Skip to main content

Physiology and Molecular Biology of Placental Lactogen in Human Pregnancy

  • Chapter
Molecular and Cellular Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

Abstract

Human placental lactogen (hPL) is a protein hormone that has striking homologies in its chemical and biological properties to human growth hormone (hGH) and human prolactin (hPRL) (1,2). In this chapter, we will briefly discuss the role of hPL in the regulation of fetal growth and the regulation of hPL secretion in normal and pathologic pregnancies. We will then focus on recent advances in the regulation of hPL gene expression, giving particular attention to roles of nuclear hormone receptors and cytokines in transactivation of the hPL promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Josimovich JB, McLaren JA. Presence in the human placenta and term serum of a highly lactogenic substance immunologically related to pituitary growth hormone. Endocrinology 1962; 71: 209–220.

    Article  PubMed  CAS  Google Scholar 

  2. Sherwood LS, Handwerger S, McLaurin WE, Lanner M. Amino acid sequence of human placental lactogen. Nature New Biol 1971; 233: 59–61.

    PubMed  CAS  Google Scholar 

  3. Grumbach MM, Kaplan SL. On the placental origin and purification of chorionic “growth hormoneprolactin” and its immunoassay in pregnancy. Trans New York Acad Sci 1964; 27: 167–188.

    Article  CAS  Google Scholar 

  4. Handwerger S. Clinical counterpoint: The physiology of placental lactogen in human pregnancy. Endocrine Rev 1991; 12: 329–336.

    Article  CAS  Google Scholar 

  5. Freemark M, Comer M, Handwerger S. Placental lactogen and growth hormone receptors in sheep liver: Striking differences in ontogeny and function. Am J Physiol 1986; 251: E328 - E333.

    CAS  Google Scholar 

  6. Browne CA, Thornburn GD. Endocrine control of fetal growth. Biol Neonate 1989; 55: 331–346.

    Article  PubMed  CAS  Google Scholar 

  7. Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metallothionein-human GH fusion genes stimulate growth of mice. Science 1983; 222: 809–814.

    Article  PubMed  CAS  Google Scholar 

  8. Talamantes F, Ogren L. The placenta as an endocrine organ: polypeptides. In: Knobil E, Neill J, et al., eds. The physiology of reproduction. Raven, New York, 1988; pp. 2093–2144.

    Google Scholar 

  9. Tyson JE. Human chorionic somatomammotropin. Obstet Gynecol Ann 1972; 1: 421–452.

    CAS  Google Scholar 

  10. Saxena B, Emerson K, Selenkow H. Serum placental lactogen levels as an index of placental function. N Engl J Med 1969; 281: 225–231.

    Article  PubMed  CAS  Google Scholar 

  11. Grumbach MM, Kaplan SL, Sciarra JJ, Burr IM. Chorionic growth hormone-prolactin (CGP): Secretion, disposition, biologic activity in man, and postulated function as the “growth hormone” of the second half of pregnancy. Ann New York Acad Sci 1968; 148: 501–531.

    Article  CAS  Google Scholar 

  12. Morris HHB, Vinik AI, Mulvihal M. Effects of acute alterations in maternal free fatty acid concentration on human chorionic somatomammotropin secretion. Am J Obstet Gynecol 1974; 119: 224–229.

    PubMed  CAS  Google Scholar 

  13. Ylikorkala O, Kauppila A. Effect of dexamethasone on serum levels of human placental lactogen during the last trimester of pregnancy. J Obstet Gynecol Br Common 1974; 81: 368–370.

    Article  CAS  Google Scholar 

  14. Kim YJ, Felig P. Plasma chorionic somatomammotropin levels during starvation in mid-pregnancy. J Clin Endocrinol Metab 1972; 32: 864–867.

    Article  Google Scholar 

  15. Tyson JE, Austin KL, Farinholt JW. Prolonged nutritional deprivation in pregnancy: Changes in human chorionic somatomammotropin and growth hormone secretion. Amer J Obstet Gynecol 1971; 109: 1080–1082.

    CAS  Google Scholar 

  16. Ajabor LM, Yen SSC. Effect of sustained hyperglycemia on the levels of human chorionic somatomammotropin in mid-pregnancy. Am J Obstet Gynecol 1972; 112: 908–911.

    PubMed  CAS  Google Scholar 

  17. Suwa S, Friesen HG. Biosynthesis of human placental proteins and human placental lactogen (hPL) in vitro. II. Dynamic studies of normal term placentas. Endocrinology 1969; 85: 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  18. Desole E, Springolo E, Dichiari F, Franzolini L, Tosolini GC. Human placental lactogen production in vitro. I. Dynamic studies of normal-term placentas after stimulation with 17-â-oestrodiol. In: Salvadori B, ed. Therapy of Feto-Placental Insufficiency. Springer-Verlag, Berlin, 1975; p. 313.

    Chapter  Google Scholar 

  19. Niven PAR, Buhi WC, Spellacy WN. The effect of intravenous oestrogen injections on plasma human placental lactogen levels. J Obstet Gynecol Brit Commonwealth 1974; 81: 466–468.

    Article  CAS  Google Scholar 

  20. Belleville F, Lasbennes A, Nabet P, Paysant P. Etude des substances pouvant intervenir dans la regulation de la secretion de la somatomammotrophine chorionique (hCS) in vitro par le placenta en culture. Compte Rendu des Seances de la Societe de Biologie et de Ses Fliales (Paris) 1974; 168: 1057–1062.

    CAS  Google Scholar 

  21. Handwerger S, Barrett J, Tyrey L, Schomberg D. Differential effect of cyclic adenosine monophosphate on the secretion of human placental lactogen and human chorionic gonadotropin. J Clin Endocrin Metab 1973; 36: 1268–1270.

    Article  CAS  Google Scholar 

  22. Hershman JM, Kojima A, Friesen HG. Effect of thyrotropin-releasing hormone on human pituitary thyrotropin, prolactin, placental lactogen and chorionic thyrotropin. J Clin Endocrin Metab 1973; 36: 497–501.

    Article  CAS  Google Scholar 

  23. Pujoi-Amat P, Gamessans O, Cabero L, Perez-Lopez PP, Benito E, CalafJ, Robyn C. In: Salvadori B, ed. Therapy of Feto-Placental Insufficiency. Springer-Verlag, Berlin, 1975, p. 246–249.

    Chapter  Google Scholar 

  24. Handwerger S, Barrett J, Tyrey L. Unpublished observations.

    Google Scholar 

  25. Wilson EA, Jawad MJ, Vernon MW. Effect of epidermal growth factor on hormone secretion by term placenta in organ culture. Am J Obstet Gynecol 1984; 149: 579, 580.

    Google Scholar 

  26. Petit A, Guillon G, Tence M, Jard S, Gallo-Payet N, Bellabarba D, et al. Angiotensin II stimulates both inositol phosphate production and human placental lactogen release from human trophoblastic cells. J Clin Endocrin Metab 1989; 69: 280–286.

    Article  CAS  Google Scholar 

  27. Bhaumick B, Dawson EP, Bala RM. The effects of insulin-like growth factor-I and insulin on placental lactogen production by human term placental explants. Biochem Biophys Res Comm 1987; 144: 674–682.

    Article  PubMed  CAS  Google Scholar 

  28. Singer W, Desjardins P, Friesen HG. Human placental lactogen: an index of placental function. Obstet Gynecol 1970; 36: 222–232.

    PubMed  CAS  Google Scholar 

  29. Ursell W, Brudenell M, Chard T. Placental lactogen levels in diabetic pregnancy. Brit Med J 1973; 2: 80–82.

    Article  PubMed  CAS  Google Scholar 

  30. Josimovich JB, Kosar B, Boccella L, Mintz DH, Hutchinson DL. Placental lactogen in maternal serum as an index of fetal health. Obstet Gynecol 1970; 36: 244–250.

    PubMed  CAS  Google Scholar 

  31. Lindberg BS, Nilsson BA. Human placental lactogen (HPL) levels in abnormal pregnancies. J Obstet Gynecol Br Common 1973; 80: 1046–1053.

    Article  CAS  Google Scholar 

  32. Kelly AM, England P, Lorrimer JD, Ferguson JC. An evaluation of human placental lactogen levels in hypertension of pregnancy. Brit J Obstet Gynecol 1975; 82: 272–277.

    Article  CAS  Google Scholar 

  33. Letchworth AT, Chard T. Placental lactogen levels as a screening test for fetal distress and neonatal asphyxia. Lancet 1972; 1: 704–706.

    Article  PubMed  CAS  Google Scholar 

  34. Handwerger S, Quarfordt S, Barrett J, Harman I. Apolipoproteins AI, AII, and CI stimulate placental lactogen release from human placental tissue: a novel action of HDL apolipoproteins. J Clin Invest 1987; 79: 625–628.

    Article  PubMed  CAS  Google Scholar 

  35. Grandis A, Jorgensen V, Kodack L, Quarfordt S, Handwerger S. High density lipoproteins (HDL) stimulate placental lactogen secretion in pregnant ewes: further evidence for a role of HDL in placental lactogen secretion during pregnancy. J Endocrinol 1989; 120: 423–427.

    Article  PubMed  CAS  Google Scholar 

  36. Desoye G, Schweditsch MO, Pfeiffer KP, Zechner R, Kostner GM. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J Clin Endocrin Metab 1987; 64: 704–712.

    Article  CAS  Google Scholar 

  37. Handwerger S, Richards RG, Myers S. Novel regulation of the synthesis and release of human placental lactogen by high density lipoproteins [Review]. Trophoblast Res 1994; 8: 339–354.

    CAS  Google Scholar 

  38. Jorgensen EV, Gwynne JT, Handwerger S. High density lipoprotein 3 binding and biological action: high affinity binding is not necessary for stimulation of placental lactogen release from trophoblast cells. Endocrinology 1989; 125: 2915–2921.

    Article  PubMed  CAS  Google Scholar 

  39. Jorgensen EV, Anantharamaiah GM, Segrest JP, Gwynne JT, Handwerger S. Synthetic amphipathic peptides resembling apolipoproteins stimulate the release of human placental lactogen. J Biol Chem 1989; 264: 9215–9219.

    PubMed  CAS  Google Scholar 

  40. Wu YQ, Jorgensen EV, Handwerger S. High density lipoproteins stimulate placental lactogen release and adenosine 3’,5’-cyclic monophosphate production in human trophoblast cells: evidence for cyclic AMP as a second messenger in hPL release. Endocrinology 1988; 123: 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  41. Wu YQ, Handwerger S. High density lipoproteins stimulate Mr 80Kprotein phosphorylation in human trophoblast cells: Evidence for a protein kinase C-dependent pathway in human placental lactogen release. Endocrinology 1992; 131: 2935–2940.

    Article  PubMed  CAS  Google Scholar 

  42. Handwerger S, Myers S, Richards RG, Richardson B, Turzai L, Moeykins C, et al. Apolipoprotein A-I stimulates placental lactogen expression by human trophoblast cells. Endocrinology 1995; 136: 5555–5560.

    Article  PubMed  CAS  Google Scholar 

  43. Darbon JM, Tournier JF, Tauber JP, Bayard F. Possible role of protein phosphorylation in the mitogenic effect of high density lipoproteins on cultured vascular endothelial cells. J Biol Chem 1986; 261: 8002–8008.

    PubMed  CAS  Google Scholar 

  44. Ong AC, Jowett TP, Moorhead JF, Owen JS. Human high density lipoproteins stimulate endothelin1 release by cultured human renal proximal cells. Kidney Int 1994; 46: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  45. Blackburn WD, Jr., Dohlman JG, Venkatachalapathi YV, Pillion DJ, Koopman WJ, Segrest JP, Anantharamaiah GM. Apolipoprotein A-I decreases neutrophil degranulation and superoxide production. J Lipid Res 1991; 32: 1911–1918.

    PubMed  CAS  Google Scholar 

  46. Rosing U, Samsioe G, Olund A, Johansson B, Kallner A. Serum levels of apolipoprotein A-I, A-II and HDL-cholesterol in second half of normal pregnancy and in pregnancy complicated by preeclampsia. Hormone Metab Res 1989; 21: 376–382.

    Article  CAS  Google Scholar 

  47. Kaaja R, Tikkanen MJ, Viinikka L, Ylikorkala O. Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women. Obstet Gynecol 1995; 85: 353–356.

    Article  PubMed  CAS  Google Scholar 

  48. Knopp RH, Van Allen MI, McNeely M, Walden CE, Plovie B, Shiota K. Effect of insulin-dependent diabetes on plasma lipoproteins in diabetic pregnancy. J Reproduct Med 1993; 38: 703–710.

    CAS  Google Scholar 

  49. Barsh GS, Seeburg PH, Gelinas RE. The human growth hormone gene family: Structure and evolution of the chromosomal locus. Nucleic Acids Res 1983; 11: 3939–3958.

    Article  PubMed  CAS  Google Scholar 

  50. Chen EY, Liao YC, Smith DH, Barrera-Saldana HA, Gelinas RE, Seeburg PH. The human growth hormone locus nucleotide sequence, biology, and evolution. Genomics 1997; 4: 479–497.

    Article  Google Scholar 

  51. Owerbach D, Rutter W, Martial J, Baxter JD, Shows TB. Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like genes on chromosome 17 in humans. Science 1980; 209: 289–292.

    Article  PubMed  CAS  Google Scholar 

  52. Walker WH, Fitzpatrick SL, Barrera-Saldana HA, Resendez-Perez D, Saunders GF. The human placental lactogen genes: Structure, function, evolution and transcriptional regulation. Endocrine Rev 1991; 12: 316–328.

    Article  CAS  Google Scholar 

  53. Jacquemin P, Alsat E, Oury C, Belayew A, Muller M, Evain-Brion D, Martial JA. The enhancers of the human placental lactogen B, A, and L genes: Progressive activation during in vitro trophoblast differentiation and importance of the DF-3 element in determining their respective activities. DNA Cell Biol 1996; 15: 845–854.

    Article  PubMed  CAS  Google Scholar 

  54. Midgley AR, Jr., Pierce GB, Deneau GA, Gosling JRG. Morphogenesis of syncytiotrophoblast in vivo: an autoradiographic demonstration. Science 1963; 141: 349, 350.

    Google Scholar 

  55. Midgley AR, Jr., Pierce GB. Immunohistochemical localization of human chorionic gonadotropin. J Exp Med 1962; 115: 289–294.

    Article  PubMed  CAS  Google Scholar 

  56. Pierce GB, Midgley AR, Jr. The origin and function of human syncytiotrophoblastic giant cells. Amer J Pathol 1963; 43: 153–171.

    Google Scholar 

  57. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF, III. Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 1986; 118: 1567–1582.

    Article  PubMed  CAS  Google Scholar 

  58. Douglas GC, King BF. Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci 1990; 96: 131–141.

    PubMed  Google Scholar 

  59. Boime I. Human placental hormone production is linked to the stage of trophoblast differentiation. In: Miller RK, Thiede HA, eds. Trophoblast Research. Verav Medical, Rochester, NY, 1991, pp. 57–60.

    Google Scholar 

  60. Richards RG, Hartman SM, Handwerger S. Human cytotrophoblast cells cultured in maternal serum progress to a differentiated syncytial phenotype expressing both human chorionic gonadotropin and human placental lactogen. Endocrinology 1994; 135: 321–329.

    Article  PubMed  CAS  Google Scholar 

  61. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: Key pieces of the development puzzle. Science 1994; 266: 1508–1517.

    Article  PubMed  CAS  Google Scholar 

  62. Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 1993; 132: 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  63. Garcia-Lloret MI, Morrish DW, Wegmann TG, Honore L, Turner AR, Guilbert LJ. Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion. Exper Cell Res 1994; 214: 46–54.

    Article  CAS  Google Scholar 

  64. Millio LA, Hu J, Douglas GC. Binding of insulin-like growth factor I to human trophoblast cells during differentiation in vitro. Placenta 1994; 15: 641–651.

    Article  Google Scholar 

  65. Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exper Cell Res 1990; 186: 306–316.

    Article  CAS  Google Scholar 

  66. Strauss JF, III, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling system and human trophoblast function [Review]. Placenta 1992; 13: 389–403.

    Article  PubMed  CAS  Google Scholar 

  67. Amemiya K, Kurachi H, Adachi H, Morishige KI, Adachi K, Imai T, Mivake A. Involvement of epidermal growth factor (EGF)/EGF receptor autocrine and paracrine mechanism in human trophoblast cells: Functional differentiation in vitro. J Endocrinol 1994; 143: 291–301.

    Article  PubMed  CAS  Google Scholar 

  68. Jones BK, Monks BR, Liebhaber SA, Cooke NE. The human growth hormone gene is regulated by a multicomponent locus control region. Mol Cellular Biol 1995; 15: 7010–7021.

    CAS  Google Scholar 

  69. Jiang S, Shepard AR, Eberhardt NL. An initiator element is required for maximal human chorionic somatomammotropin gene promoter and enhancer function. J Biol Chem 1 995; 270: 3683–3692.

    Google Scholar 

  70. Fitzpatrick SL, Walker WH, Saunders GF. DNA sequences involved in the transcriptional activation of a human placental lactogen gene. Mol Endocrinol 1990; 4: 1815.

    Article  PubMed  CAS  Google Scholar 

  71. Richards RG, Richardson BR, Schmidt CM, Handwerger S. Inhibitory elements within the human placental lactogen (hPL) promoter prevent hPL gene expression in cytotrophoblast cells. The 79th Ann Meet Endocrine Society (June 11–14, 1997 ), Minneapolis, MN, abstr P3–541.

    Google Scholar 

  72. Walker WH, Fitzpatrick SL, Saunders GF. Human placental lactogen transcriptional enhancer: Tissue specificity and binding with specific proteins. J Biol Chem 1990;265:12, 940–12, 948.

    Google Scholar 

  73. Jiang S, Eberhardt NL. The human chorionic somatomammotropin gene enhancer is composed of multiple DNA elements that are homologous to several SV40 enhansons. J Biol Chem 1994; 269:10, 384–10, 392.

    Google Scholar 

  74. Lytras A, Cattini PA. Human chorionic somatomammotropin gene enhancer activity is dependent on the blockade of a repressor mechanism. Mol Endocrinol 1994; 8: 478–489.

    Article  PubMed  CAS  Google Scholar 

  75. Jacquemin P, Oury C, Peers B, Morin A, Belayew A, Martial JA. Characterization of a single strong tissue-specific enhancer downstream from the three human genes encoding placental lactogen. Mol Cell Biol 1994; 14: 93–103.

    PubMed  CAS  Google Scholar 

  76. Jiang S, Eberhardt NL. Involvement of a protein distinct from transcription enhancer factor-1 (TEF-1) in mediating human chorionic somatomammotropin gene enhancer function through the GT-IIC enhanson in choriocarcinoma and COS cells. J Biol Chem 1995;270:13, 906–13, 915.

    Google Scholar 

  77. Jacquemin P, Martial JA, Davidson I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997;272:12, 928–12, 937.

    Google Scholar 

  78. Davidson I, Xiao JH, Rosales R, Staub A, Chambon P. The HeLa cell protein TEF-1 binds specifically and cooperatively to two SV40 enhancer motifs of unrelated sequence. Cell 1988; 54: 931–942.

    Article  PubMed  CAS  Google Scholar 

  79. Ishiji T, Lace MJ, Parkkinen S, Anderson RD, Haugen TH, Cripe TP, et al. Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J 1992; 11: 2271–2281.

    PubMed  CAS  Google Scholar 

  80. Stewart AF, Larkin SB, Farrance IK, Mar JH, Hall DE, Ordahl CP. Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem 1994; 269: 3147–3150.

    PubMed  CAS  Google Scholar 

  81. Richards RG, Kanda Y, Handwerger S. Overexpression of MAP kinase in term placental cytotrophoblast cells activates transcription of the human placental lactogen promoter. The 79th Ann Meet Endocrine Society (June 11–14, 1997 ), Minneapolis, MN, abstr P3–540.

    Google Scholar 

  82. Stephanou A, Sarlis NJ, Richards RG, Handwerger S. Expression of retinoic acid receptor subtypes and cellular retinoic acid binding protein-II mRNAs during differentiation of human trophoblast cells. Biochem Biophys Res Comm 1994; 202: 772–780.

    Article  PubMed  CAS  Google Scholar 

  83. Stephanou A, Ross R, Handwerger S. Regulation of human placental lactogen expression by 1,25-dihydroxyvitamin D. Endocrinology 1994; 135: 2651–2656.

    Article  PubMed  CAS  Google Scholar 

  84. Stephanou A, Handwerger S. Retinoic acid and thyroid hormone regulate placental lactogen expression in human trophoblast cells. Endocrinology 1995; 136: 933–938.

    Article  PubMed  CAS  Google Scholar 

  85. Bikle DD, Pillai S. Vitamin D, calcium, and epidermal differentiation. Endocrine Rev 1993; 14: 3–19.

    CAS  Google Scholar 

  86. Holloran BP. Is 1,25-dihydroxyvitamin D required for reproduction. Proc Soc Exp Biol Med 1989; 191: 227–232.

    Google Scholar 

  87. Weisman Y, Harell A, Endelstein S, David M, Spirer Z, Gollander A. 1,25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 1979; 281: 317–319.

    Article  PubMed  CAS  Google Scholar 

  88. Ross R, Florer J, Halbert K, McIntyre L. Characterization of 1,25-dihydroxyvitamin D3 receptors and in vivo targeting of 3H-1,25(OH)2D3. Placenta 1989; 10: 553–567.

    Article  PubMed  CAS  Google Scholar 

  89. Maruo T, Matsuo H, Mochizuki M. Thyroid hormone as a biological marker of differentiated trophoblast in early pregnancy. Acta Endocrinol (Copenh) 1991; 125: 58–66.

    CAS  Google Scholar 

  90. Stephanou A, Handwerger S. The ARP-1 orphan receptor represses basal and steroid-mediated stimulation of human placental gene expression. J Mol Endocrinol 1996; 16: 221–227.

    Article  PubMed  CAS  Google Scholar 

  91. Barlow JW, Voz MLJ, Eliard PH, Mathy-Hartert M, De Nayer P, Economidis IV, et al. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes. Proc Natl Acad Sci USA 1986; 83: 9021–9025.

    Article  PubMed  CAS  Google Scholar 

  92. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65: 1256–1266.

    Article  Google Scholar 

  93. Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evan RM. Jun-Fos and receptors for vitamin A and D recognize a common response element in the human osteocalcin gene. Cell 1990; 61: 497–504.

    Article  PubMed  CAS  Google Scholar 

  94. Adan RA, Cox JJ, Beischlag TV, Burbach JP. A composite hormone response element mediates transactivation of the rat oxytocin gene by different classes of nuclear hormone receptors. Molec Endocrinol 1993; 7: 47–57.

    Article  CAS  Google Scholar 

  95. Stephanou A, Handwerger S. Identification of a composite steroid hormone response element on the human placental lactogen promoter. Molec Cell Endocrinol 1995; 112: 123–129.

    Article  PubMed  CAS  Google Scholar 

  96. Durand B, Saunders M, Leroy P, Leid M, Chambon P. All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 1992; 71: 73–85.

    Article  PubMed  CAS  Google Scholar 

  97. Lee W, Mitchell P, Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 1987; 49: 741–752.

    Article  PubMed  CAS  Google Scholar 

  98. Owen TA, Bortell R, Yocum SA, et al. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA 1990; 87: 9990–9994.

    Article  PubMed  CAS  Google Scholar 

  99. Harman I, Zeitler P, Ganong B, Bell RM, Handwerger S. Sn-1,2-diacylglycerols and phorbol esters stimulate the synthesis and release of human placental lactogen from placental cells: a role for protein kinase C. Endocrinology 1986; 119: 1239–1244.

    Article  PubMed  CAS  Google Scholar 

  100. Schule R, Rangarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, et al. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci USA 1991; 88: 6092–6096.

    Article  PubMed  CAS  Google Scholar 

  101. Schmidt ED, Cramer SJ, Offringa R. The thyroid hormone receptor interferes with transcriptional activation via the AP-1 complex. Biochem Biophys Res Comm 1993; 192: 151–160.

    Article  PubMed  CAS  Google Scholar 

  102. Kadonaga JT, Jones KA, Tjian R. Promoter-specific activation of RNA polymerase II transcription by Sp 1. Trends Biochem Sci 1986; 11: 20–32.

    Article  CAS  Google Scholar 

  103. Leone TC, Cresci S, Carter ME, Zhang Z, Lala DS, Strauss AW, Kelly DP. The human medium chain Acyl-CoA dehydrogenase gene promoter consists of a complex arrangement of nuclear receptor response elements and Spl binding sites. J Biol Chem 1995;270:16, 308–16, 314.

    Google Scholar 

  104. Sylvester I, Scholer HR. Regulation of the Oct-4 gene by nuclear receptors. Nucleic Acids Res 1994; 22: 901–911.

    Article  PubMed  CAS  Google Scholar 

  105. Shah M, Handwerger S. Upregulation of vitamin D receptor (VDR) during human trophoblast differentiation. The Ann Meet Amer Pediatric Soc and Soc Pediatric Res (May 1996), Washington, DC, abstr 33558.

    Google Scholar 

  106. Stephanou A, Handwerger S. Interleukin-6 stimulates placental lactogen expression by human trophoblast cells. Endocrinology 1994; 135: 719–723.

    Article  PubMed  CAS  Google Scholar 

  107. Stephanou A, Handwerger S. The nuclear factor NF-IL-6 activates human placental lactogen gene expression. Biochem Biophys Res Comm 1994; 206: 215–222.

    Article  Google Scholar 

  108. Kameda T, Matsuzuki N, Sawai K. Production of interleukin 6 by normal trophoblast cells. Placenta 1990; 11: 205–213.

    Article  PubMed  CAS  Google Scholar 

  109. Paulesu L, King A, Loke YW, Cintorino M, Bellizzi E, Boraschi D. Immunohistochemical localization of IL-1 alpha and IL-1 beta in normal human placenta. Lymphokine Cytokine Res 1991; 10: 443–448.

    PubMed  CAS  Google Scholar 

  110. Stephanou A, Myatt L, Eis ALW, Handwerger S. Ontogeny of the expression and regulation of interleukin-6 (IL-6) and IL-1 mRNAs by human trophoblast cells during differentiation in vitro. J Endocrinol 1995; 147: 487–496.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richards, R.G., Handwerger, S. (1999). Physiology and Molecular Biology of Placental Lactogen in Human Pregnancy. In: Handwerger, S. (eds) Molecular and Cellular Pediatric Endocrinology. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-697-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-697-3_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5875-7

  • Online ISBN: 978-1-59259-697-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics