Skip to main content

Dehydroepiandrosterone and Pregnenolone

  • Chapter
Hormone Replacement Therapy

Part of the book series: Contemporary Endocrinology ((COE,volume 13))

  • 145 Accesses

Abstract

Steroid hormones play a multifactorial role in human physiology. They facilitate coordinative processes that enable neural, endocrine, immune, and metabolic systems, separately or collectively, to operate in solving problems of survival and reproduction. Both pregnenolone and dehydroepiandrosterone (DHEA) are key hormones early in the pathway of steroid hormones biosynthesis (Fig. 1). Actually, pregnenolone is the precursor of all the known steroid hormones, and its formation from cholesterol via the action of cytochrome P450scc, is the rate limiting step in steroid hormone formation. DHEA and its sulfated conjugate, dehydroepiandrosterone sulfate (DHEAS), on the other hand, serve as precursors for both androgenic and estrogenic steroids, and are the most abundant steroid hormones in the human body. The plasma levels of both DHEA and pregnenolone have been shown to decline progressively with advancing age. Furthermore, based on multiple animal and human studies, there is now accumulating evidence to suggest a potential role for both these hormones in the prevention of multiple morbidities associated with the aging process. This chapter reviews the biological roles of DHEA and pregnenolone and draws implications for their possible role as antiaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nestler JE. DHEA: a Coming of age. Ann NY Acad Sci 1995;774:ix-xi.

    Google Scholar 

  2. Horani MH, Morley JE. The viability of the use of DHEA. Clin Geriatr 1997; 5 (4): 34–48.

    Google Scholar 

  3. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab 1986; 15: 213–228.

    Article  PubMed  CAS  Google Scholar 

  4. Butenandt A, Danenbaum H. Isolierung neuen, physiologisch unwirksamen Sterindervates aus Mannerharn, Seine Verknupfung mit Dehdro-androsterone and Androsteron. Z Physiol Chem 1934; 229: 192–195.

    Article  CAS  Google Scholar 

  5. Watson RR, Huls A, Araghinikuam M, Chung S. Dehydroepiandrosterone and diseases of aging. Drugs Aging 1996; 9 (4): 274–291.

    Article  PubMed  CAS  Google Scholar 

  6. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones:Binding of 21 endogenous steroid to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 1965; 53: 58: 68.

    Google Scholar 

  7. Vermeulen A. Adrenal Androgens. Raven Press, New York, 1980, pp. 207–217.

    Google Scholar 

  8. Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 1992; 75: 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  9. Vermeulen A. dehydroepiandrosterone sulfate and aging. Ann NY Acad Sci 1995, 774: 121–127.

    Article  Google Scholar 

  10. Liu CH, Laughlin GA, Fischer UG, Yen SS. Marked attenuation of ultradian and circadian rhythms of dehydroepiandrosterone in postmenopausal women:evidence for a reduced 17,20-desmolase enzymatic activity. J Clin End Metab 1990; 7I (4): 900–906.

    Article  Google Scholar 

  11. Rotter JI, Wong L, Lifrank ET, Parker LM. A genetic component of the variation of dehydroepiandrosterone sulfate, Metabolism 1985; 34: 731–736.

    Article  PubMed  CAS  Google Scholar 

  12. Barrett-Connor E, Khaw KT, Yen SS. A prospective study of dehydroepandrosterone sulfate, mortality, and cardiovascular disease. N Engl J Med 1986; 315: 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  13. Helzouer KJ, Gordon GB, Alberg AJ, Bush TL, Comstock GW. Relationship of prediagnostic serum levels of dehydroepiiaandrosterone and dehydroepiandrosterone sulfate to the risk of developing premenopausal breast cancer. Cancer Res 1992; 52: 1–4.

    Google Scholar 

  14. Gordon GB, Helzouer KJ, Alberg AJ, Comstock GW. Serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate and the risk of developing gastric cancer. Cancer Epid Biomark Prevent 1993; 2: 33–35.

    CAS  Google Scholar 

  15. Szathmari M, Szucs J, Feher T, Hollo I. Dehydroepiandrosterone sulfate and bone mineral density. Osteoporosis Intl 1994; 4: 84–88.

    Article  CAS  Google Scholar 

  16. Nordin BE, Robeertson A, Seamark RF, Bridges A, Philcox JC, Need AG, Horowitz M, Morris HA, Deam S. The relation between calcium absorption, serum dehydroepiandrosterone and vertebral mineral density in postmentopausal women. J Clin Endocrinol Metab 1985; 60: 651–657.

    Article  PubMed  CAS  Google Scholar 

  17. Barrett-Connor E. Kiltz-Silverstein D, Edelstein SL. A prospective study of dehydroepiandrosterone sulfate (DHEAS) and bone mineral density in older men and women. Am J Epidemiol 1993; 137: 201–206.

    Google Scholar 

  18. Marmorston J, Lewis JJ, Bemestein JL, Sobel H, Kuzna O, Alexander R, Magidson O, Moore FJ. Excretion of urinary steroids by men and women with myocardial infarction. Geriatrics 1957; 12: 297–300.

    PubMed  CAS  Google Scholar 

  19. Marmorston J, Griffith CC, Geller PJ, Fishman EL, Welsch F, Weiner JM. Urinary steroids in the measurement of aging and of. JAGS 1975; 23: 481–492.

    CAS  Google Scholar 

  20. Kask E. Ketosteroids and arteriosclerosis. Angiology 1959; 10: 358–368.

    Article  PubMed  CAS  Google Scholar 

  21. Khaw KT. Dehydroepiandrosterone, dehydroepiandrosterone sulphate and cardiovascular disease. J Endocrinol 1996; 150: S149 - S153.

    Article  PubMed  CAS  Google Scholar 

  22. Barrett-Connor E, Khaw K-T, Yen SSC. A prospective study of dehydroepiandrosterone sulfate, mortality, and cardiovascular disease. N Engl J Med 1986; 315: 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  23. Barrett-Connor E., Edelstein SL. A prospective study of dehydroepiandrosterone sulfate and cognitive function in an older population: the Rancho Bernardo Study. JAGS 1994; 42: 420–423.

    CAS  Google Scholar 

  24. LaCroix AZ, Yano K, Reed DM. Dehydroepiandrosterone sulfate, incidence of myocardial infarction and extent of atherosclerosis in men. Circulation 1992; 86: 1529–1535.

    Article  PubMed  CAS  Google Scholar 

  25. Hautanen A, Mnttari M, Manninen V, Tenkanen L, Huttunen JK, Frick MH, Adlercreutz H. Adrenal androgens and testosterone as coronary risk factors in the Helsinki Heart Study. Atherosclerosis 1994; 105: 191–200.

    Article  PubMed  CAS  Google Scholar 

  26. Newcornewr LM, Manson JE, Barbieri RL, Hennekens CH, Stampfer MJ. Dehdroepiandrosterone sulfate and the risk of myocardial infarction in US male physicians: a prospective study. Am J Epidemiol 1994; 140: 870–875.

    Google Scholar 

  27. Jesse RL, Loesser K, Eich DM, Zhen Y, Hess M, Nestleer JE. Dehydroepiandrosterone Inhibits Human Platelet Aggregation in vitro and in vivo. Ann NY Acad Sci 1995; 774: 281–290.

    Article  PubMed  CAS  Google Scholar 

  28. Gordon GB, Bush DE, Weisiman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone. A study in the hypercholesterolemic New Zealand white rabbit with aortic intimai injury. J Clin Invest 1988; 82: 712–720.

    Article  PubMed  CAS  Google Scholar 

  29. Arad Y, Badimon JO, Badimon L, Hemmberec W, Ginsberg HN. Dehydroepiandrosterone feeding prevents aortic fatty streak formation and cholesterol accumulation in cholesterol-fed rabbit. Atherosclerosis 1989; 9: 159–166.

    CAS  Google Scholar 

  30. Eich DM, Nestler JE, Johnson DE, Doworkin GH, KO D, Wechsler, Hess ML. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation 1993; 87: 261–269.

    Article  PubMed  CAS  Google Scholar 

  31. Kawai S, Yahata N, Nishida S, et al. Dehydroepiandrosterone inhibits B 16 mouse melanoma cell growth by induction of differentiation. Anticancer Res 1995; 15: 427–431.

    PubMed  CAS  Google Scholar 

  32. Ivanovic S, Agbaba D, Zivanov-Stakle D, et al. The urinary dehydroepiandrosterone, androsterone and eticholanolone excretion of healthy women and women with benign and malignant breast disease. J Clin Pharm Ther 1990; 15: 213–219.

    Article  PubMed  CAS  Google Scholar 

  33. Jakubowicz D, Beer N, Rengifo R. Effect of dehydroepoandrosterone on cyclic-guanosine monophophate in men of advancing age. Ann NY Acad Sci 1995; 774: 312–315.

    Article  PubMed  CAS  Google Scholar 

  34. Beer NA, Jakubowicz DJ, Matt DW, Beer RM, Nestler JE. Dehydroepiandrosterone reduces plasma plasminogen activator inhibitor type 1 and tissue plasminogen activator antigen in men. Am J Med Sci 1996; 311 (5): 205–210.

    Article  PubMed  CAS  Google Scholar 

  35. Rao MS. Subbarao V, Yeldandi AV, et al. Inhibition of spontaneous testicular leydig cell tumor development in F-344 rats by dehydroepiandrosterone. Cancer Lett 1992; 65: 123–126.

    Article  PubMed  Google Scholar 

  36. Schwartz AG, Pashko LL. Cancer chemoprevention with the adrenocortical steroid dehydroepiandrosterone and structural analogs. J Cell Biochem 1993; 17G (Suppl): 73–79.

    Google Scholar 

  37. Schwrtz AG, Pashko LL. Cancer prevention with dehydroepiandrosterone and no-androgenic structural analogs. J Cell Biochem 1995; 22 (Suppl): 210–217.

    Google Scholar 

  38. Klamm RC, Holbrooke CT, Nyce JW. Chemotherapy of murine colorectal carcinoma with cisplatin plus 3’ -deoxy’3’-azidothymidine. Anticancer Res 1992; 12: 781–787.

    Google Scholar 

  39. Bhatavdekar JM, Patel DD, Chikhikaar RR, et al. Levels of circulating peptide and steroid hormones in men with lung cancer. Neoplasma 1994; 41: 101–103.

    PubMed  CAS  Google Scholar 

  40. Gordon GB, Helzlsouer KJ, Comstock GW. Serum levels of dehydroepiandrosterone and its sulfate and the risk of developing bladder cancer. Cancer Res 1991; 51: 1366–369.

    PubMed  CAS  Google Scholar 

  41. Magee JM, Mckenzie S, Filippa DA, et al. Hairy cell leukemia:durability of response to splenectomy in 26 patients and treatment of relapse with androgens in six patients. Cancer 1985; 56: 2557–2562.

    Article  PubMed  CAS  Google Scholar 

  42. Liberto MH, Sonohara S, Brentant MM. Effects of androgens on proliferation and progesterone receptor levels in T47D human breast cancer cells. Tumour Biol 1993; 14: 38–45.

    Article  Google Scholar 

  43. Boccuzzi G, DiMonaco M, Brignardello E, et al. Dehydroepiandrosterone antiestrogenic action through androgen receptor MCF-7 human breast cancer cell line. Anticancer Res 1993; 13: 2267–2272.

    PubMed  CAS  Google Scholar 

  44. Boccuzzi G, DiMonaco M, Brignardello E, et al. Influence of dehydroepiandrosterone and 5-en-androstene-3 beta, 17 beta-diol on the growth of MCF-7 human breast cancer cells induced by 17 beta-estradiol. Anticancer Res 1992; 12: 799–803.

    PubMed  CAS  Google Scholar 

  45. Daynes RA, Araneo BA, Ershler WB, et al. Altered regulation of IL-6 production with normal aging:possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivatives. J Immunol 1993; 150: 5219–5230.

    PubMed  CAS  Google Scholar 

  46. Daynes RA, Araneo BA. Prevention and reversal of some age-associated changes in immunologic responses by supplemental dehydroepiandrosterone sulfate therapy. Aging Immun Infect Dis 1992; 3: 135–154.

    Google Scholar 

  47. Garg M, Bondada S reversal of age associated decline in immune response to Pnu-immune vaccine by supplementation with the steroid hormone dehydroepiandrosterone. Infection Immun 1993; 61: 2238–2241.

    CAS  Google Scholar 

  48. Araneo BA, Woods ML, II, Dynes RA. Reversal of the immunosenescent phenotype by dehydroepiandrosterone: hormone treatment provides an adjutant effect on the immunization of aged mice with recombinant hepatitis B surface antigen. J Infect Dis 1993; 167: 830–840.

    Article  PubMed  CAS  Google Scholar 

  49. Yen SSC, Morales AJ, Khorram O. Replacement of DHEA in aging men and women: potential remedial effects. Ann NY Acad Sci 1995; 774: 128–142.

    Article  PubMed  CAS  Google Scholar 

  50. Chatterton RT Jr, Green D, Harris S, Grossman A, Hechter O. Longitudinal study of adrenal steroids in a cohort of HIV-infected patients with hemophilia. J Lab Clin Med 1996; 127 (6): 545–552.

    Article  PubMed  Google Scholar 

  51. Kamio T, Shigematsu K, Kawai K, Tsuchiyama H. Immunoreactivity and receptor expression of insulin-like growth factor I and insulin in human adrenal tumors. An immunohistochemical study of 94 cases. Am J Pathol 1991; 138: 83–91.

    PubMed  CAS  Google Scholar 

  52. Sonka J. Dehydroepiandrosterone. Metabolic effects. In: Charvat J, ed. Acta Universitais Carolinae, Universita Krlova Praha, Prague, 1976, pp. 1–171.

    Google Scholar 

  53. Nafziger An, Herrington DM, Bush TL. Dehydroepiandrosterone and dehydroepiandrosterone sulfate: Their relation to cardiovascular disease. Epidemiol Res 1991; 13: 267–293.

    Google Scholar 

  54. Barrett-Conor E. Lower endogenous androgen levels and dylipidemia in men with non-insulin-dependent diabetes mellitus. Ann Intern Med 1992; 117: 807–811.

    Google Scholar 

  55. Nestler JE, Usiskin KS, Barlascini CO, Welty D, Clore JN, Blackard WG. Suppression of serum dehydroepiandrosterone sulfate levels by insulin:An evaluation of possible mechanisms. J Clin Endocrinol Metab 1989; 69: 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  56. Nestler JE, Beer NA, Jakubowicz DJ, Beer RM. Effects of a reduction in circulating insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic men. J Clin Endocrinol Metab 1994; 78: 549–554.

    Article  PubMed  CAS  Google Scholar 

  57. Nestler JE, Kahwaash Z. Sex-specific action of insulin to acutely increase the metabolic clearance rate of dehydroepiandrosterone in humans. J Clin Invest 1994; 94: 1484–1489.

    Article  PubMed  CAS  Google Scholar 

  58. Nestler JE, McClanahan MA, Clore JN, Blackard WG. Insulin inhibits adrenal 17, 20-lyase activity in man. J Clin Endocrinol Metab 1992; 74: 362–367.

    Article  PubMed  CAS  Google Scholar 

  59. Nestler JE. Regulation of human dehydroepiandrosterone metabolism by insulin. Ann NY Acad Sci 1995; 774: 73–81.

    Article  PubMed  CAS  Google Scholar 

  60. Bates GW Jr, Egerman RS, Umstor ES, Buster JE, Casson PR. Dehydroepiandrosterone attenuates study-induced declines in insulin sensitivity in postmentopausal women. Ann NY Acad Sci 1995; 774: 291–293.

    Article  PubMed  CAS  Google Scholar 

  61. Casson PR, Faquin LC, Stenz FB, Straugh AB, Anderson RN, Abraham GE, Buster JE. Replacement of dehydroepiandrosterone enhances T- lymphocyte insulin binding in postmentopausal women. Fertil Steril 1995; 63 (5): 1027–1031.

    PubMed  CAS  Google Scholar 

  62. Nordin BE, Robertson A, Seamark RF, Bridges A, et al. The relation between calcium absorption, serum dehydroepiandrosterone, and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab 1985; 60 (4): 651–657.

    Article  PubMed  CAS  Google Scholar 

  63. Szathmari M, Szucs J, Feher T, Hollo I. Dehydroepiandrosterone sulphate and bone mineral density. Osteoporosis Int. 1994; 4 (2): 84–88.

    Article  CAS  Google Scholar 

  64. Rozenberg S, Ham H, Bosson D, Peretz A, Robyn C. Age, steroids and bone mineral content. Maturitas 1990; 12 (2): 137–143.

    Article  PubMed  CAS  Google Scholar 

  65. Maewska MD. Neuronal actions of DHEAS: possible roles in brain development, aging, memory and affect. Ann NY Acad Sci 1995; 774: 111–121.

    Article  Google Scholar 

  66. Nasman B, Olsson T, Backstrom T, et al. Serum dehydorepiandrosterone sulfate in Alzheimer’s disease and in multi-infarct dementia. Biol Psychiatry 1991; 30: 684–690.

    Article  PubMed  CAS  Google Scholar 

  67. Dodt C, Dittman J, Hruby J, et al. Different regulation of adrenocorticotropin and cortisol secretion in young mentally healthy elderly and patients with senile dementia of Alzheimer’s type. J Clin Endocrinol Metabol 1991 d; 72: 272–276.

    Google Scholar 

  68. Rudman D, Shetty KR, Mattson DE. Plasma deydroepiandrosterone sulfate in nursing home men. J Am Geriatr Soc 1990; 38: 421–427.

    PubMed  CAS  Google Scholar 

  69. Kalimi M, Reglson W (Eds). 1990. The Biologic Role of Dehydroepiandrosterone. Walter de Gruyter, Berlin.

    Google Scholar 

  70. Wolkowitz OM, Reus VI, Roberts E, et al. Antidepressant and cognition-enhancing effects of DHEA in major depression. Ann NY Acad Sci 1995; 774: 337–339.

    Article  PubMed  CAS  Google Scholar 

  71. Morales AJ, Nolan JJ, Nelson JC, et al. effects of replacement dose of dehydroepiandroosterone in men and women of advancing age. J Clin Endocrinol Metab 1994; 78: 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  72. Seley H. correlations between the chemical structure and pharmacological actions of the steroids. Endocrinology 1942; 30: 437–453.

    Article  Google Scholar 

  73. Seley H. The pharmacology of steroid hormones and their derivatives. Rev Can Bio 1942; 1: 573–632.

    Google Scholar 

  74. McGavack TH, Chevalley J, Weissberg J. the use of 45 pregnenolone in various clinical disorders. J Clin Endocrinol 1951; 11: 559–577.

    Article  CAS  Google Scholar 

  75. Brugsh HG, Manning RA. A comprehensive study of pregnenolone, 21 acetoxypregnenolone and ACTH. N Eng J Med 1951; d244: 628–632.

    Article  Google Scholar 

  76. Wu FS, Gibbs TT, Farb DH. Pregnenonolone sulfate: a positive allosteric modulator at N-Methyl-Daspartate receptor. Mol Pharmacol 1991; 40: 333–336.

    PubMed  CAS  Google Scholar 

  77. Irwin RP, NJ, Rogawski MA, et al. Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca 2+ in cultured rat hippocampal neurons. Neurosci Lett 1992; 141: 30–34.

    Article  PubMed  CAS  Google Scholar 

  78. Akwa Y, Young J, Kabbadj K, Sancho MJ, et al. Neurosteroid:biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol 1991; 40 (13): 71–81.

    Article  PubMed  CAS  Google Scholar 

  79. Pincus G, Hoagland H. Effects on industrial production of the administration of 5 pregnenolone to factor workers, I. Psychosom Med 1945; 7: 342–346.

    PubMed  CAS  Google Scholar 

  80. Pincus G, Hoagland H, Wilson CH, Fay NJ. Effects on industrial production of the administration of 5 pregnenolone to factory workers, II. Psychosom Med 1945; 7: 347–352.

    Google Scholar 

  81. Pincus G, Hoagland H. effects of administered pregnenolone on fatiguing psychomotor performance. J Aviat Med 1944;15: 98–115, 135.

    Google Scholar 

  82. Stiger A, Trachsel L, Guldner J, et al. Neurosteroid pregnenolone induces sleep-EEG changes in man compatible with inverse agonistic GABAA-receptor modulation. Brain Res 1993; 615: 267–274.

    Article  Google Scholar 

  83. Saper CB, German DC, White CL. Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type:possible role in cell loss. Neurology 1985; 35: 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  84. Mayo W, Dellu F, Robel P, et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res 1993; 607: 324–328.

    Article  PubMed  CAS  Google Scholar 

  85. Henderson E, Weinberg M, Wright WA. Pregnenolone. Endocr Rev 1950; 10: 455–474.

    CAS  Google Scholar 

  86. Tyler ET, Payne S, Kirsch. Pregnenolone in male infertility. West J Surg 1943; 56: 459–463.

    Google Scholar 

  87. Morfin R. Courchy G. Pregnenolone and dehydroepiandrosterone as a precursors of native 7-hydroxylated metabolites which increases the immune response in mice. J Steroid Biochem Molec Biol 1994; 50: 91–100.

    Article  PubMed  CAS  Google Scholar 

  88. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992; 89 (5): 1567–1571.

    Article  PubMed  CAS  Google Scholar 

  89. Flood JF, Morley JE, Roberts E. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures:the amygdala is by far the most sensitive. Proc Natl Acad Sci USA 1995;92(23):10,806–10,810.

    Google Scholar 

  90. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992; 89 (5): 1567–1571.

    Article  PubMed  CAS  Google Scholar 

  91. Li PK, Rhodes ME, Burke ME, Johnson DA. Memory enhancement mediated by the steroid sulfatase inhibitor (p-O-sulfamoyl)-N-tetradecanoyl tyramine. Life Sci 1997;60(3):PL45–51.

    Google Scholar 

  92. Wolf OT, Neumann O, Hellammer DH, Geiben AC, Strasburger CJ, et al. Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J Clin Endocrinol Metab 1997; 82 (7): 2363–2367.

    Article  PubMed  CAS  Google Scholar 

  93. Sih R. Morley JE, Kaiser FE, Herning M. Effects of pregnenolone on aging. J Investig Med 1997; 45 (7): 348A [Abstract].

    Google Scholar 

  94. Morley JE, Kaiser F, Raum WJ, Perry HM, III, Flood JF, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male:progressive decreases in bioavailalable testosterone, dehydroepiandrosterone sulfate. Proc Natl Acad Sci USA 1997; 94 (14): 7537–7542.

    Article  PubMed  CAS  Google Scholar 

  95. Buster JE, Casson PR, Straughan AB, et al. Postmenopausal steroid replacement with micronized dehydroepiandrosterone:preliminary oral bioavailability and dose proportionality studies. Am J Obstet Gynecol 1992; 166 (4): 1163–1168.

    PubMed  CAS  Google Scholar 

  96. Vollenhoven RF, Engelman EG, McGuire JL. Dehydroepiandrosterone in systemic lupus erythromaotosus. Results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 1995; 38 (12): 1826–1831.

    Article  PubMed  Google Scholar 

  97. Araneo B, Dowell T, Woods ML, et al. DHEAS as an effective vaccine adjuvant in elderly humans. Proof-of-principal studies. Ann NY Acad Sci 1995; 774: 23248.

    Google Scholar 

  98. Dyner TS, Lang W, Geaga J, et al. An open-label dose-escalation trial of oral dehydroepiandrosteronee tolerance and pharmackinetics in patients with HIV disease. J AIDS 1993; 6: 459–465.

    Google Scholar 

  99. Friss E, Trachse L, Guldner J, et al. DHE administration increases rapid eye movement sleep and EEG power in the sigma frequency range. Am J Physiol 1995; 268: E107–113.

    Google Scholar 

  100. Buffington CK, Pourmotabbed G, Kitabchi AE. Case report:amelioration of insulin resistance in diabetes with dehdroepiandrosterone. Am J Med Sci 1993; 306 (5): 320–324.

    Article  PubMed  CAS  Google Scholar 

  101. Casson PR, Faquin LC, Stenz FB, Straughn AB, Anderson RN, et al. Replacement of dehydroepiandrosterone enhances T-lymphocyte insulin binding in postmentopausal women. Fertil Steril 1995; 63 (5): 1027–1031.

    PubMed  CAS  Google Scholar 

  102. Usiskin KS, Butterworth S, Clore JN, Arad Y, et al. Lack of effect of dehydroepiandrosterone in obese men. Int J Obese; 14(5):457–463.

    Google Scholar 

  103. Jones JA, Nguyen A, Straub M, et al. Use of DHEA in a patient with advanced prostate cancer: a case report and review. Urology 1997; 50 (5): 784–4788.

    Article  PubMed  CAS  Google Scholar 

  104. Labrie F, Diamond P, Cusan L, et al. Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmentopausal women. J Clin Endo Metabol1997;82(10):34983505.

    Google Scholar 

  105. Danenberg HD, Benyehuda A, Zakayrones Z, et al. Dehydroepiandrosterone treatment is not beneficial to the immune response to influenza in elderly subjects. J Clin Endo Metab 1997, 82: 2911–2914.

    Article  CAS  Google Scholar 

  106. Evans TG, Judd ME, Dowel T, et al. The use of oral dehydroepiandrosterone sulfate as an adjuvant in tetanus and influenza vaccination of the elderly. Vaccine 1996; 14 (16): 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  107. Diamond P, Cusan L, Gomez JL, et al. Metabolic effects of 12-month percutaneous dehydroepiandrosterone replacement therapy in postmentopausal women. J Endocrin 1996;150 (Suppl S):543– 50.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sih, R., Kamel, H., Horani, M., Morley, J.E. (1999). Dehydroepiandrosterone and Pregnenolone. In: Meikle, A.W. (eds) Hormone Replacement Therapy. Contemporary Endocrinology, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-700-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-700-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-092-2

  • Online ISBN: 978-1-59259-700-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics