Skip to main content

Molecular Basis of Disorders of Sexual Differentiation

  • Chapter
Molecular and Cellular Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

  • 90 Accesses

Abstract

Differentiation of the sex organs begins at fertilization when the combination of chromosomes from paternal and maternal gametes results in a karyotype that is 46, XX or 46, XY. In normal differentiation, the presence of a Y chromosome confers maleness, whereas the absence of the Y chromosome is associated with female development. However, the sex organs of the human male and female fetus are histologically identical until the fifth week of gestation. Up to that time, various bipotential and neutral structures form, each having the capacity to undergo sex-specific differentiation following the appropriate genetic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Migeon CJ, Berkovitz GD, Brown TR. Sexual differentiation and ambiguity. In: Kappy MJ, Blizzard RM, Migeon CJ, eds. Wilkins The Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence. 4th Ed. Charles C. Thomas, Springfield, IL, 1994, pp. 573–715.

    Google Scholar 

  2. Berkovitz GD, Fechner PY, Zacur HW, Rock JA, Snyder III HW, Migeon CJ, et al. Clinical and pathologic spectrum of 46, XY gonadal dysgenesis: Its relevance to the understanding of sex differentiation. Medicine 1991; 70: 375–383.

    Article  PubMed  CAS  Google Scholar 

  3. Migeon CJ. Male pseudohermaphroditism. Annales d’Endocrinologie (Paris) 1980; 41: 311–343.

    CAS  Google Scholar 

  4. de la Chapelle A. Nature and origin of males with XX sex chromosomes. Am J Med Genet 1972; 24: 71–105.

    Google Scholar 

  5. Kriedberg JA, Sariola H, Loring JM, Meeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    Article  Google Scholar 

  6. Shen W-H, Moore CCD, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the Mullerian inhibiting substances gene: a link to the sex determination cascade. Cell 1994; 77: 651–661.

    Article  PubMed  Google Scholar 

  7. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax-1 expression is consistent with a role in sex determination as well as adrenal and hypothalamus function. Nature Genet 1996; 12: 404.

    Article  PubMed  CAS  Google Scholar 

  8. Sinclair AH, Berta P, Palmer MS, Hawkins J R, Griffiths BL, Smith MJ, et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346: 240–244.

    Article  PubMed  CAS  Google Scholar 

  9. Lovell-Badge R, Hacker A. The molecular genetics of Sry and its role in mammalian sex determination. Phil Trans R Soc Lond B 1995; 350: 205–215.

    Article  CAS  Google Scholar 

  10. Harley VR, Lovell-Badge R, Goodfellow PN. Definition of a consensus DNA binding site for SRY. Nucleic Acid Res 1994; 22: 1500, 1501.

    Google Scholar 

  11. Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi M. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 1994; 13: 6115–6124.

    PubMed  CAS  Google Scholar 

  12. Veitia R, Ion A, Barbaux S, Jobling MA, Souleyreau N, Ennis K, et al. Mutations and sequence variants in the testis determining region of the Y chromosome in individuals with 46,XY female phenotype. Hum Genet 1997; 99: 648–652.

    Article  PubMed  CAS  Google Scholar 

  13. McElreavey K, Vilain E, Abbas N, Costa J-M, Souleyreau N, Kucheria K, et al. XY Sex-reversal associated with a deletion 5’ to the SRY “HMG box” in the testis-determining region. Proc Natl Acad Sci USA 1992;89:11, 016–11, 020.

    Google Scholar 

  14. McElreavey K, Vilain E, Barbaux S, Fuqua JS, Fechner PY, Souleyreau M, et al. Loss of sequences 3’ to the testis determining gene, SRY, including the Y chromosome pseudoautosomal boundary, associated with partial testicular determination. Proc Natl Acad Sci USA 1996; 93: 8950–8954.

    Article  Google Scholar 

  15. Kwok C, Tyler-Smith C, Mendonca BB, Hughes I, Bobrow M, Berkovitz GD, et al. Mutation analysis of the 2kb 5’ to SRY in XY females and XY intersex individuals. J Med Genet 1996; 33: 465–468.

    Article  PubMed  CAS  Google Scholar 

  16. Fechner PY, Marcantonio SM, Jaswaney V, Stetten G, Goodfellow PN, Migeon CJ, et al. The role of the sex determining region Y gene (SRY) in the etiology of XX maleness. J Clin Endocrinol Metab 1993; 76: 690–695.

    Article  PubMed  CAS  Google Scholar 

  17. Graves JAM. Two uses for old SOX. Nature Genet 1997; 16: 114, 115.

    Google Scholar 

  18. Goodfellow PN, Lovell-Badge R. SRY and sex determination in mammals. Ann Rev Genet 1993; 27: 71–92.

    Article  PubMed  CAS  Google Scholar 

  19. Cameron FJ, Sinclair AH. Mutations in SRY and SOX-9: Testis-determining genes. Hum Mutat 1997; 9: 388–395.

    Article  PubMed  CAS  Google Scholar 

  20. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994; 372: 525–530.

    Article  PubMed  CAS  Google Scholar 

  21. Kuiper GG, Faber PW, van Rooij HC, van der Korput JA, Ris-Stalpers C, Klaassen P, et al. Structural organization of the human androgen receptor gene. J Mol Endocrinol 1989; 2: R1 - R4.

    Article  PubMed  CAS  Google Scholar 

  22. Lubahn DB, Joseph DR, Sar M, Tan J, Higgs HN, Larson RE, et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988; 2: 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  23. Evans RM. The steroid and thyroid receptor superfamily. Science 1988; 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  24. Brown TR. Androgen receptor dysfunction in human androgen insensitivity. Trends Endocrinol Metab 1995; 6: 170–175.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Z-X, Sar M, Simental JA, Lane MV, Wilson EM. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 1994;269:13, 115–13, 123.

    Google Scholar 

  26. Wong C-I, Zhou Z-X, Sar M, Wilson EM. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem 1993;268:19, 004–19, 012.

    Google Scholar 

  27. LaSpada AR, Wilson EM, Lubahn DB. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79.

    Article  CAS  Google Scholar 

  28. Rodien P, Mebarki F, Mowszowicz I, Chaussain J-L, Young J, Morel Y, et al. Different phenotypes in a family with androgen insensitivity caused by the same M780I point mutation in the androgen receptor gene. J Clin Endocrinol Metab 1996; 81: 2994–2998.

    Article  PubMed  CAS  Google Scholar 

  29. Yen PM, Liu Y, Palvimo JJ, Trifiro M, Whang J, Pinsky L, et al. Mutant and wild-type androgen receptors exhibit cross-talk on androgen-, glucocorticoid-, and progesterone-mediated transcription. Mol Endocrinol 1997; 11: 162–171.

    Article  PubMed  CAS  Google Scholar 

  30. Cleutijens KBJM, van der Korput HAGM, van Eekelen CCEM, vanRooji CJ, Faber PW, Trapman J. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 1997; 11: 148–161.

    Article  Google Scholar 

  31. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  32. Yeh SJ, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    Article  PubMed  CAS  Google Scholar 

  33. Dean DM, Sanders MM. Ten years after: reclassification of steroid-responsive genes. Mol Endocrinol 1996; 10: 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  34. Gupta C, Singh M. Stimulation of epidermal growth factor gene expression during the fetal mouse reproductive tract differentiation: role of androgen and its receptor. Endocrinology 1996; 1: 705–711.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berkovitz, G.D., Seeherunvong, T. (1999). Molecular Basis of Disorders of Sexual Differentiation. In: Handwerger, S. (eds) Molecular and Cellular Pediatric Endocrinology. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-697-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-697-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5875-7

  • Online ISBN: 978-1-59259-697-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics