Skip to main content

Chemokines and Central Nervous System Malignancies

  • Chapter
Chemokines and Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Tumors in the central nervous system (CNS) arise from different cell components of the CNS and are classified as shown in Table 1 (see also ref. 1). It is well known that the tumors in the CNS, especially glioma, produce various cytokines including interleukins (ILs), tumor necrosis factor-α (TNF-α), and colony-stimulating factors [recently reviewed by van Meir (2)]. Although the significance of cytokine production by the tumors may not be biologically clear, these cytokines could affect the biology of the tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleihues, P. C. Burger, and B. W. Scheithauer. 1993. The new WHO classification of brain tumours. Brain Pathol. 3: 255–268.

    Article  PubMed  CAS  Google Scholar 

  2. van Meir, E. G. 1995. Cytokines and tumors of central nervous system. Glia 15: 264–288.

    Article  PubMed  Google Scholar 

  3. Evans, R. 1972. Macrophages in syngeneic tumors. Transplantation 14: 468–473.

    Article  PubMed  CAS  Google Scholar 

  4. Evans, R., and S. Haskill. 1983. Activities of macrophages within and peripheral to the tumor mass, in The Reticuloendothelial System ( Herberman, R. B., ed.), Plenum, New York, pp. 155–176.

    Chapter  Google Scholar 

  5. Kuratsu, J., E. J. Leonard, and T. Yoshimura. 1989. Production and characterization of human glioma cell-derived monocyte chemotactic factor. J. Natl. Cancer Inst. 81: 347–351.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshimura, T., E. A. Robinson, S. Tanaka, E. Appella, J. Kuratsu, and E. J. Leonard. 1989. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169: 1449–1459.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshimura, T., N. Yuhki, S. K. Moore, E. Appella, M. I. Lerman, and E. J. Leonard. 1989. Human monocyte chemoattractant protein-1 (MCP-1): full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 244: 487–493.

    Article  PubMed  CAS  Google Scholar 

  8. Yoshimura, T., and A. Ueda. 1996. Structure, function, and mechanism of action of monocyte chemoattractant protein-1, in Human Cytokines: Handbook for Basic and Clinical Research, Vol. II ( Aggarwal, B. B., and J. U. Gutterman, eds.), Blackwell, Cambridge, MA, pp. 198–221.

    Google Scholar 

  9. Rollins, B. J. 1991. JE/MCP-1: an early-response gene encodes a monocyte-specific cytokine. Cancer Cells 3: 517–524.

    PubMed  CAS  Google Scholar 

  10. Kuratsu, J., and Y. Ushio. 1996. Epidemiological study of primary intracranial tumors: a regional survey in Kumamoto Prefecture in the southern part of Japan. J. Neurosurg. 84: 946–950.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips, J. P., 0. Eremin, and J. R. Anderson. 1982. Lymphoreticular cells in human brain tumors and in normal brain. Br. J. Cancer 45: 61–69.

    CAS  Google Scholar 

  12. von Hanwehr, R. I., F. Hofman, C. Taylor, and M. L. J. Apuzzo. 1984. Mononuclear lymphoid population infiltrating the microenvironment of primary CNS tumors: characterization of cell subsets with monoclonal antibodies. J. Neurosurg. 60: 1138–1147.

    Article  Google Scholar 

  13. Wood, G. W., and R. A. Moranz. 1979. Immunological evaluation of the lymphoreticular infiltrate of human central nervous system tumors. J. Natl. Cancer Inst. 62: 485–491.

    PubMed  CAS  Google Scholar 

  14. Yoshimura, T., E. A. Robinson, S. Tanaka, E. Appella, and E. J. Leonard. 1989. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J. Immunol. 142: 1956–1962.

    PubMed  CAS  Google Scholar 

  15. Robinson, E. A., T. Yoshimura, E. J. Leonard, S. Tanaka, P. R. Griffin, J. Shabanowitz, D. F. Hunt, and E. Appella. 1989. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc. Natl. Acad. Sci. USA 86: 1850–1854.

    Article  PubMed  CAS  Google Scholar 

  16. Rutledge, B. J., H. Rayburn, R. Rosenberg, R. J. North, R. P. Gladue, C. L. Cordless, and B. J. Rollins. 1995. High level of monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 155: 4838–4843.

    PubMed  CAS  Google Scholar 

  17. Fuentes, M. E., S. K. Durham, M. R. Swerdel, A. C. Lewin, D. S. Barton, J. R. Megill, R. Bravo, and S. A. Lira. 1995. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 155: 5769–5776.

    PubMed  CAS  Google Scholar 

  18. Nakamura, K., I. R. Williams, and T. S. Kupper. 1996. Keratinocyte-derived monocyte chemoattractant protein-1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J. Invest. Dermatol. 105: 635–643.

    Article  Google Scholar 

  19. Gunn, M. D., N. A. Nelken, X. Liao, and L. T. Williams. 1997. Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J. Immunol. 158: 376–383.

    PubMed  CAS  Google Scholar 

  20. Yoshimura, T. 1993. cDNA cloning of guinea pig monocyte chemoattractant protein-1 and expression of the recombinant protein. J. Immunol. 150: 5025–5032.

    Google Scholar 

  21. Yamashiro, S., M. Takeya, J. Kuratsu, Y. Ushio, K. Takahashi, and T. Yoshimura. 1998. Intradermal injection of monocyte chemoattractant protein-1 induces emigration and differentiation of blood monocytes in rat skin. Int. Arch. Allergy Immunol. 115: 15–23.

    Article  PubMed  CAS  Google Scholar 

  22. Kuziel, W. A., S. J. Morgan, T. C. Dawson, S. Griffin, O. Smithies, K. Ley, and N. Maeda. 1997. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl. Acad. Sci. USA 94: 12,053–12, 058.

    Google Scholar 

  23. Carr, M. W., S. J. Roth, E. Luther, S. S. Ross, and T. A. Springer. 1994. Monocyte chemoattractant protein-1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91: 3652–3656.

    Article  PubMed  CAS  Google Scholar 

  24. Rand, M. L., J. S. Warren, M. K. Mansour, W. Newman, and D. J. Ringler. 1996. Inhibition of T cell recruitment and cutaneous delayed-type hypersensitivity-induced inflammation with antibodies to monocyte chemoattractant protein-1. Am. J. Pathol. 148: 855–864.

    PubMed  CAS  Google Scholar 

  25. Kasahara, T., N. Mukaida, K. Yamada, H. Yagisawa, T. Akahoshi, and K. Matsushima. 1991. IL-1 and TNF-a induction of IL-8 and monocyte chemotactic and activating factor (MCAF) mRNA expression in a human astrocytoma cell line. Immunology 74: 60–67.

    PubMed  CAS  Google Scholar 

  26. Takeshima, H., J. Kuratsu, M. Takeya, T. Yoshimura, and Y. Ushio. 1994. Expression and localization of messenger RNA and protein for monocyte chemoattractant protein-1 in human malignant glioma. J. Neurosurg. 80: 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  27. Desbaillets, I., M. Tada, N. de Trobolet, A.-C. Diserens, M.-F. Hamou, and E. G. van Meir. 1994. Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int. J. Cancer 58: 240–247.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshizato, K., J. Kuratsu, H. Takeshima, T. Nishi, T. Yoshimura, and Y. Ushio. 1996. Tumor necrosis factor-a-induced macrophage infiltration in gliomas is mediated by the production of monocyte chemoattractant protein-1. Int. J. Oncol. 8: 493–497.

    PubMed  CAS  Google Scholar 

  29. Ueda, A., K. Okuda, S. Ohno, A. Shirai, T. Igarashi, K. Matsunaga, J. Fukushima, S. Kawamoto, Y. Ishigatsubo, and T. Okubo. 1994. NF-KB and Sp1 regulate transcription of human monocyte chemoattractant protein-1 gene. J. Immunol. 153: 2052–2063.

    PubMed  CAS  Google Scholar 

  30. Ueda, A., Y. Ishigatsubo, T. Okubo, and T. Yoshimura. 1997. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene: cooperation of two NF-kB sites and NF-kB/rel subunit specificity. J. Biol. Chem. 272: 31,092–31, 099.

    Google Scholar 

  31. Kuratsu, J., K. Yoshizato, T. Yoshimura, E. J. Leonard, H. Takeshima, and Y. Ushio. 1993. Quantitative study of monocyte chemoattractant protein-1 (MCP-1) in cerebrospinal fluids and cyst fluids from patients with malignant glioma. J. Natl. Cancer Inst. 85: 1836–1839.

    Article  PubMed  CAS  Google Scholar 

  32. Morantz, R. A., G. W. Wood, M. Foster, M. Clark, and K. Gollahon. 1979. Macrophages in experimental and human brain tumors. J. Neurosurg. 50: 305–311.

    Google Scholar 

  33. Sato, K., J. Kuratsu, H. Takeshima, T. Yoshimura, and Y. Ushio. 1995. Expression of monocyte chemoattractant protein-1 in meningioma. J. Neurosurg. 82: 874–878.

    Article  PubMed  CAS  Google Scholar 

  34. Cochran, B. H., A. C. Reffel, and C. D. Stiles. 1983. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33: 939–947.

    Article  PubMed  CAS  Google Scholar 

  35. Todo, T., E. Adams, and R. Fahlbusch. 1993 Inhibitory effect of trapidil on human meningioma cell population via interruption of autocrine growth stimulation. J. Neurosurg. 78: 463–469.

    Article  PubMed  CAS  Google Scholar 

  36. Bruce, J. N., G. R. Criscuolo, M. J. Merrill, R. R. Moquin, J. B. Blacklock, and E. H. Oldfield. 1987. Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone. J. Neurosurg. 67: 880–884.

    Article  PubMed  CAS  Google Scholar 

  37. Shinonaga, M., C. C. Chan, N. Suzuki, M. Sato, and T. Kawabara. 1988. Immunohistological evaluation of macrophage infiltrates in brain tumors. J. Neurosurg. 68: 259–265.

    Article  PubMed  CAS  Google Scholar 

  38. Morahan, P., A. Volkman, M. Melnicoff, and W. Dempsey. 1988. Macrophage heterogeneity, in Macrophages and Cancer (Hepper, G. H., and A. M. Fulton, eds.), CRC, Boca Raton, FL, pp. 2–25.

    Google Scholar 

  39. Dijkstra, C., E. Döpp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies, ED1, ED2, and ED3. Immunology 54: 580–598.

    Google Scholar 

  40. Polman, C. H., C. D. Dijkstra, T. Sminia, and J. C. Koetsier. 1986 Immunohistological analysis of macrophages in the central nervous system of Lewis rats with acute experimental allergic encephalomyelitis. J. Neuroimmunol. 11: 215–222.

    Article  PubMed  CAS  Google Scholar 

  41. Verschure, P. J., J. F. van Noorden, and C. D. Dijkstra. 1989. Macrophages and dendritic cells during the early stages of antigen-induced arthritis in rats: immunohistochemical analysis of cryostat sections of the whole knee joint. Scand. J. Immunol. 29: 371–381.

    Article  PubMed  CAS  Google Scholar 

  42. Dijkstra, C. D., E. A. Döpp, I. M. C. Vogels, and C. J. F. van Noorden. 1987. Macrophages and dendritic cells during antigen-induced arthritis: an immunohistochemical study using cryostat sections of the whole knee joint of rat. Scand. J. Immunol. 26: 513–523.

    Google Scholar 

  43. Miyamura, S., M. Naito, M. Takeya, H. Okumura, and K. Takahashi. 1988. Analysis of rat peritoneal macrophages with combined ultrastructural peroxidase cytochemistry and immunoelectron microscopy using anti-rat macrophage monoclonal antibodies. J. Clin. Electron Microsc. 21: 545–546.

    Google Scholar 

  44. Takeya, M., L. Hsiao, and K. Takahashi. 1987. A new monoclonal antibody, TRPM-3, binds specifically to certain rat macrophage populations: immunohistochemical and immunelectron microscopic analysis. J. Leukoc. Biol. 41: 187–195.

    Google Scholar 

  45. Yamashiro, S., M. Takeya, T. Nishi, J. Kuratsu, T. Yoshimura, Y. Ushio, and K. Takahashi. 1994. Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am. J. Pathol. 145: 913–921.

    Google Scholar 

  46. Zhang, L., T. Yoshimura, and D. T. Graves. 1997. Antibody to Mac-1 or MCP-1 inhibits monocyte recruitment and promotes tumor growth. J. Immunol. 158: 4855–4861.

    PubMed  CAS  Google Scholar 

  47. Matsushima, K., C. G. Larsen, G. C. DuBois, and J. J. Oppenheim. 1989. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169: 1485–1490.

    Article  PubMed  CAS  Google Scholar 

  48. Nishi, T., K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J. Kuratsu, and Y. Ushio. 1996. High-efficiency in vivo gene transfer using intra-arterial plasmid DNA injection following in vivo electroporation. Cancer Res. 56: 1050–1055.

    PubMed  CAS  Google Scholar 

  49. Manome, Y., P. Y. Wen, A. Hershowitz, T. Tanaka, B. J. Rollins, D. W. Kufe, and H. A. Fine. 1995. Monocyte chemoattractant protein-1 (MCP-1) gene transduction: an effective tumor vaccine strategy for non-intracranial tumors. Cancer Immunol. Immunother. 41: 227–235.

    Article  PubMed  CAS  Google Scholar 

  50. Tada, M., Y. Sawamura, S. Sakuma, K. Suzuki, H. Ohta, T. Aida, and H. Abe. 1993. Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor a for the treatment of malignant gliomas. Cancer Immunol. Immunother. 36: 251–259.

    Article  PubMed  CAS  Google Scholar 

  51. Mukaida, N., M. Morita, Y. Ishikawa, N. Rice, S. Okamoto, T. Kasahara, and K. Matsushima. 1994. Novel mechanism of glucocorticoid-mediated gene repression: nuclear factor-KB is target for glucocorticoid-mediated interleukin 8 gene expression. J. Biol. Chem. 269: 13,289–13, 295.

    Google Scholar 

  52. Mukaida, N., S. Okamoto, Y. Ishikawa, and K. Matsushima. 1994. Molecular mechanism of interleukin-8 gene expression. J. Leukoc. Biol. 56: 554–558.

    PubMed  CAS  Google Scholar 

  53. Scheinman, R. I., P. C. Cogswell, A. K. Lofquist, and A. S. Baldwin, Jr. 1995. Role of transcriptional activation of IKBa in mediation of immunosuppression by glucocorticoids. Science 270: 283–286.

    Google Scholar 

  54. Auphan, N., J. A. DiDonato, C. Rosette, A. Helberg, and M. Karin. 1995 Immunosuppression by glucocorticoids: inhibition of NF-KB activity through induction of IKB synthesis. Science 270: 286–289.

    Article  PubMed  CAS  Google Scholar 

  55. van Meir, E., M. Ceska, F. Effenberger, A. Walz, E. Grouzmann, I. Desbaillets, K. Frei, A. Fontana, and N. de Tribolet. 1992. Interleukin-8 is produced in neoplastic and infectious diseases of the human central nervous system. Cancer Res. 52: 4297–4305.

    PubMed  Google Scholar 

  56. Tada, M., K. Suzuki, Y. Yamakawa, Y. Sawamura, S. Sakuma, H. Abe, E. van Meir, and N. de Tribolet. 1993. Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8 (77)). J. Neurooncol. 16: 25–34.

    Article  PubMed  CAS  Google Scholar 

  57. Yoshimura, T., E. A. Robinson, E. Appella, K. Matsushima, S. D. Showalter, A. Skeel, and E. J. Leonard. 1989. Three forms of monocyte-derived neutrophil chemotactic factor (MDNCF) distinguished by different lengths of the amino terminal sequence. Mol. Immunol. 26: 87–93.

    Article  PubMed  CAS  Google Scholar 

  58. Rollins, B. J., and M. Sunday. 1991. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol. Cell Biol. 11: 3125–3131.

    PubMed  CAS  Google Scholar 

  59. Walter, S., B. Bottazzi, D. Govoni, F. Colotta, and A. Mantovani. 1991. Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. Int. J. Cancer 49: 431–435.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshimura, T., Kuratsu, Ji. (1999). Chemokines and Central Nervous System Malignancies. In: Rollins, B.J. (eds) Chemokines and Cancer. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-701-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-701-7_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4760-7

  • Online ISBN: 978-1-59259-701-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics