Skip to main content

Molecular Aspects of Pituitary Development

  • Chapter
Molecular and Cellular Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

  • 88 Accesses

Abstract

The anterior pituitary is a well-characterized and accessible model for studying cellspecific gene activation and the process by which distinct cell-types develop within an organ (1–3). Accordingly, the development of the pituitary gland has been a topic of particularly intense interest by molecular biologists and developmental biologists, as well as endocrinologists. Over the last few years, this activity has yielded remarkable progress in identifying crucial factors involved in anterior pituitary gene expression and development. However, there is an underlying dilemma in the study of pituitary development—namely, that the various pituitary cell types are currently recognizable only by the hormones they synthesize. Therefore, the distinction between factors that promote expression of the hormone gene (i.e., permit recognition of the cell type) and those which direct other facets of cell type differentiation is often blurred. In this chapter, we will review the current state of knowledge regarding the components required for normal development of the pituitary gland and its distinct cell types. Since the ontogeny of the pituitary has been most extensively examined in laboratory rodents, the data we present will be derived predominately from studies in the mouse and rat. However, the appearance of anatomical structures, hormones, and regulatory factors in the human appear to follow relatively similar patterns and where possible, we will include relevant information on human pituitary development and point out where differences are thought to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ingraham H, Albert V, Chen R, Crenshaw E, Elsholtz H, He X, et al. A family of POU-domain and Pit-1 tissue-specific transcription factors in pituitary and neuroendocrine development. Ann Rev Physiol 1990; 52: 773–791.

    Article  CAS  Google Scholar 

  2. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 1990; 4: 695–711.

    Article  PubMed  CAS  Google Scholar 

  3. Li S, Crenshaw E, Rawson E, Simmons D, Swanson L, Rosenfeld M. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990; 347: 528–533.

    Article  PubMed  CAS  Google Scholar 

  4. Dearden NM, Holmes RL. Cyto-differentiation and portal vascular development in the mouse adenohypophysis. J Anat 1976; 121: 551–569.

    PubMed  CAS  Google Scholar 

  5. Kaufman MH. The Atlas of Mouse Development. Academic, London, 1992.

    Google Scholar 

  6. Rugh R. The Mouse: Its Reproduction and Development. Burgess Minneapolis, MN, 1968.

    Google Scholar 

  7. Watanabe YD, Daikoku S. An immunohistochemical study on the cytogenesis of adenohypophysial cells in fetal rats. Dev Biol 1979; 68: 559–567.

    Article  Google Scholar 

  8. Daikoku S, Chikamori M, Adachi T, Maki Y. Effect of the basal diencephalon on the development of Rathke’s pouch in rats: a study in combined organ cultures. Dev Biol 1982; 90: 198–202.

    Article  PubMed  CAS  Google Scholar 

  9. Chatelain A, Dupuoy JP, Dubois MP. Ontogenesis of cells producing polypeptide hormones (ACTH, MSH, LPH, GH, prolactin) in the fetal hypophysis of the rat: influence of the hypothalamus. Cell Tissue Res 1979; 196: 409–427.

    Article  PubMed  CAS  Google Scholar 

  10. Daikoku S, Kawano H, Abe K, Yoshinga K. Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jap 1981; 44: 103–116.

    Article  PubMed  CAS  Google Scholar 

  11. Fink G, Smith GC. Ultrastructural features of the developing hypothalamo-phypophysial axis in the rat. Z Zellforsch 1971; 119: 208–226.

    Article  PubMed  CAS  Google Scholar 

  12. Schechter JE, Patgtison A, Pattison T. Development of the vasculature of the anterior pituitary: ontogeny of basic fibroblast growth factor. Develop Dynam 1993; 197: 81–93.

    Article  CAS  Google Scholar 

  13. Dearden NM, Holmes RL. Cyto-differentiation and portal vascular development in the mouse adenohypophysis. J Anat 1976; 121: 551–569.

    PubMed  CAS  Google Scholar 

  14. Jansson J, Ishikawa K, Katakami H, Frohman L. Pre-and postnatal developmental changes in hypothalamic content of rat growth hormone-releasing factor. Endocrinology 1987; 120: 525–530.

    Article  PubMed  CAS  Google Scholar 

  15. Daikoku S, Kawano H, Noguchi M, Nakanishi J, Tokuzen M, Chihara K, et al. Ontogenetic appearance of immunoreactive GRF-containing neurons in the rat hypothalamus. Cell Tissue Res 1985; 242: 511–518.

    Article  PubMed  CAS  Google Scholar 

  16. Ishikawa K, Katakami H, Jansson J, Frohman LA. Ontogenesis of growth hormone-releasing hormone neurons in the rat hypothalamus. Neuroendocrinology 1986; 43: 537–542.

    Article  PubMed  CAS  Google Scholar 

  17. Nemeskeri A, Setalo G, Halasz B. Ontogenesis of the three parts of the fetal rat adenohypophysis. Neuroendocrinology 1988; 48: 534–543.

    Article  PubMed  CAS  Google Scholar 

  18. Nemeskeri A, Setalo G, Halasz B. Ontogenesis of the three parts of the fetal rat adenohypophysis: a detailed immunohistochemical analysis. Neuroendocrinology 1988; 48: 534–543.

    Article  PubMed  CAS  Google Scholar 

  19. Kineman RD, Faught WJ, Frawley LS. The ontogenic and functional relationships between growth hormone-and prolactin-releasing cells during the development of the bovine pituitary. J Endocrinol 1992; 134: 91–96.

    Article  PubMed  CAS  Google Scholar 

  20. Hoeffler JP, Boockfor FR, Frawley LS. Ontogeny of prolactin cells in neonatal rats: initial prolactin secretors also release growth hormone. Endocrinology 1985; 117: 187–195.

    Article  PubMed  CAS  Google Scholar 

  21. Burrows HL, Birkmeier TS, Seasholtz AF, Camper SA. Targeted ablation of cells in the pituitary primorida of transgenic mice. Mol Endocrinol 1996; 10: 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  22. Kineman RD, Faught WJ, Frawley LS. Steroids can modulate transdifferentiation of prolactin and growth hormone cells in bovine pituitary cultures. Endocrinology 1992; 130: 3289–3294.

    Article  PubMed  CAS  Google Scholar 

  23. Borrelli E, Hayman RA, Arias C, Sawchenko PE, Evans RM. Transgenic mice with inducible dwarfism. Nature 1989; 339: 538–541.

    Article  PubMed  CAS  Google Scholar 

  24. Behringer RR, Mathews LS, Palmiter RD, Brinster RL. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 1988; 2: 453–461.

    Article  PubMed  CAS  Google Scholar 

  25. Frawley LS, Boockfor FR, Hoeffler JP. Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin. Endocrinology 1985; 116: 734–737.

    Article  PubMed  CAS  Google Scholar 

  26. Frawley LS, Boockfor FR. Mammosomatotrophs: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 1991; 12: 337–355.

    Article  PubMed  CAS  Google Scholar 

  27. Coates PJ, Doniach I. Development of folliculo-stellate cells in the human pituitary. Acta Endocrinol (Copenh) 1988; 119: 16–20.

    CAS  Google Scholar 

  28. Asa SL, Kovacs K, Lazlo FA, Domokos I, Ezrin C. Human fetal adenohypophysis: histologic and immunocytochemical analysis. Neuroendocrinology 1986; 43: 308–316.

    Article  PubMed  CAS  Google Scholar 

  29. Asa SL, Kovacs K, Singer W. Human fetal adenohypophysis: morphologic and functional analysis in vitro. Neuroendocrinology 1991; 53: 562–572.

    Article  PubMed  CAS  Google Scholar 

  30. Ikeda H, Suzuki J, Sasano N, Niizuma H. The development and morphogenesis of the human pituitary gland. Anat Embryol 1988; 178: 327–336.

    Article  PubMed  CAS  Google Scholar 

  31. Kikuyama S, Inaco H, Jenks BG, Kawamura K. Development of the ectopically transplanted primordium of epithelial hypophysis (anterior neural ridge) in Bufo japonicus embryos. J Exp Zool 1993; 266: 216–220.

    Article  PubMed  CAS  Google Scholar 

  32. Daikoku S, Chikamori M, Adachi T, Okamura Y, Nishiyama T, Tsuruo Y. Ontogenesis of hypothalamic immunoreactive ACTH cells in vivo and in vitro: role of Rathke’s pouch. Dev Biol 1983; 97: 81–88.

    Article  PubMed  CAS  Google Scholar 

  33. Kawamura K, Kikuyama S. Induction from posterior hypothalamus is essential for the development of the pituitary proopiomelanocortin (POMC) cells of the toad (Bufo japonicus). Cell Tissue Res 1995; 279: 233–239.

    Article  PubMed  CAS  Google Scholar 

  34. Barinaga M, Yamamoto G, Rivier C, Vale WW, Evans RM, Rosenfeld MG. Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature 1983; 306: 84, 85.

    Google Scholar 

  35. Gick GG, Zeytin FN, Ling NC, Esch FS, Bancroft C, Brazeau P. Growth hormone-releasing factor regulates growth hormone mRNA in primary cultures of rat pituitary cells. Proc Natl Acad Sci USA 1984; 81: 1553–1555.

    Article  PubMed  CAS  Google Scholar 

  36. Lloyd RV, Jin L, Chang A, Kulig E, Camper SA, Ross BD, et al. Morphologic effects of hGHRH gene expression on the pituitary, liver, and pancreas of MT-hGRH transgenic mice: an in situ hybridization analysis. Am J Pathol 1992; 141: 895–906.

    PubMed  CAS  Google Scholar 

  37. Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzalez-Manchon C, Vale W. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992; 131: 2083–2089.

    Article  PubMed  CAS  Google Scholar 

  38. Mayo K, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988; 2: 606–612.

    Article  PubMed  CAS  Google Scholar 

  39. Stefaneanu L, Kovacs K, Horvath E, Asa SL, Losinski NE, Billestrup N, et al. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor (hGRF): a histological, immunocytochemical and electron microscopic investigation. Endocrinology 1989; 125: 2710–2718.

    Article  PubMed  CAS  Google Scholar 

  40. Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986; 83: 6854–6857.

    Article  PubMed  CAS  Google Scholar 

  41. Barinaga M, Bilezikjian LM, Vale W, Rosenfeld MG, Evans RM. Independent effects of growth hormone-releasing factor on growth hormone release and gene transcription. Nature 1985; 314: 279–281.

    Article  PubMed  CAS  Google Scholar 

  42. Asa SL, Scheithauer BW, Bilbao JM, Horvath E, Ryan N, Kovacs K, et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 1984; 58: 796–803.

    Article  PubMed  CAS  Google Scholar 

  43. Frohman LA, Szabo M, Berelowitz M, Stachura ME. Partial purification and characterization of a peptide with growth hormone-releasing activity from extrapituitary tumors in patients with acromegaly. J Clin Invest 1980; 65: 43–54.

    Article  PubMed  CAS  Google Scholar 

  44. Billestrup N, Mitchell RL, Vale W, Verma IM. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells. Mol Endocrinol 1987; 1: 300–305.

    Article  PubMed  CAS  Google Scholar 

  45. Burton F, Hasel K, Bloom F, Sutcliffe J. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature 1991; 350: 74–77.

    Article  PubMed  CAS  Google Scholar 

  46. Wehrenberg WB, Voltz DM, Cella SG, Müller EE, Gaillard RC. Long-term failure of compensatory growth in rats following acute neonatal passive immunization against growth hormone-releasing hormone. Neuroendocrinology 1992; 56: 509–515.

    Article  PubMed  CAS  Google Scholar 

  47. Wehrenberg WB, Bloch B, Phillips BJ. Antibodies to growth hormone-releasing factor inhibit somatic growth. Endocrinology 1984; 115: 1218–1220.

    Article  PubMed  CAS  Google Scholar 

  48. Cella SG, Locatelli V, Mennini T, Zanini A, Bendotti C, Forloni GL, et al. Deprivation of growth hormone-releasing hormone early in the rat’s neonatal life permanently affects somatotropic function. Endocrinology 1990; 127: 1625–1634.

    Article  PubMed  CAS  Google Scholar 

  49. Maiter D, Underwood LE, Martin JB, Koenig JI. Neonatal treatment with monosodium glutamate: effects of prolonged growth-hormone (GH)-releasing hormone deficiency on pulsatile GH secretion and growth in female rats. Endocrinology 1991; 128: 1100–1106.

    Article  PubMed  CAS  Google Scholar 

  50. Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 1991; 350: 622–624.

    Article  PubMed  CAS  Google Scholar 

  51. Cheng T, Beamer W, Phillips J, Bartke A, Mallonee R. Etiology of growth hormone deficiency in Little, Ames, and Snell dwarf mice. Endocrinology 1983; 113: 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  52. Lin S-C, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 1993; 364: 208–213.

    Article  PubMed  CAS  Google Scholar 

  53. Chua SC, Hennessey K, Zeitler P, Leibel RL. The little (lit) mutation cosegregates with the growth hormone releasing factor receptor on mouse Chromosome 6. Mammal Genome 1993; 4: 555–559.

    Article  CAS  Google Scholar 

  54. Janson J-O, Downs TR, Beamer WG, Frohman LA. Receptor-associated resistance to growth hormone-releasing factor in dwarf “little” mice. Science 1986; 232: 511, 512.

    Google Scholar 

  55. Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genetics 1993; 4: 227–232.

    Article  PubMed  CAS  Google Scholar 

  56. Charlton HM, Clark RG, Robinson ICAF, Porter-Goff AEP, Cox BS, Bugnon C, Bloch BA. Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 1988; 119: 51–58.

    Article  PubMed  CAS  Google Scholar 

  57. Downs TR, Frohman LA. Evidence for a defect in growth hormone-releasing factor signal transduction in the dwarf (dw/dw) rat pituitary. Endocrinology 1991; 129: 58–67.

    Article  PubMed  CAS  Google Scholar 

  58. Brain CE, Chomczynski P, Downs TR, Frohman LA. Impaired generation of cyclic adenosine 3’,5’-monophosphate in a somatomammotroph cell line derived from dwarf (dw) rat anterior pituitaries. Endocrinology 1991; 129: 3410–3416.

    Article  PubMed  CAS  Google Scholar 

  59. Zeitler P, Downs TR, Frohman LA. Impaired growth hormone-releasing hormone signal transduction in the dwarf (dw) rat is independent of a defect in the stimulatory G protein subunit. Endocrinology 1993; 133: 2782–2786.

    Article  PubMed  CAS  Google Scholar 

  60. Zeitler P, Downs TR, Frohman LA. Development of pituitary cell types in the spontaneous dwarf (dw) rat: evidence for an isolated defect in somatotroph differentiation. Endocrine 1994; 2: 729–733.

    CAS  Google Scholar 

  61. Gage PJ, Lossie AC, Scarlett LM, Lloyd RV, Camper SA. Ames dwarf mice exhibit somatotroph commitment but lack growth hormone-releasing hormone response. Endocrinology 1995; 136: 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  62. Asa SL, Kovacs K, Hammer GD, Liu B, Roos BA, Low MJ. Pituitary corticotroph hyperplasia in rats implanted with a medullary thyroid carcinoma cell line transfected with a corticotropin-releasing hormone complementary deoxyribonucleic acid expression vector. Endocrinology 1992; 131: 715–720.

    Article  PubMed  CAS  Google Scholar 

  63. Gertz BJ, Contreras LH, McComb KI, Kivacs JB, Tyrrel JB, Dallman M. Chronic administration of corticotropin-releasing factor increases pituitary corticotroph number. Endocrinology 1987; 120: 381–388.

    Article  PubMed  CAS  Google Scholar 

  64. Childs GV, Rougeau D, Unabia G. Corticotropin-releasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotrophs. Endocrinology 1995; 136: 1595–1602.

    Article  PubMed  CAS  Google Scholar 

  65. Hotta M, Shibasaki T, Masuda R, Imaki T, Demura H, Ohno H, et al. Ontogeny of pituitary responsiveness to corticotropin-releasing hormone in rat. Regul Peptides 1988; 21: 245–252.

    Article  CAS  Google Scholar 

  66. Ramsdell JS. Thyrotropin-releasing hormone inhibits GH4 pituitary cell proliferation by blocking entry into S phase. Endocrinology 1990; 126: 472–479.

    Article  PubMed  CAS  Google Scholar 

  67. Murakami M, Muri M, Kato Y, Kobayashi I. Hypothalamic thyrotropin-releasing hormone regulates pituitary ß-and a-subunit mRNA levels in the rat. Neuroendocrinology 1991; 53: 276–280.

    Article  PubMed  CAS  Google Scholar 

  68. Shupnik MA, Greenspan SL, Ridgeway EC. Transcriptional regulation of thyrotropin subunit genes by thyrotropin-releasing hormone and dopamine in pituitary cells. J Biol Chem 1986;261:12, 67512, 679.

    Google Scholar 

  69. Tashjian AH, Barowsky NJ, Jensen DK. Thyrotropin-releasing hormone: direct evidence for stimulation of prolactin production by pituitary cells in culture. Biochem Biophys Res Commun 1971; 43: 516–523.

    Article  PubMed  CAS  Google Scholar 

  70. Matthews SG, Parrott RF. Centrally administered vasopressin modifies stress hormone (cortisol, prolactin) secretion in sheep under basal conditions, during restrain, and following intravenous corticotrophin-releasing hormone. Europ J Endocrinol 1994; 130: 297–301.

    Article  CAS  Google Scholar 

  71. Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Frontiers Neuroendocrinol 1994; 15: 321–350.

    Article  CAS  Google Scholar 

  72. Hyyppa M. Hypothalamic monoamines in human fetuses. Neuroendocrinology 1972; 9: 257–266.

    Article  PubMed  CAS  Google Scholar 

  73. Bruno J, Xu Y, Song J, Berelowitz M. Tissue distribution of somatostatin receptor subtype messenger ribonucleic acid in the rat. Endocrinology 1993; 133: 2561–2567.

    Article  PubMed  CAS  Google Scholar 

  74. Wulfsen I, Meyerhof W, Fehr S, Richter D. Expression patterns of rat somatostatin receptor genes in pre-and post-natal brain and pituitary. J Neurochem 1993; 61: 1549–1552.

    Article  PubMed  CAS  Google Scholar 

  75. Sarkar DK, Kim KH, Minami S. Transforming growth factor-betal messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 1992; 6: 1825–1833.

    Article  PubMed  CAS  Google Scholar 

  76. Delidow BC, Billis WM, Agarwal P, White BA. Inhibition of prolactin gene expression by transforming growth factor-B in GH3 cells. Mol Endocrinol 1991; 5: 1716–1722.

    Article  PubMed  CAS  Google Scholar 

  77. Massague J. The TGF-beta family of growth and differentiation factors. Cell 1987; 49: 437, 438.

    Google Scholar 

  78. Roberts VJ, Barth SL. Expression of messenger ribonucleic acids encoding the inhibin/activin system during mid-and late-gestation rat embryogenesis. Endocrinology 1994; 134: 914–923.

    Article  PubMed  CAS  Google Scholar 

  79. Katayama T, Shioto K, Takahashi M. Activin A increase the number of follicle-stimulating hormone cells in anterior pituitary cultures. Mol Cell Endocrinol 1990; 69: 179–185.

    Article  PubMed  CAS  Google Scholar 

  80. Billestrup N, Gonzalez-Manchon C, Potter E, Vale W. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro. Mol Endocrinol 1990; 4: 356–362.

    Article  PubMed  CAS  Google Scholar 

  81. Bilezikjian LM, Corrigan AZ, Vale W. Activin-A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 1990; 126: 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  82. Billestrup N, Gonzalez-Manchon C, Potter E, Vale W. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro. Mol Endocrinol 1990; 4: 356–362.

    Article  PubMed  CAS  Google Scholar 

  83. Bilezikjian LM, Blount AL, Camper SA, Gonzalez-Manchon C, Vale W. Activin A inhibits proopiomelanocortin messenger RNA accumulation and adrenocorticotropin secretion in AtT20 cells. Mol Endocrinol 1991; 5: 1389–1395.

    Article  PubMed  CAS  Google Scholar 

  84. Matzuk MM, Kumar TR, Shou W, Coerver KA, Lau AL, Behringer RR, Finegold MJ. Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Rec Prog Horm Res 1996; 51: 123–154.

    PubMed  CAS  Google Scholar 

  85. Marquardt H, Hunkapiller MW, Hoodk LE, Todaro G. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 1984; 223: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  86. Samsoondar J, Kobrin MS, Kudlow JE. A-transforming growth factor secreted by untransformed bovine anterior pituitary cells in culture. J Biol Chem 1986;261:14, 408–14, 413.

    Google Scholar 

  87. Finley E, Ramsdell JS. A transforming growth factor-a pathway is expressed in GHCI rat pituitary tumors and appears necessary for tumor formation. Endocrinology 1994; 135: 416–422.

    Article  PubMed  CAS  Google Scholar 

  88. Finley EL, King JS, Ramsdell JS. Human pituitary somatotropes express transforming growth factor-a and its receptor. J Endocrinol 1994; 141: 547–554.

    Article  PubMed  CAS  Google Scholar 

  89. Ezzat S, Walpola IA, Ramjar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor a in human pituitary adenoma cells. J Clin Endocrinol Metab 1995; 80: 534–539.

    Article  PubMed  CAS  Google Scholar 

  90. Kobrin MS, Asa SL, Samsoondar J, Kudlow JE. a-transforming growth factor in the bovine anterior pituitary gland: secretion by dispersed cells and immunohistochemical localization. Endocrinology 1987; 121: 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  91. Renner U, MojtoJ, Arzt E, Lange M, Stalla J, Muller OA, Stalla GK. Secretion ofpolypeptide growth factors by human nonfunctioning pituitary adenoma cells in culture. Neuroendocrinology 1993; 57: 825–834.

    Article  PubMed  CAS  Google Scholar 

  92. McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995; 136: 4479–4488.

    Article  PubMed  CAS  Google Scholar 

  93. Patterson JC, Childs GV. Nerve growth factor and its receptor in the anterior pituitary. Endocrinology 1994; 135: 1689–1696.

    Article  PubMed  CAS  Google Scholar 

  94. Missale C, Boroni F, Frassine M, Caruso A, Spano P. Nerve growth factor promotes the differentiation of pituitary mammotroph cells in vitro. Endocrinology 1995; 136: 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  95. Missale C, Boroni F, Sigala S, Zanellato A, DalToso R, Balsari A, Spano P. Nerve growth factor directs differentiation of the bipotential cell line GH3 into the mammotroph phenotype. Endocrinology 1994; 135: 290–298.

    Article  PubMed  CAS  Google Scholar 

  96. Borelli E, Sawchenko PE, Evans RM. Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl Acad Sci USA 1992; 89: 2764–2768.

    Article  Google Scholar 

  97. Fan X, Childs GV. Epidermal growth factor and transforming growth factor-a messenger ribonucleic acids and their receptors in the rat anterior pituitary: localization and regulation. Endocrinology 1995; 136: 2284–2293.

    Article  PubMed  CAS  Google Scholar 

  98. Chaidarun SS, Eggo MC, Sheppard MC, Stewart PM. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology 1994; 135: 2012–2021.

    Article  PubMed  CAS  Google Scholar 

  99. Murdoch GH, Potter E, Nicolaisen AK, Evans RM, Rosenfeld MG. Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature 1982; 300: 192–194.

    Article  PubMed  CAS  Google Scholar 

  100. Johnson L, Baxter J, Vlodaysky I, Gospodorowicz D. Epidermal growth factor and expression of specific genes: effects on cultured rat pituitary cells are dissociable from the mitogenic response. Proc Natl Acad Sci USA 1980; 77: 394–398.

    Article  PubMed  CAS  Google Scholar 

  101. Felix R, Meza U, Cota G. Induction of classical lactotropes by epidermal growth factor in rat pituitary cell cultures. Endocrinology 1995; 136: 939–946.

    Article  PubMed  CAS  Google Scholar 

  102. Childs GV. Epidermal growth factor enhances ACTH secretion and expression of POMC mRNA by corticotropes in mixed and enriched cultures. Mol Cell Neurosci 1991; 2: 235–241.

    Article  PubMed  CAS  Google Scholar 

  103. Birman P, Michard M, Li JY, Peillon F, Bression D. Epidermal growth factor binding sites, present in normal human and rat pituitaries, are absent in human pituitary adenomas. J Clin Endocrinol Metab 1987; 65: 275–281.

    Article  PubMed  CAS  Google Scholar 

  104. LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 1996; 81: 656–662.

    Article  PubMed  CAS  Google Scholar 

  105. Gospodorowicz D, Ferrara N. Fibroblast growth factor and the control of pituitary and gonad development and function. Steroid Biochem 1989; 32: 183–191.

    Article  Google Scholar 

  106. Marin F, Boya J. Immunocytochemical localization of basic fibroblast growth factor in the human pituitary gland. Neuroendocrinology 1995; 62: 523–529.

    Article  PubMed  CAS  Google Scholar 

  107. Porter TE, Wiles CD, Frawley L. Stimulation of lactotrope differentiation in vitro by fibroblast growth factor. Endocrinology 1994; 134: 164–168.

    Article  PubMed  CAS  Google Scholar 

  108. Shimon I, Huttner A, Said J, Spirina OM, Melmed S. Heparin-binding secretory transforming gene (hst) facilitates rat lactotrope cell tumorigenesis and induces prolactin gene transcription. J Clin Invest 1996; 97: 187–195.

    Article  PubMed  CAS  Google Scholar 

  109. Ferrara N, Winer J, Henzel WJ. Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth; identification as leukemia inhibitory factor. Proc Natl Acad Sci USA 1992; 89: 698–702.

    Article  PubMed  CAS  Google Scholar 

  110. Ray DW, Ren S-G, Melmed S. Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line-role of STAT pathway. J Clin Invest 1996; 97: 1852–1859.

    Article  PubMed  CAS  Google Scholar 

  111. Akita S, Malkin J, Melmed S. Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion. Endocrinology 1996; 137: 3140–3143.

    Article  PubMed  CAS  Google Scholar 

  112. Akita S, Readhead C, Stefaneanu L, Fine J, Malkin J, Said J, et al. Transgenic overexpression of pituitary-directed leukemia inhibitory factor: novel dwarf phenotype. Program Int Soc Endocrinol 1996, OR39–8, p. 120.

    Google Scholar 

  113. Davidson EH. How embryos work: a comparative view of diverse modes of cell fate specification. Development 1990; 108: 365–389.

    PubMed  CAS  Google Scholar 

  114. Gehring WJ. Homeoboxes in the study of development. Science 1987; 236: 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  115. Rosenfeld MG. POU-domain transcript factors: pou-er-ful developmental regulators. Genes Dev 1991; 5: 897–907.

    Article  PubMed  CAS  Google Scholar 

  116. Dolle P, Castrillo J, Theill LE, Deerinck T, Ellisman M, Karin M. Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell 1990; 60: 809–820.

    Article  PubMed  CAS  Google Scholar 

  117. Theill LE, Hattori K, Lazzaro D, Castrillo J-L, Karin M. Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins. EMBO J 1992; 11: 2261–2269.

    PubMed  CAS  Google Scholar 

  118. Morris AE, Kloss B, McChesney RE, Bancroft C, Chasin LA. An alternatively spliced Pit-1 isoform altered in its ability to trans-activate. Nucleic Acids Res 1992; 20: 1355–1361.

    Article  PubMed  CAS  Google Scholar 

  119. Konzak KE, Moore DD. Functional isoforms of Pit-1 generated by alternative mRNA splicing. Mol Endocrinol 1992; 6: 241–247.

    Article  PubMed  CAS  Google Scholar 

  120. Haugen BR, Gordon DF, Nelson AR, Wood WM, Ridgway EC. The combination of Pit-1 and Pit-1T has a synergistic stimulatory effect on the thyrotropin I3-subunit promoter but not the growth hormone or prolactin promoters. Mol Endocrinol 1994; 8: 1574–1582.

    Article  PubMed  CAS  Google Scholar 

  121. Diamond S, Gutierrez-Hartman A. A 26-amino acid insertion domain defines a functional transcription switch motif in Pit-1 beta. J Biol Chem 1996;271:28, 925–28, 932.

    Google Scholar 

  122. Rhodes SJ, Chen R, DiMattia GE, Scully KM, Kalla KA, Lin S, et al. A tissue-specific enhancer confers Pit-1 dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev 1993; 7: 913–932.

    Article  PubMed  CAS  Google Scholar 

  123. Chen R, Ingraham H, Treacy MN, Aalbert V, Wilson L, Rosenfeld M. Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature 1990; 346: 583–586.

    Article  PubMed  CAS  Google Scholar 

  124. Lin S, Li S, Drolet DW, Rosenfeld MG. Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1independent and Pit-l-dependent origins of the thyrotrope. Development 1994; 120: 515–522.

    PubMed  CAS  Google Scholar 

  125. Sornson MW, Wu W, Dasen J, Flynn S, Norman DJ, O’Connell SM, et al. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996; 384: 327–333.

    Article  PubMed  CAS  Google Scholar 

  126. He X, Treacy MM, Simmons DM, Ingraham HA, Swanson LW, Rosenfeld MG. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 1989; 340: 35–42.

    Article  PubMed  CAS  Google Scholar 

  127. Chen C, Ingraham HA, Treacy MM, Albert VA, Wilson L, Rosenfeld MG. The pituitary POU-domain protein Pit-1 positively and negatively regulates transcription of its own promoter. Nature 1991; 346: 583–586.

    Article  Google Scholar 

  128. Voss JW, Wilson L, Rosenfeld MG. POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes Dev 1991; 5: 1309–1320.

    Article  PubMed  CAS  Google Scholar 

  129. Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and rathke’s pouch of the mouse embryo. Development 1996; 122: 41–52.

    PubMed  CAS  Google Scholar 

  130. Blum M, Gaunt SJ, Cho KWY, Steinbeisser H, Blumberg B, Bittner D, DeRobertis EM. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 1992; 69: 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  131. Bach I, Rhodes SJ, Pearse RV, Heinzel T, Gloss B, Scully KM, et al. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995; 92: 2720–2724.

    Article  PubMed  CAS  Google Scholar 

  132. Sheng HZ, Zhadonov AB, Mosinger B, Giji T, Bertuzzi S, Grinberg A, et al. Specification of pituitary cell lineages by the LIM homeobox gene lhx3. Science 1996; 272: 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  133. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J. Ptx1, a bicoid-related homeobox transcription factor involved in transcription of the proopiomelanocortin gene. Genes Dev 1996; 10: 1284–1295.

    Article  PubMed  CAS  Google Scholar 

  134. Busch SJ, Sassone-Corsi P. Dimers, leucine zippers and DNA-binding domains. Trends in Genetics 1990; 6: 36–40.

    Article  PubMed  CAS  Google Scholar 

  135. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, et al. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 1991; 5: 1739–1753.

    Article  PubMed  CAS  Google Scholar 

  136. Delegeane AM, Ferland LH, Mellon PL. Tissue specific enhance of the human glycoprotein hormone a subunit gene: dependence on cAMP inducible elements. Mol Cell Biol 1987; 7: 3994002.

    Google Scholar 

  137. Theill LE, Karin M. Transcriptional control of GH expression and anterior pituitary development. Endocr Rev 1993; 14: 670–689.

    PubMed  CAS  Google Scholar 

  138. McCormick A, Brady H, Theill LE, Karin M. Regulation of the pituitary specific homeobox gene GHF-1 by cell-autonomous and environmental cues. Nature 1990; 345: 829–832.

    Article  PubMed  CAS  Google Scholar 

  139. Bertherat J, Chanson P, Montminy M. The cyclic adenosine 3’,5’-monophosphate responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 1995; 9: 777–783.

    Article  PubMed  CAS  Google Scholar 

  140. Schoderbek WE, Kim KE, Ridgway EC, Mellon PL, Maurer RA. Analysis of DNA sequences required for pituitary-specific expression of the glycoprotein hormone a-subunit gene. Mol Endocrinol 1992; 6: 893–903.

    Article  PubMed  CAS  Google Scholar 

  141. Akerblom IE, Slater EP, Becto M, Baxter JD, Mellon PL. Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer. Science 1988; 241: 350–353.

    Article  PubMed  CAS  Google Scholar 

  142. Therrien M, Drouin J. Cell-specific helix-loop-helix factor required for pituitary expression of the proopiomelanocortin gene. Mol Cell Biol 1993; 13: 2342–2353.

    PubMed  CAS  Google Scholar 

  143. Lipkin SM, Naar AM, Kalla KA, Sack RA, Rosenfeld MG. Identification of a novel zinc finger protein binding a conserved element critical for Pit-1 dependent growth hormone gene expression. Genes Dev 1993; 7: 1674–1687.

    Article  PubMed  CAS  Google Scholar 

  144. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 3: 835–839.

    Article  Google Scholar 

  145. Horn F, Windle JJ, Barnhart KM, Mellon PL. Tissue specific gene expression in the pituitary: the glycoprotein hormone a-subunit gene is regulated by a gonadotrope-specific protein. Mol Cell Biol 1992; 12: 2143–2153.

    PubMed  CAS  Google Scholar 

  146. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen W, Nachtigal MW, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 1994; 8: 2302–2312.

    Article  PubMed  CAS  Google Scholar 

  147. Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of the steroid hormone receptor superfamily. J Biol Chem 1993; 268: 7494–7502.

    PubMed  CAS  Google Scholar 

  148. Lala DS, Rice DA, Parker KL. Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of gushi tarazu-factor 1. Mol Endocrinol 1993; 6: 1249–1258.

    Article  Google Scholar 

  149. Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotrophs in the Ftz-F 1 disrupted mice. Development Dynam 1995; 24: 22–29.

    Article  Google Scholar 

  150. Japon MG, Rubenstein M, Low MJ. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 1994; 42: 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  151. Shupnik MA, Fallest PC. Endo Soc Annual Meeting P1–521 1995 (abstract).

    Google Scholar 

  152. Shupnik MA, Weinmann CM, Notides AC, Chin WW. An upstream region of the rat luteinizing hormone ß gene binds estrogen receptor and confers estrogen responsiveness. J Biol Chem 1989; 264: 80–86.

    PubMed  CAS  Google Scholar 

  153. Shupnik MA, Rosenzweigk BA. Identification of an estrogen-responsive element in the rat LHb gene. J Biol Chem 1991;266:17, 084–17, 091.

    Google Scholar 

  154. Day RN, Koikw a, Sakai M, Murumatsu M, Maurer RA. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 1990; 4: 1964–1971.

    Article  PubMed  CAS  Google Scholar 

  155. Stefaneanu L, Kovacs K, Horvath E, Lloyd RV, Buchfelder M, Fahlbusch R, Smyth H. In situ hybridization study of estrogen receptor messenger ribonucleic acid in human adenohypophysial cells and pituitary adenomas. J Clin Endocrinol Metab 1994; 78: 83–88.

    Article  PubMed  CAS  Google Scholar 

  156. Friend KE, Chiou Y-K, Lopes MBS, Laws ER, Jr., Hughes KM, Shupnik MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 1994; 78: 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  157. Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Ontogeny of growth hormone and prolactin gene expression in mice. Endocrinology 1982; 110: 1489–1497.

    Article  PubMed  CAS  Google Scholar 

  158. Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of proopiomelanocortin gene transcription. Mol Cell Biol 1989; 9: 5303–5314.

    Google Scholar 

  159. Elsholtz HP. Molecular biology of prolactin: cell-specific and endocrine regulators of the prolactin gene. Seminars in Reproduct Endocrinol 1992; 10: 183–195.

    Article  Google Scholar 

  160. Cintra A, Solfrini V, Bunnemann B, Okret S, Bortolotti F, Gustafsson J, Fuxe K. Prenatal development of glucocorticoid receptor gene expression and immunoreactivity in the rat brain and pituitary gland: a combined in situ hybridization and immunocytochemical analysis. Neuroendocrinology 1993; 57: 1133–1147.

    Article  PubMed  CAS  Google Scholar 

  161. Meaney MJ, Sapolsky RM, McEwen BS. The development of the glucocorticoid receptor system in the rat limbic brain. I. Ontogeny and autoregulation. Dev Brain Res 1985; 18: 159–164.

    Article  CAS  Google Scholar 

  162. Wondisford FE, Farr EA, Radovick S, Steinfelder HJ, Moates JM, McClaskey JH, Weintraub BD. Thyroid hormone inhibition of human thyrotropin I3-subunit gene expression is mediated by a cis-acting element located in the first exon. J Biol Chem 1989;264:14, 601–14, 604.

    Google Scholar 

  163. Chatterjee VKK, Lee J, Tentoumis A, Jameson JL. Negative regulation of the thyroid-stimulating hormone a gene by thyroid hormone: receptor interaction adjacent to the TAT box. Proc Natl Acad Sci USA 1989; 86: 9114–9118.

    Article  PubMed  CAS  Google Scholar 

  164. Can RE, Burnside J, Chin WW. Thyroid hormones regulate rat thyrotropin b gene promoter activity expressed in GH3 cells. Mol Endocrinol 1989; 3: 709–716.

    Article  Google Scholar 

  165. Burnside J, Darling DS, Can FE, Chin WW. Thyroid hormone regulation of the rat glycoprotein hormone a-subunit gene promoter activity. J Biol Chem 1989; 2645: 6886–6891.

    Google Scholar 

  166. Glass CK, Franco R, Weinberger C, Albert VR, Evans RM, Rosenfeld MG. A c-erbA binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 1987; 329: 738–741.

    Article  PubMed  CAS  Google Scholar 

  167. Brent GA, Harney JW, Chen Y, Warne RG, Moore DD, Larsen PR. Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol Endocrinol 1989; 3: 1996–2007.

    Article  PubMed  CAS  Google Scholar 

  168. Sven C, Chin WW. Ligand-dependent, Pit-1/Growth hormone factor-1 (GHF)-independent transcriptional stimulation of rat growth hormone gene expression by thyroid hormone receptors in vitro. Mol Cell Biol 1993; 13: 1719–1727.

    Google Scholar 

  169. Bradley DJ, Towle JC, Young WS, III. Spatial and temporal expression of a and 0-thyroid hormone receptor mRNA’s including the B2 subtype, in the developing mammalian system. J Neuroscience 1992; 12: 2288–2302.

    CAS  Google Scholar 

  170. Rodriguez-Garcia M, Jolin T, Santos A, Perez-Castillo A. Effect of perinatal hypothyroidism on the developmental regulation of rat pituitary growth hormone and thyrotropin genes. Endocrinology 1995; 136: 4339–4350.

    Article  PubMed  CAS  Google Scholar 

  171. Wasylyk B, Hahn SH, Giovane A. The Ets family of transcription factors. Eur J Biochem 1993; 211: 7–18.

    Article  PubMed  CAS  Google Scholar 

  172. Bradford AP, Conrad KE, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Functional interaction of c-Ets- I and GHF-1 /Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol Cell Biol 1995; 15: 2849–2857.

    PubMed  CAS  Google Scholar 

  173. Maroulakou IG, Papas TS, Green JE. Differential expression of ets-1 and ets-2 protooncogenes during murine embryogenesis. Oncogene 1994; 9: 1551–1565.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeitler, P.S., Pickett, C.A. (1999). Molecular Aspects of Pituitary Development. In: Handwerger, S. (eds) Molecular and Cellular Pediatric Endocrinology. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-697-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-697-3_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5875-7

  • Online ISBN: 978-1-59259-697-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics