Skip to main content

P450c17—The Qualitative Regulator of Steroidogenesis

  • Chapter
Molecular and Cellular Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

  • 88 Accesses

Abstract

The pathways of steroid hormone synthesis are well established, and the molecular identities of the responsible steroidogenic enzymes have been elucidated (Fig. 1) (for review, see refs. 1, 2). The first step in the synthesis of all steroid hormone is the conversion of cholesterol to pregnenolone by the cholesterol side-chain cleavage system, which is found in the mitochondria in the adrenal cortex, gonads, placenta, and brain. Three pairs of electrons from NADPH are passed through a flavoprotein termed ferredoxin reductase (more commonly “adrenodoxin reductase”) to an iron/sulfur protein termed ferredoxin (adrenodoxin) and thence to cytochrome P450scc (where scc denotes side-chain cleavage). P450scc is the enzymatic moiety that binds cholesterol and uses the three pairs of electrons sequentially to catalyze 20α-hydroxylation, 22-hydroxylation, and C20,22 bond scission to yield pregnenolone, which is then rapidly converted to other steroids. The conversion of cholesterol to pregnenolone is the quantitative regulator of steroidogenesis. The chronic, long-term steroidogenic capacity of a cell is determined primarily by transcription of the gene for P450scc, which determines how much P450scc enzyme is present (3). The acute, short-term response of a cell to tropic hormones, which determines how much steroid is released, is determined by the action of the steroidogenic acute regulatory protein (StAR) (4–7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1988; 9: 295–318.

    Article  PubMed  CAS  Google Scholar 

  2. Fardella CE, Miller WL. Molecular biology of mineralocorticoid metabolism. Ann Rev Nutr 1996; 16: 443–470.

    Article  CAS  Google Scholar 

  3. Hum DW, Miller WL. Transcriptional regulation of human genes for steroidogenic enzymes. Clin Chem 1993; 39: 333–340.

    PubMed  CAS  Google Scholar 

  4. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 cells mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994;269:28, 314–28, 322.

    Google Scholar 

  5. Lin D, Sugawara T, Strauss JF III, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995; 267: 1828–1831.

    Article  PubMed  CAS  Google Scholar 

  6. Clark BJ, Stocco DM. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996; 27: 221–244.

    Google Scholar 

  7. Bose HS, Sugawara T, Strauss JF, III, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996; 335: 1870–1878.

    Article  PubMed  CAS  Google Scholar 

  8. Nakajin S, Hall PF. Microsomal cytochrome P450 from neonatal pig testis Purification and properties of a C21 steroid side-chain cleavage system (17a-hydroxylase-C17,20 lyase). J Biol Chem 1981; 256: 3871–3876.

    PubMed  CAS  Google Scholar 

  9. Nakajin S, Shively JE, Yuan P, Hall PF. Microsomal cytochrome P450 from neonatal pig testis: Two enzymatic activities (17a-hydroxylase and C17,20-lyase) associated with one protein. Biochemistry 1981; 20: 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  10. Kominami S, Shinzawa S, Takemori S. Purification and some properties of cytochrome P-450 for steroid 17a-hydroxylation and C17,20 bond cleavage from guinea pig adrenal microsomes. Biochem Biophys Res Commun 1982; 109: 916–921.

    Article  PubMed  CAS  Google Scholar 

  11. Nakajin S, Shinoda M, Haniu M, Shively JE, Hall PF. C21 steroid side-chain cleavage enzyme from porcine adrenal microsomes. Purification and characterization of the 17a-hydroxylase/C17,20 lyase cytochrome P450. J Biol Chem 1984; 259: 3971–3976.

    PubMed  CAS  Google Scholar 

  12. Suhara K, Fujimura Y, Shiroo M, Katagiri M. Multiple catalytic properties of the purified and reconstituted cytochrome P-450 (P-450sccII) system of pig testis microsomes. J Biol Chem 1984; 259: 8729–8736.

    PubMed  CAS  Google Scholar 

  13. Zuber MX, John ME, Okamura T, Simpson ER, Waterman MR. Bovine adrenal cytochrome P45017: Regulation of gene expression by ACTH and eludication of primary sequence. J Biol Chem 1986; 261: 2475–2482.

    PubMed  CAS  Google Scholar 

  14. Lin D, Harikrishna JA, Moore CCD, Jones KL, Miller WL. Missense mutation Ser106-* Pro causes 17a-hydroxylase deficiency. J Biol Chem 1991;266:15, 992–15, 998.

    Google Scholar 

  15. Chung B, Picado-Leonard J, Haniu M, Bienkowski M, Hall PF, Shivley JE, Miller WL. Cytochrome P450c17 (steroid 17a-hydroxylase/17,20lyase): Cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci USA 1987; 84: 407–411.

    Article  PubMed  CAS  Google Scholar 

  16. Picado-Leonard J, Miller WL. Cloning and sequence of the human gene encoding P450c17 (steroid 17a-hydroxylase/17,20 lyase): Similarity to the gene for P450c21. DNA 1987; 6: 439–448.

    Article  PubMed  CAS  Google Scholar 

  17. Matteson KJ, Picado-Leonard J, Chung B, Mohandas TK, Miller WL. Assignment of the gene for adrenal P450c17 (17a-hydroxylase/17,20 lyase) to human chromosome 10. J Clin Endocrinol Metab 1986; 63: 789–791.

    Article  PubMed  CAS  Google Scholar 

  18. Sparkes RS, Klisak I, Miller WL. Regional mapping of genes encoding human steroidogenic enzymes: P450scc to 15g23-q24, adrenodoxin to 11 g22;adrenodoxin reductase to 17g24-g25;and P450c17 to 10g24-q25. DNA Cell Biol 1991; 10: 359–365.

    Article  PubMed  CAS  Google Scholar 

  19. Fan YS, Sasi R, Lee C, Winter JSD, Waterman MR, Lin CC. Localization of the human CYP17 gene (cytochrome P450 17a to 10g24.3) by fluorescence in situ hybridization and simultaneous chromosome banding. Genomics 1992; 14: 1110, 1111.

    Google Scholar 

  20. Fardella CE, Hum DW, Homoki J, Miller WL. Point mutation Arg440 to His in cytochrome P450c 17 causes severe 17a-hydroxylase deficiency. J Clin Endocrinol Metab 1994; 79: 160–164.

    Article  PubMed  CAS  Google Scholar 

  21. Yanase T. 17a-Hydroxylase/17,20 lyase defects. J Steroid Biochem 1995; 53: 153–157.

    Article  CAS  Google Scholar 

  22. LaFlamme N, Leblanc J-F, Mailloux J, Faure N, Labrie F, Simard J. Mutation R96W in cytochrome P450c17 gene causes combined 17a-hydroxylase/17,20 lyase deficiency in two French Canadian patients. J Clin Endocrinol Metab 1996; 81: 264–268.

    Article  PubMed  CAS  Google Scholar 

  23. Yanagibashi K, Hall PF. Role of electron transport in the regulation of the lyase activity of C-21 side-chain cleavage P450 from porcine adrenal and testicular microsomes. J Biol Chem 1986; 261: 8429–8433.

    PubMed  CAS  Google Scholar 

  24. Onoda M, Hall PF. Cytochrome b5 stimulates purified testicular microsomal cytochrome P450 (C21 side-chain cleavage). Biochem Biophys Res Commun 1982; 108: 454–460.

    Article  PubMed  CAS  Google Scholar 

  25. Kominami S, Ogawa N, Morimune R, Huang DY, Takemori S. The role of cytochrome b5 in adrenal microsomal steroidogenesis. J Steroid Biochem Mol Biol 1992; 42: 57–64.

    Article  PubMed  CAS  Google Scholar 

  26. Katagiri M, Kagawa N, Waterman MR. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys 1995; 317: 343–347.

    Article  PubMed  CAS  Google Scholar 

  27. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998; 273: 3158–3165.

    Article  PubMed  CAS  Google Scholar 

  28. Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17a-hydroxylase and 17,20 lyase activities of P450c17: Contributions of serine106 and P450 reductase. Endocrinology 1993; 132: 2498–2506.

    Article  PubMed  CAS  Google Scholar 

  29. Cutler GB, Glenn M, Bush M, Hodgen GD, Graham CE, Loriaux DL. Adrenarche: a survey of rodents, domestic animals and primates. Endocrinology 1978; 103: 2112–2118.

    Article  PubMed  CAS  Google Scholar 

  30. Apter D, Pakarinen A, Hammond GL, Vihko R. Adrenocortical function in puberty. Acta Paediatr Scand 1979; 68: 599–604.

    Article  PubMed  CAS  Google Scholar 

  31. Parker LN, Odell WD. Control of adrenal androgen secretion. Endocr Rev 1980; 1: 397–410.

    Article  Google Scholar 

  32. Sklar CA, Kaplan SL, Grumbach MM. Evidence for dissociation between adrenarche and gonadarche: Studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotropin deficiency, and constitutionally delayed growth and adolescence. J Clin Endocrinol Metab 1980; 51: 548–556.

    Article  PubMed  CAS  Google Scholar 

  33. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984; 59: 551–555.

    Article  PubMed  CAS  Google Scholar 

  34. Couch RM, Muller J, Winter JSD. Regulation of the activities of 17a-hydroxylase and 17,20-desmolase in the human adrenal cortex: Kinetic analysis and inhibition by endogenous steroids. J Clin Endocrinol Metab 1986; 63: 613–618.

    Article  PubMed  CAS  Google Scholar 

  35. Liu C, Laughlin GA, Fischer VG, Yen SSC. Marked attenuation of ultradian and circadian rhythms of dehydroepiandrosterone in postmenopausal women: Evidence for a reduced 17,20-demolase enzymatic activity. J Clin Endocrinol Metab 1990; 71: 900–906.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Rodriguez H, Ohno S, Miller WL. Serine phosphorylation of human P450c 17 increases 17,20 lyase activity: Implications for adrenarche and for the polycystic ovary syndrome. Proc Natl Acad Sci USA 1995;92:10, 619–10, 623.

    Google Scholar 

  37. Lin D, Zhang L, Chiao E, Miller WL. Modeling and mutagenesis of the active site of human P450c17. Mol Endocrinol 1994; 8: 392–402.

    Article  PubMed  CAS  Google Scholar 

  38. Fardella CE, Zhang LH, Mahachoklertwattana P, Lin D, Miller WL. Deletion of amino acids Asp487Ser488-Phe489 in human cytochrome P450c17 causes severe 17a-hydroxylase deficiency. J Clin Endocrinol Metab 1993; 77: 489–493.

    Article  PubMed  CAS  Google Scholar 

  39. Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 1990; 50: 5488–5496.

    PubMed  CAS  Google Scholar 

  40. Staels B, Hum DW, Miller WL. Regulation of steroidogenesis in NCI-H295 cells: A cellular model of the human fetal adrenal. Mol Endocrinol 1993; 7: 423–433.

    Article  PubMed  CAS  Google Scholar 

  41. Maurer RA. Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J Biol Chem 1989; 264: 6870–6873.

    PubMed  CAS  Google Scholar 

  42. Poulos TL, Finzel BC, Howard AJ. High-resolution crystal structure of cytochrome P450cam. J Mol Biol 1987; 195: 687–700.

    Article  PubMed  CAS  Google Scholar 

  43. Raag R, Poulos TL. Crystal structure of the carbon monoxide-substrate cytochrome P-450cAM ternary complex. Biochemistry 1989; 28: 7586–7592.

    Article  PubMed  CAS  Google Scholar 

  44. Nelson DR, Strobel HW. On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 1988; 263: 6038–6050.

    PubMed  CAS  Google Scholar 

  45. Edwards RJ, Murray BP, Boobis AR, Davies DS. Identification and location of a-helices in mammalian cytochromes P450. Biochemistry 1989; 28: 3762–3770.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrin TE, Huang CC, Jarvis LE, Langridge R. The MIDAS database system. J Mol Graphics 1988; 6: 2–12.

    Article  CAS  Google Scholar 

  47. Ferrin TE, Huang CC, Jarvis LE, Langridge R. The MIDAS display system. J Mol Graphics 1988; 6: 13–27.

    Article  CAS  Google Scholar 

  48. Kitamura M, Buczko E, Dufau ML. Dissociation of hydroxylase and lyase activities by site-directed mutagenesis of the rat P450–17a. Mol Endocrinol 1991; 5: 1373–1380.

    Article  PubMed  CAS  Google Scholar 

  49. Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 1993; 261: 731–736.

    Article  PubMed  CAS  Google Scholar 

  50. Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol 1994; 236: 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  51. Cupp-Vickery JR, Poulos TL. Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Structural Biol 1995; 2: 144–153.

    Article  CAS  Google Scholar 

  52. Fulco AJ. P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Ann Rev Pharmacol Toxicol 1991; 31: 177–203.

    Article  CAS  Google Scholar 

  53. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure and function of cytochromes P450: A comparative analysis of three crystal structures. Structure 1995; 3: 41–62.

    Article  PubMed  CAS  Google Scholar 

  54. Graham-Lorence S, Amarneh B, White RE, Peterson JA, Simpson ER. A three-dimensional model of aromatase cytochrome P450. Prot Sci 1995; 4: 1065–1080.

    Article  CAS  Google Scholar 

  55. Picado-Leonard J, Miller WL. Homologous sequences in steroidogenic enzymes, steroid receptors and a steroid binding protein suggest a consensus steroid-binding sequence. Mol Endocrinol 1988; 2: 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  56. Auchus RJ, Graham-Lorence S, Peterson JB, Miller WL. A second-generation molecular graphics model of human P450c 17 based on assembly of core structures. 2nd Int Symp Molec Steroidogen 1996; Abs. P-36, Monterey, CA.

    Google Scholar 

  57. Zachman M, Vollmin JA, Hamilton W, Prader A. Steroid 17,20 desmolase deficiency: A new cause of male pseudohermaphroditism. Clin Endocrinol 1972; 1: 369–385.

    Article  Google Scholar 

  58. Zachman M, Werder EA, Prader A. Two types of male pseudohermaphroditism due to 17,20 desmolase deficiency. J Clin Endocrinol Metab 1982; 55: 487–490.

    Article  Google Scholar 

  59. Goebelsmann U, Zachmann M, Davajan V, Israel R, Mestman JH, Mishell DR. Male pseudohermaphroditism consistent with 17,20-desmolase deficiency. Gynecol Invest 1976; 7: 138–156.

    Article  PubMed  CAS  Google Scholar 

  60. Campo S, Stivel M, Nicolau G, Monteagudo C, Rivarola M. Testicular function in post-pubertal male pseudohermaphroditism. Clin Endocrinol 1979; 11: 481–490.

    Article  CAS  Google Scholar 

  61. Yanase T, Simpson ER, Waterman MR. 17a-hydroxylase/17,20 lyase deficiency: From clinical investigation to molecular definition. Endocr Rev 1991; 12: 91–108.

    CAS  Google Scholar 

  62. Yanase T, Waterman MR, Zachmann M, Winter JSD, Simpson ER, Kagimoto M. Molecular basis of apparent isolated 17,20-lyase deficiency: Compound heterozygous mutations in the C-terminal region (Arg(496)→Cys, Gln(461)→Stop) actually cause combined 17a-hydroxylase/17,20-lyase deficiency. Biochem Biophys Acta 1992; 1139: 275–279.

    Article  PubMed  CAS  Google Scholar 

  63. Geller DH, Auchus RJ, Mendonça BB, Miller WL. The genetic and functional basis of isolated 17,20 lyase deficiency. Nat Genet 1997; 17: 201–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, W.L. (1999). P450c17—The Qualitative Regulator of Steroidogenesis. In: Handwerger, S. (eds) Molecular and Cellular Pediatric Endocrinology. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-697-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-697-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5875-7

  • Online ISBN: 978-1-59259-697-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics