Skip to main content

The Molecular Basis of Mineralocorticoid Action

  • Chapter
  • 91 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

Abstract

Mineralocorticoids, or salt retaining steroids, help control intravascular volume by regulating sodium resorption in target tissues such as the kidney, colon, and salivary glands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry CA, Ives HF, Rector FC. Renal transport of glucose, amino acids, sodium, chloride and water. In Brenner BM, ed. The kidney. 5th edition. Saunders, Philadelphia, PA, 1996, pp. 334–370.

    Google Scholar 

  2. Duchatelle P, Ohara A, Ling BN, Kemendy AE, Kokko KE, Matsumoto PS, Eaton DC. Regulation of renal epithelial sodium channels. Mol Cell Biochem 1992; 114: 27–34.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer LG, Frindt G. Regulation of apical membrane Na and K channels in rat renal collecting tubules by aldosterone. Semin Nephrol 1992; 12: 37–43.

    PubMed  CAS  Google Scholar 

  4. Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension 1992; 19: 221–227.

    Article  PubMed  CAS  Google Scholar 

  5. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, White PC. The product of the CYPI 1 B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 1991; 5: 1513–1522.

    Article  PubMed  CAS  Google Scholar 

  6. Kawamoto T, Mitsuuchi Y, Ohnishi T, Ichikawa Y, Yokoyama Y, Sumitomo H, et al. Cloning and expression of a cDNA for human cytochrome P-450aldo as related to primary aldosteronism. Biochem Biophys Res Commun 1990; 173: 309–316.

    Article  CAS  Google Scholar 

  7. Quinn SJ, Williams GH. Regulation of aldosterone secretion. Annu Rev Physiol 1988; 50: 409–426.

    Article  PubMed  CAS  Google Scholar 

  8. Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 1989;264:20, 961–20, 967.

    Google Scholar 

  9. Pascoe L, Jeunemaitre X, Lebrethon MC, Curnow KM, Gomez-Sanchez CE, Gasc JM, et al. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree. J Clin Invest 1995; 96: 2236–2246.

    Article  PubMed  CAS  Google Scholar 

  10. Bird IM, Hanley NA, Word RA, Mathis JM, McCarthy JL, Mason JI, Rainey WE. Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. Endocrinology 1993; 133: 1555–1561.

    Article  PubMed  CAS  Google Scholar 

  11. Sasaki K, Yamamo Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, et al. Cloning and expression of a complementary cDNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 1991; 351: 230–233.

    Article  PubMed  CAS  Google Scholar 

  12. Curnow KM, Pascoe L, White PC. Genetic analysis of the human type-1 angiotensin II receptor. Mol Endocrinol 1992; 6: 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  13. Clyne CD, Zhang Y, Slutsker L, Mathis JM, White PC, Rainey WE. Angiotensin II and potassium regulate human CYP 11 B2 transcription through common cis elements. Mol Endocrinol 1997, in press.

    Google Scholar 

  14. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992; 6: 1249–1258.

    Article  PubMed  CAS  Google Scholar 

  15. Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 1993; 268: 7494–7502.

    PubMed  CAS  Google Scholar 

  16. Meyer TE, Habener JF. Cyclic adenosine 3’,5’-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocr Rev 1993; 14: 269–290.

    PubMed  CAS  Google Scholar 

  17. White PC, New MI. Genetic basis of endocrine disease 2: congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992; 74: 6–11.

    Article  PubMed  CAS  Google Scholar 

  18. Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna MT, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992; 90: 584–595.

    Article  PubMed  CAS  Google Scholar 

  19. Rosier A, Leiberman E, Sack J, Landau H, Benderly A, Moses SW, Cohen T. Clinical variability of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Hormone Res 1982; 16: 133–141.

    Article  Google Scholar 

  20. Rosier A, Leiberman E, Cohen T. High frequency of congenital adrenal hyperplasia (classic 11 betahydroxylase deficiency) among Jews from Morocco. Am J Med Genet 1992; 42: 827–834.

    Article  Google Scholar 

  21. Zachmann M, Tassinari D, Prader A. Clinical and biochemical variability of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. A study of 25 patients. J Clin Endocrinol Metab 1983; 56: 222–229.

    CAS  Google Scholar 

  22. Visser HKA, Cost WS. A new hereditary defect in the biosynthesis of aldosterone: Urinary C21-corticosteroid pattern in three related patients with a salt-losing syndrome, suggesting an 18-oxidation defect. Acta Endocrinol (Copenh) 1964; 47: 589–612.

    CAS  Google Scholar 

  23. Ulick S, Gautier E, Vetter KK, Markello JR, Yaffe S, Lowe CU. An aldosterone biosynthetic defect in a salt-losing disorder. J Clin Endocrinol Metab 1964; 24: 669–672.

    Article  PubMed  CAS  Google Scholar 

  24. Veldhuis JD, Melby JC. Isolated aldosterone deficiency in man: acquired and inborn errors in the biosynthesis or action of aldosterone. Endocr Rev 1981; 2: 495–517.

    Article  PubMed  CAS  Google Scholar 

  25. Ulick S. Diagnosis and nomenclature of the disorders of the terminal portion of the aldosterone biosynthetic pathway. J Clin Endocrinol Metab 1976; 43: 92–96.

    Article  PubMed  CAS  Google Scholar 

  26. Ulick S, Wang JZ, Morton DH. The biochemical phenotypes of two inborn errors in the biosynthesis of aldosterone. J Clin Endocrinol Metab 1992; 74: 1415–1420.

    Article  PubMed  CAS  Google Scholar 

  27. Mitsuuchi Y, Kawamoto T, Miyahara K, Ulick S, Morton DH, Naiki Y, et al. Congenitally defective aldosterone biosynthesis in humans: inactivation of the P450C 18 gene (CYP 11 B2) due to nucleotide deletion in CMO I deficient patients. Biochem Biophys Res Commun 1993; 190: 864–869.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang G, Rodriguez H, Fardella CE, Harris DA, Miller WL. Mutation T318M in the CYP11B2 gene encoding P450cl lAS (aldosterone synthase) causes corticosterone methyl oxidase II deficiency. Am J Hum Genet 1995; 57: 1037–1043.

    PubMed  CAS  Google Scholar 

  29. Russell DW, White PC. Four is not more than two. Am J Hum Genet 1995; 57: 1002–1005.

    PubMed  CAS  Google Scholar 

  30. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966; 95: 1109–1119.

    PubMed  CAS  Google Scholar 

  31. New MI, Peterson RE. A new form of congenital adrenal hyperplasia. J Clin Endocrinol Metab 1967; 27: 300–305.

    Article  PubMed  CAS  Google Scholar 

  32. Gomez-Sanchez CE, Gill JR, Jr., Ganguly A, Gordon RD. Glucocorticoid-suppressible aldosteronism: a disorder of the adrenal transitional zone. J Clin Endocrinol Metab 1988; 67: 444–448.

    Article  PubMed  CAS  Google Scholar 

  33. Hamlet SM, Gordon RD, Gomez-Sanchez CE, Tunny T.1, Klemm SA. Adrenal transitional zone steroids, 18-oxo and 18-hydroxycortisol, useful in the diagnosis of primary aldosteronism, are ACTH-dependent. Clin Exp Pharmacol Physiol 1988; 15: 317–322.

    Article  PubMed  CAS  Google Scholar 

  34. Hall CE, Gomez-Sanchez CE. Hypertensive potency of 18-oxocortisol in the rat. Hypertension 1986; 8: 317–322.

    Article  PubMed  CAS  Google Scholar 

  35. Rich GM, Ulick S, Cook S, Wang JZ, Lifton RP, Dluhy RG. Glucocorticoid-remediable aldosteronism in a large kindred: clinical spectrum and diagnosis using a characteristic biochemical phenotype. Ann Intern Med 1992; 116: 813–820.

    Article  PubMed  CAS  Google Scholar 

  36. O’Mahony S, Burns A, Murnaghan DJ. Dexamethasone-suppressible hyperaldosteronism: a large new kindred. J Hum Hypertens 1989; 3: 255–258.

    PubMed  Google Scholar 

  37. Oberfield SE, Levine LS, Stoner E, Chow D, Rauh W, Greig F, et al. Adrenal glomerulosa function in patients with dexamethasone-suppressible hyperaldosteronism. J Clin Endocrinol Metab 1981; 53: 158–164.

    Article  PubMed  CAS  Google Scholar 

  38. Ganguly A, Weinberger MH, Guthrie GP, Fineberg NS. Adrenal steroid responses to ACTH in glucocorticoid-suppressible aldosteronism. Hypertension 1984; 6: 563–567.

    Article  PubMed  CAS  Google Scholar 

  39. White PC. Defects in cortisol metabolism causing low-renin hypertension. Endocr Res 1991; 17: 85–107.

    Article  PubMed  CAS  Google Scholar 

  40. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 betahydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355: 262–265.

    Article  PubMed  CAS  Google Scholar 

  41. Pascoe L, Curnow KM, Slutsker L, Connell JM, Speiser PW, New MI, White PC. Glucocorticoidsuppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP 11 B 1 and CYP 11 B2. Proc Natl Acad Sci USA 1992; 89: 8327–8331.

    Article  PubMed  CAS  Google Scholar 

  42. Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, Gill JR, Jr., et al. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 1992; 2: 66–74.

    Article  PubMed  CAS  Google Scholar 

  43. White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocr Res 1995; 21: 437–442.

    Article  PubMed  CAS  Google Scholar 

  44. Dluhy RG, Lifton RP. Glucocorticoid-remediable aldosteronism (GRA): diagnosis, variability of phenotype and regulation of potassium homeostasis. Steroids 1995; 60: 48–51.

    Article  PubMed  CAS  Google Scholar 

  45. Jamieson A, Slutsker L, Inglis GC, Fraser R, White PC, Connell JM. Glucocorticoid-suppressible hyperaldosteronism: effects of crossover site and parental origin of chimaeric gene on phenotypic expression. Clin Sci 1995; 88: 563–570.

    PubMed  CAS  Google Scholar 

  46. Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21 B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA 1988; 85: 1600–1604.

    Article  PubMed  CAS  Google Scholar 

  47. Wehling M. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action. Steroids 1995; 60: 153–156.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson NM, Schulman G, Karnik S, Alnemri E, Litwack G. Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti-MR antibody and confocal laser scanning microscopy. Mol Endocrinol 1993; 7: 1226–1239.

    Article  PubMed  CAS  Google Scholar 

  49. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–275.

    Article  PubMed  CAS  Google Scholar 

  50. Pearce D, Yamamoto KR. Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element.. Science 1993; 259: 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  51. Rupprecht R, Arriza JL, Spengler D, Reul JM, Evans RM, Holsboer F, Damm K Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 1993; 7: 597–603.

    Article  PubMed  CAS  Google Scholar 

  52. Liu W, Wang J, Sauter NK, Pearce D. Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc Nat! Acad Sci USA 1995;92:12, 480–12, 484.

    Google Scholar 

  53. McDonnell DP, Shahbaz MM, Vegeto E, Goldman ME. The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 1994; 48: 425–432.

    Article  PubMed  CAS  Google Scholar 

  54. Zennaro MC, Keightley MC, Kotelevtsev Y, Conway GS, Soubrier F, Fuller PJ. Human mineralocorticoid receptor genomic structure and identification of expressed isoforms. J Biol Chem 1995; 270:21, 016–21, 020.

    Google Scholar 

  55. Zennaro MC, le Menuet D, Lombes M. Characterization of the human mineralocorticoid receptor gene 5’-regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Mol Endocrinol 1996; 10: 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  56. Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci USA 1983; 80: 6056–6060.

    Article  PubMed  CAS  Google Scholar 

  57. Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards CR. Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet 1987; 2: 821–824.

    Article  PubMed  CAS  Google Scholar 

  58. Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, et al. Localisation of 11 beta-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet 1988; 2: 986–989.

    Article  PubMed  CAS  Google Scholar 

  59. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242: 583–585.

    Article  PubMed  CAS  Google Scholar 

  60. Obeid J, White PC. Tyr-179 and Lys-183 are essential for enzymatic activity of 11 beta-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun 1992; 188: 222–227.

    Article  PubMed  CAS  Google Scholar 

  61. Lakshmi V, Monder C. Purification and characterization of the corticosteroid 11 beta-dehydrogenase component of the rat liver 11 beta-hydroxysteroid dehydrogenase complex. Endocrinology 1988; 123: 2390–2398.

    Article  PubMed  CAS  Google Scholar 

  62. Tannin GM, Agarwal AK, Monder C, New MI, White PC. The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 1991;266:16, 653–16, 658.

    Google Scholar 

  63. Agarwal AK, Monder C, Eckstein B, White PC. Cloning and expression of rat cDNA encoding corticosteroid 11 beta-dehydrogenase. J Biol Chem 1989;264:18, 939–18, 943.

    Google Scholar 

  64. Mercer WR, Krozowski ZS. Localization of an 11 beta hydroxysteroid dehydrogenase activity to the distal nephron. Evidence for the existence of two species of dehydrogenase in the rat kidney. Endocrinology 1992; 130: 540–543.

    Article  PubMed  CAS  Google Scholar 

  65. Rusvai E, Naray-Fejes-Toth A. A new isoform of 11 beta-hydroxysteroid dehydrogenase in aldosterone target cells. J Biol Chem 1993;268:10, 717–10, 720.

    Google Scholar 

  66. Agarwal AK, Mune T, Monder C, White PC. NAD*-dependent isoform of 11 beta hydroxysteroid dehydrogenase:cloning and characterization of cDNA from sheep kidney. J Biol Chem 1994; 269:25, 959–25, 962.

    Google Scholar 

  67. Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11-HSD type 2 enzyme. Mol Cell Endocrinol 1994; 105: R11 - R17.

    Article  PubMed  CAS  Google Scholar 

  68. Agarwal AK, Rogerson FM, Mune T, White PC. Gene structure and chromosomal localization of the human HSD11K gene encoding the kidney (type 2) isozyme of 113-hydroxysteroid dehydrogenase. Genomics 1995; 29: 195–199.

    Article  PubMed  CAS  Google Scholar 

  69. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, Rauh W, Roster A, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 1979; 49: 757–764.

    Article  PubMed  CAS  Google Scholar 

  70. Oberfield SE, Levine LS, Carey RM, Greig F, Ulick S, New MI. Metabolic and blood pressure responses to hydrocortisone in the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1983; 56: 332–339.

    Article  PubMed  CAS  Google Scholar 

  71. Shackleton CH, Rodriguez J, Arteaga E, Lopez JM, Winter JS. Congenital 11 beta-hydroxysteroid dehydrogenase deficiency associated with juvenile hypertension: corticosteroid metabolite profiles of four patients and their families. Clin Endocrinol (Oxf) 1985; 22: 701–712.

    Article  CAS  Google Scholar 

  72. Monder C, Stewart PM, Lakshmi V, Valentino R, Burt D, Edwards CR. Licorice inhibits corticosteroid 11 beta-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinology 1989; 125: 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  73. Mune T, Rogerson FM, Nikki la H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995; 10: 394–399.

    Article  PubMed  CAS  Google Scholar 

  74. Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, Wei JQ, et al. A mutation in the HSD 11 B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab 1995; 80: 2263–2266.

    Article  PubMed  CAS  Google Scholar 

  75. Mune T, White PC. Apparent mineralocorticoid excess: genotype is correlated with biochemical phenotype. Hypertension 1996; 27: 1193–1199.

    Article  PubMed  CAS  Google Scholar 

  76. Lingrel JB, Kuntzweiler T. Na+,K(+)-ATPase. J Biol Chem 1994;269:19, 659–19, 662.

    Google Scholar 

  77. Lingrel JB, Van Huysse J, O’Brien W, Jewell-Motz E, Askew R, Schultheis P. Structure-function studies of the Na,K-ATPase. Kidney Int Suppl 1994; 44: S32 - S39.

    PubMed  CAS  Google Scholar 

  78. Whorwood CB, Stewart PM. Transcriptional regulation of Na/K-ATPase by corticosteroids, glycyrrhetinic acid and second messenger pathways in rat kidney epithelial cells. J Mol Endocrinol 1995; 15: 93–103.

    Article  PubMed  CAS  Google Scholar 

  79. Coutry N, Farman N, Bonvalet JP, Blot-Chabaud M. Synergistic action of vasopressin and aldosterone on basolateral Na*-K*-ATPase in the cortical collecting duct. J Membr Biol 1995; 145: 99–106.

    PubMed  CAS  Google Scholar 

  80. Kobayashi M, Kawakami K. ATF-1 CREB heterodimer is involved in constitutive expression of the housekeeping Na,K-ATPase al subunit gene. Nucleic Acids Res 1995; 23: 2848–2855.

    Article  PubMed  CAS  Google Scholar 

  81. Schoner W. Endogenous digitalis-like factors. Clin Exp Hypertens A 1992; 14: 767–814.

    Article  PubMed  CAS  Google Scholar 

  82. Hilton PJ, White RW, Lord GA, Garner GV, Gordon DB, Hilton MJ, Forni LG, et al. An inhibitor of the sodium pump obtained from human placenta. Lancet 1996; 348: 303–305.

    Article  PubMed  CAS  Google Scholar 

  83. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 1993; 264: C1367 - C1387.

    PubMed  CAS  Google Scholar 

  84. Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 1993; 361: 467–470.

    Article  PubMed  CAS  Google Scholar 

  85. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloridesensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994; 367: 463–467.

    Article  PubMed  CAS  Google Scholar 

  86. Rotin D, Bar-Sagi D, O’Brodovich H, Merilainen J, Lehto VP, Canessa CM, Rossier BC, et al. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J 1994; 13: 4440–4450.

    PubMed  CAS  Google Scholar 

  87. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M. Molecular cloning and functional expression of a novel amiloride-sensitive Na(+) channel. J Biol Chem 1995;270:27, 411–27, 414.

    Google Scholar 

  88. Bubien JK, Jope RS, Warnock DG. G-proteins modulate amiloride-sensitive sodium channels. J Biol Chem 1994;269:17, 780–17, 783.

    Google Scholar 

  89. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 1963; 76: 199–213.

    CAS  Google Scholar 

  90. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited-a disorder of sodium reabsorption in the distal tubule. N Engl J Med 1994; 330: 178–181.

    Article  PubMed  CAS  Google Scholar 

  91. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR, Jr., et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the subunit of the epithelial sodium channel. Cell 1994; 79: 407–414.

    Article  PubMed  CAS  Google Scholar 

  92. Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC. A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci USA 1995; 92: 5699–5703.

    Article  PubMed  CAS  Google Scholar 

  93. Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, et al. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 1995;92:11, 495–11, 499.

    Google Scholar 

  94. Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, Rossier BC. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 1996; 97: 1780–1784.

    Article  PubMed  CAS  Google Scholar 

  95. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995; 11: 76–82.

    Article  PubMed  CAS  Google Scholar 

  96. Kuhnle U, Hinkel GK, Akkurt HI, Krozowski Z. Familial pseudohypoaldosteronism: a review on the heterogeneity of the syndrome. Steroids 1995; 60: 157–160.

    Article  PubMed  CAS  Google Scholar 

  97. Armanini D, Karbowiak I, Zennaro CM, Zovato S, Pratesi C, De Lazzari P, Krozowski Z, et al. Pseudohypoaldosteronism: evaluation of type I receptors by radioreceptor assay and by antireceptor antibodies. Steroids 1995; 60: 161–163.

    Article  PubMed  CAS  Google Scholar 

  98. Komesaroff PA, Verity K, Fuller PJ. Pseudohypoaldosteronism: molecular characterization of the mineralocorticoid receptor. J Clin Endocrinol Metab 1994; 79: 27–31.

    Article  PubMed  CAS  Google Scholar 

  99. Zennaro MC, Borensztein P, Jeunemaitre X, Armanini D, Soubrier F. No alteration in the primary structure of the mineralocorticoid receptor in a family with pseudohypoaldosteronism. J Clin Endocrinol Metab 1994; 79: 32–38.

    Article  PubMed  CAS  Google Scholar 

  100. Arai K, Tsigos C, Suzuki Y, Listwak S, Zachman K, Zangeneh F, Rapaport R, et al. No apparent mineralocorticoid receptor defect in a series of sporadic cases of pseudohypoaldosteronism. J Clin Endocrinol Metab 1995; 80: 814–817.

    Article  PubMed  CAS  Google Scholar 

  101. Strautnieks SS, Thompson RJ, Hanukoglu A, Dillon MJ, Hanukoglu I, Kuhnle U, Seckl JR, et al. Localization of pseudohypoaldosteronism genes to chromosome l6p 12.2–13.11 and 12p 13.1-pter by homozygosity mapping. Hum Mol Genet 1996; 5: 293–299.

    Article  PubMed  CAS  Google Scholar 

  102. Chang SS, Grunder S, Hanukoglu A, Rosier A, Mathew PM, Hanukoglu I, Schild L, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996; 2: 248–253.

    Article  Google Scholar 

  103. White PC. Disorders of aldosterone biosynthesis and action. N Engl J Med 1994; 331: 250–258.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, P.C. (1999). The Molecular Basis of Mineralocorticoid Action. In: Handwerger, S. (eds) Molecular and Cellular Pediatric Endocrinology. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-697-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-697-3_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5875-7

  • Online ISBN: 978-1-59259-697-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics