. Immunol. 156, 4041–4049.

    CAS  Google Scholar 

  3. Shlomchik, M. J., Madaio, M. P., Ni, D., Trounstein, M., and Huszar D. (1994) The role of B cells in /pr//pr-induced autoimmunity. J. Exp. Med. 180, 1295–1306.

    Article  PubMed  CAS  Google Scholar 

  4. Constant, S., Sant’Angelo, D., Pasqualini, T., Taylor, T., Levin, D., Flavell, R., and Bottomly, K. (1995) Peptide and protein antigens require distinct antigen-presenting cell subsets for the priming of CD4+ T cells. J. Immunol. 154, 4915–4923.

    PubMed  CAS  Google Scholar 

  5. Bevan, M. J. (1997) In thymic selection, peptide diversity gives and takes away. Immunity 7, 175–178.

    Article  PubMed  CAS  Google Scholar 

  6. Ignatowicz, L., Rees, W., Pacholczyk, R., Ignatowicz, H., Kushnir, E., Kappler, J., and Mar-rack, P. (1997) T cells can be activated by peptides that are unrelated in sequence to their selecting peptide. Immunity 7, 179–186.

    Article  PubMed  CAS  Google Scholar 

  7. Tourne, S., Miyazaki, T., Oxenius, A., Klein, L., Fehr, T., Kyewski, B., Benoist, C., and Mathis, D. (1997) Selection of a broad repertoire of CD4+ T cells in H-2MaO mice. Immunity 7, 187–196.

    Article  PubMed  CAS  Google Scholar 

  8. Grubin, C.E., Kovats, S., deRoos, P., and Rudensky, A.Y. (1997) Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II bound self peptides. Immunity 7, 197–208.

    Article  PubMed  CAS  Google Scholar 

  9. Surh, C. D., Lee, D. S., Fung-Leung, W.-P., Karlsson, L., and Sprent, J. (1997) Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity 7, 209–220.

    Article  PubMed  CAS  Google Scholar 

  10. Hu, Q., Bazemore Walker, C. R., Girao, C., Opferman, J. T., Sun, J., Shabanowitz, J., Hunt, D. F., and Ashton-Rickardt, P. G. (1997) Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 7, 221–232.

    Article  PubMed  CAS  Google Scholar 

  11. Jameson, S. C., Hogquist, K. S., and Bevan, M. J. (1995) Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126.

    Article  PubMed  CAS  Google Scholar 

  12. Hogquist, K. A., Tomlinson, A. J., Kieper, W. C., McGargill, M. A., Hart, M. C., Naylor, S., and Jameson, S. C. (1997) Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399.

    Article  PubMed  CAS  Google Scholar 

  13. Alam, S. M., Travers, P. J., Wung, J. L., Nasholds, W., Redpath, S., Jameson, S. C., and Gascoigne, N. J. R. (1996) T cell receptor affinity and positive selection. Nature 381, 616–620.

    Article  PubMed  CAS  Google Scholar 

  14. Ashton-Rickardt, P. G., Bandiera, A., Delaney, J. R., van Kaer, L., Pircher, H. P., Zinkernagel, R. M., and Tonegawa, S. (1994) Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663.

    Article  PubMed  CAS  Google Scholar 

  15. Hogquist, K. A., Gavin, M. A., and Bevan, M. J. (1993) Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymus organ culture. J. Exp. Med. 177, 1469–1473.

    Article  PubMed  CAS  Google Scholar 

  16. Ignatowicz, L., Kappler, J., and Marrack, P. (1996) The repertoire of T cells selected by a single MHC/peptide ligand. Cell 84, 521–529.

    Article  PubMed  CAS  Google Scholar 

  17. Martin, W. D., Hicks, G. G., Mendiratta, S. K., Leva, H. I., Ruley, H. E., and van Kaer, L. (1996) H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation and T cell repertoire selection. Cell 84, 543–550.

    Article  PubMed  CAS  Google Scholar 

  18. Egwuagu, C. E., Charukamnoetkanok, P., and Gery, I. (1997) Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol. 159, 3109–3112.

    PubMed  CAS  Google Scholar 

  19. Antonia, S. J., Geiger, T., Miller, J., and Flavell, R A. (1995) Mechanisms of immune tolerance induction through the thymic expression of a peripheral tissue-specific protein. Int. Immunol. 7, 715–725.

    Article  PubMed  CAS  Google Scholar 

  20. Wucherpfennig, K. W. and Strominger, J. L. (1995) Molecular mimicry in T cell mediated autoimmunity• viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705.

    Article  PubMed  CAS  Google Scholar 

  21. Gaither, K. K., Fox, O. F., Yamatata, H., Mamula, M. J., Reichlin, M., and Harley, J. B. (1987) Implications of anti-Ro/Sjogren’s syndrome A antigen autoantibody in normal sera for autoimmunity J. Clin. Invest. 79, 841–846.

    Article  PubMed  CAS  Google Scholar 

  22. Burns, J., Rosenzweig, A., Zweiman, B., and Lisak, R P., (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell. Immunol. 81, 435–440.

    Article  PubMed  CAS  Google Scholar 

  23. Schild, H., Rotzschke, O., Kalbacher, H., and Rammensee, H. G. (1990) Limit of T cell tolerance to self proteins by peptide presentation. Science 247, 1587–1589.

    Article  PubMed  CAS  Google Scholar 

  24. Sercarz, E., Lehmann, P. V., Ametani, A., Benichou, G., Miller, A., and Moudgil, K. (1993) Dominance and crypticity of T cell antigenic determinants. Ann. Rev. Immunol. 11, 729–766.

    Article  CAS  Google Scholar 

  25. Moudgil, K. D. and Sercarz, E. E. (1993) Dominant determinants in hen eggwhite lysozyme correspond to the cryptic determinants within its self-homolog, mouse lysozyme: Implications in the shaping of the T cell repertoire and autoimmunity J. Exp. Med. 178, 2131–2138.

    Article  PubMed  CAS  Google Scholar 

  26. Mamula, M. (1993) The inability to process a self peptide allows T cells to escape tolerance. J. Exp. Med. 177, 567–571.

    Article  PubMed  CAS  Google Scholar 

  27. Lehmann, P. V., Forsthuber, T., Miller, A., and Sercarz, E. E. (1992) Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157.

    Article  PubMed  CAS  Google Scholar 

  28. Garza, K. M., Griggs, N. D., and Tung, K. S. K. (1997) Neonatal injection of an ovarian peptide induces autoimmune ovarian disease in female mice: requirement of endogenous neonatal ovaries. Immunity 6, 89–96.

    Article  PubMed  CAS  Google Scholar 

  29. Bockenstedt, L. K., Gee, R., and Mamula, M. J. (1995) Self peptides in the initiation of lupus autoimmunity. J. Immunol. 154, 3516–3524.

    PubMed  CAS  Google Scholar 

  30. Kaufman, D. L., Clare-Salzier, M., Tian, J., Forsthuber, T., Ting, G. S. P., Robinson, P., Atkinson, M. A., Sercarz, E. E., Tobin, A. J., and Lehmann, P. V. (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72.

    Article  PubMed  CAS  Google Scholar 

  31. McRae, B.L., Vanderlugt, C. L., Dal Canto, M. C., and Miller, S. D. (1995) Functional evidence for epitope spreading in the relapsing pathology of EAE in the SJL/J mouse. J. Exp. Med. 182, 75–85.

    Article  PubMed  CAS  Google Scholar 

  32. Fatenejad, S., Brooks, W., Schwartz, A., and Craft, J. (1994) Pattern of anti-small nuclear ribonucleoprotein antibodies in MRL/MP-1pr/lpr mice suggests that the intact U1 snRNP particle is their autoimmunogenic target. J. Immunol. 152, 5523–5531.

    PubMed  CAS  Google Scholar 

  33. Tian, J., Lehmann, P. V., and Kaufman, D. L. (1997) Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J. Exp. Med. 186, 2039–2043.

    Article  PubMed  CAS  Google Scholar 

  34. Fatenejad, S., Mamula, M. J., and Craft, J. (1993) Role of intermolecular/intrastructural B and T cell determinants in the diversification of autoantibodies to ribonucleoprotein particles. Proc. Natl. Acad. Sci. USA 90, 12,010–12, 014.

    Google Scholar 

  35. Bloom, D. D., Davignon, J., Cohen, P., Eisenberg, R. A., and Clarke, S. H. (1993) Overlap of the anti-Sm and anti-DNA responses of MRLIMp-1pr/lpr mice. J. Immunol. 150, 1579–1590.

    PubMed  CAS  Google Scholar 

  36. Mamula, M. J., Gee, R. J., Elliott, J., Jones, P., and Blier, P. R. (1997) A post-translational protein modification that elicits autoimmunity, submitted.

    Google Scholar 

  37. Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Surcher-Neely, H. A., Heinrikson, R. L., Ball, M. J., and Greenberg, B. D. (1993) Structural alterations in the peptide backbone of 13-amyloid core protein may account for its deposition and stability in Alzheimer’ s disease. J. Biol. Chem. 268, 3072–3083.

    PubMed  CAS  Google Scholar 

  38. Najbauer, J., Orpiszewski, J., and Aswad, D. W. (1996) Molecular aging of tubulin: accumulation of isoaspartyl sites in vitro and in vivo. Biochemistry 35, 5183–5190.

    Article  PubMed  CAS  Google Scholar 

  39. Aswad, D. W. (1995) Deamidation and Isoaspartate Formation in Peptides and Proteins (Aswad, D. W., ed.), CRC Press, Boca Raton, FL, pp. 31–46.

    Google Scholar 

  40. Galletti, P., Ingrosso, D., Manna, C., Clemente, G., and Zappia, V. (1995) Protein damage and methylation-mediated repair in the erythrocyte. Biochem. J. 306, 313–325.

    PubMed  CAS  Google Scholar 

  41. Tsai, W. and Clarke, S. (1994) Amino acid polymorphisms of the human L-isoaspartyl/Daspartyl methyltransferase involved in protein repair. Biochem. Biophys. Res. Commun. 203, 491–497.

    Article  PubMed  CAS  Google Scholar 

  42. Cunningham, M.W. (1993) Molecular mimicry: bacterial antigen mimicry, in: The Molecular Pathology of Autoimmunity ( Bona, C.A., ed.), Harvard Academic, New York, pp. 245–256.

    Google Scholar 

  43. Shikhman, A. R., Greenspan, N. A., and Cunningham M. W. (1993) A subset of murine monoclonal antibodies crossreactive with cytoskeletal proteins and group A streptococcal M protein recognize N-acetyl-glucosamine. J. Immunol. 151, 3902–3913.

    PubMed  CAS  Google Scholar 

  44. Wucherpfennig, K. W. and Strominger, J. L. (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705.

    Article  PubMed  CAS  Google Scholar 

  45. Roth, R., Nakamura, T., and Mamula, M. J. (1996) Costimulation and autoantigen specificity enable B cells to activate autoreactive T cells. J. Immunol. 157, 2924–2931.

    PubMed  CAS  Google Scholar 

  46. Roth, R. and Mamula, M. J. (1997) Induction of lupus autoimmunity• snRNP specific B cells prime a diversified repertoire of autoreactive T cells, submitted.

    Google Scholar 

  47. James, J. A., Gross, T., Scofield, R. H., and Harley, J. B. (1995) Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: SmB/B’-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity J. Exp. Med. 181, 453–461.

    Article  PubMed  CAS  Google Scholar 

  48. Topfer, F., Gordon, T., and McCluskey, J. (1995) Intra-and intermolecular spreading of autoimmunity involving the nuclear self-antigens La(SS-B) and Ro(SS-A). Proc. Natl. Acad. Sci. USA 92, 875–879.

    Article  PubMed  CAS  Google Scholar 

  49. Mamula, M. J., Fatenejad, S., and Craft, J. (1994) B Cells process and present lupus autoantigens that initiate autoimmune T cell responses. J. Immunol. 152, 1453–1461.

    PubMed  CAS  Google Scholar 

  50. Racke, M. K., Scott, D. E., Quigley, L., Gray, G. S., Abe, R., June, C. H., and Perrin, P. J. (1995) Distinct roles for B7–1 (CD80) and B7–2 (CD86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest. 96, 2195–2203.

    Article  PubMed  CAS  Google Scholar 

  51. Davidson, H. W. and Watts, C. (1989) Epitope directed processing of specific antigen by B lymphocytes. J. Cell. Biol. 109, 85–90.

    Article  PubMed  CAS  Google Scholar 

  52. Ozaki, S. and Berzofsky, J. A. (1987) Antibody conjugates mimic specific B cell presentation of antigen: relationship between T and B cell specificity. J. Immunol. 138, 4133–4142.

    PubMed  CAS  Google Scholar 

  53. Watts, C. and Lanzavecchia, A. (1993) Suppressive effect of antibody on processing of T cell epitopes. J. Exp. Med. 178, 1459–1463.

    Article  PubMed  CAS  Google Scholar 

  54. Wolf, S. D., Dittel, B. N., Hardardottir, F., and Janeway, C. A., Jr. (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278.

    Article  PubMed  CAS  Google Scholar 

  55. Serreze, D. V., Chapman, H.D., Varnum, D. S., Hanson, M. S., Reifsnyder, P. C., Richard, S. D., Fleming, S. A., Leiter, E. H., and Shultz L. D. (1996) B lymphocytes are essential for the initiation of T cell mediated autoimmune diabetes: Analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053.

    Article  PubMed  CAS  Google Scholar 

  56. Hannum, L. G., Ni, D., Haberman, A. M., Weigert, M. and Shlomchik, M. J. (1996) A disease-related RF autoantibody is not tolerized in a normal mouse: implications of the origins of autantibodies in autoimmune disease. J. Exp. Med. 184, 1269–1278.

    Article  PubMed  CAS  Google Scholar 

  57. Goverman, J., Woods, A., Larson, L., Weiner, L. P., Hood, L., and Zaller, D. M. (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560.

    Article  PubMed  CAS  Google Scholar 

  58. Chambers, C. A. and Allison, J. P. (1997) Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–104.

    Article  PubMed  CAS  Google Scholar 

  59. Tivol, E. A., Schweitzer, A. N., and Sharpe, A. H. (1996) Costimulation and autoimmunity. Curr. Opin. Immunol. 8, 822–830.

    Article  PubMed  CAS  Google Scholar 

  60. Kuchroo, V., Prabhu Das, M., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H. (1995) B7–1 and B7–2 costimulatory molecules differentially activate the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80, 707–716.

    Article  PubMed  CAS  Google Scholar 

  61. Nakajima, A., Azuma, M., Kodera, S., Nuriya, S., Terashi, A., Abe, M., Hirose, S., Shirai, T., Yagita, H., and Okumura, K. (1995) Preferential dependence of autoantibody production in murine lupus on CD86 costimulatory molecule. Eur. J. Immunol. 25, 3060–3069.

    Article  PubMed  CAS  Google Scholar 

  62. Lane, P., Haller, C., and McConnell, F. (1996) Evidence that induction of tolerance in vivo involves active signaling via a B7 ligand-dependent mechanism: CTLA4Ig protects Vß8+ T cells from tolerance induction by the superantigen staphylococcal enterotoxin B. Eur. J. Immunol. 26, 858–862.

    Article  PubMed  CAS  Google Scholar 

  63. Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., and Sharpe, A. H. (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547.

    Article  PubMed  CAS  Google Scholar 

  64. Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., Thompson, C. B., Griesser, H., and Mak, T.W. (1995) Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988.

    Article  PubMed  CAS  Google Scholar 

  65. Cross, A. H., Girard, T.J., Giacoletto, K. S., Evans, R. J., Keeling, R. M., Lin, R. F., Trotter, J. L., and Karr, R. W. (1995) Long term inhibition of murine experimental autoimmune encephalomyelitis using CTLA4-Fc supports a key role for CD 28 costimulation. J. Clin. Invest. 95, 2783–2789.

    Article  PubMed  CAS  Google Scholar 

  66. Perrin, P. J., Scott, D., Quigley, L., Albert, P. S., Feder, O., Gray, F. S., Abe, R., June, C. H., and Racke, M. K. (1995) Role of B7/CD28 CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J. Immunol. 154, 1481–1490.

    PubMed  CAS  Google Scholar 

  67. Khoury, S. J., Akalin, E., Chandraker, A., Turka, L. A., Linsley, P. S., Sayegh, M. H., and Hancock, W. W. (1995) CD28–B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Thl but spares Th2 cytokines in the central nervous system. J. Immunol. 155, 4521–4524.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mamula, M.J. (1999). T Cell Autoimmunity in Lupus. In: Kammer, G.M., Tsokos, G.C. (eds) Lupus. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-703-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-703-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5686-9

  • Online ISBN: 978-1-59259-703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics