Skip to main content

Physical Aspects of Intraoperative Electron-Beam Irradiation

  • Chapter
Intraoperative Irradiation

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

In intraoperative electron-beam irradiation (IOERT), a single dose of radiation (e.g., 10–20 Gy) is delivered to a selectively defined volume of tissue. Usually, the IOERT treatment is a boost therapy added to another course of treatment using standard external-beam techniques to irradiate a volume much larger than, but always including, the volume treated intraoperatively. IOERT places certain technical demands on equipment and documentation. There are several technical aspects unique to IOERT in addition to those items one normally associates with conventional external-beam irradiation (EBRT) treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rich TA, Cady B, and McDermott WV. Orthovoltage intraoperative radiotherapy: a new look at an old idea, Int. J. Radiat. Oncol. Biol. Phys., 10 (1984) 1957–1965.

    Article  PubMed  CAS  Google Scholar 

  2. Biggs PJ, Epp ER, and Ling CC. Dosimetry, field shaping and other considerations for intraoperative electron therapy, Int. J. Radiat. Oncol. Biol. Phys., 7 (1981) 875–884.

    Article  PubMed  CAS  Google Scholar 

  3. Fraass BA, Harrington FS, Kinsella Ti, and Sindelar WF. Television system for verification and documentation of treatment fields during intraoperative radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 9 (1983) 1409–1411.

    Article  PubMed  CAS  Google Scholar 

  4. McCullough EC and Anderson JA. The dosimetric properties of an applicator system for intraoperative electron beam therapy utilizing a Clinac-18 accelerator, Med. Phys., 9 (1982) 261–268.

    Article  PubMed  CAS  Google Scholar 

  5. Abe M and Dobelbower RR, eds. Intraoperative Radiation Therapy. CRC Press, Boca Raton, FL, 1989.

    Google Scholar 

  6. Jones D. Apparatus, techniques and dosimetry of intraoperative electron beam therapy. In, V aeth JM and Meyer JL (eds). The Role of High Energy Electrons in the Treatment of Cancer. Front. Radiation Ther. Oncology, 25 (1991) 233–245.

    Google Scholar 

  7. AAPM Radiation Therapy Task Group 48. Intraoperative electron beam radiation therapy: technique, dosimetry and dose specification, Int. J. Radiat. Oncol. Biol. Phys., 33 (1995) 725–746.

    Article  Google Scholar 

  8. McCullough EC and Biggs PG. Intraoperative electron beam radiation therapy, In Kereiakes J, Barn C, and Elson H, (eds.). Radiation Oncology Physics, American Association of Physicists in Medicine, College Park, MD, 1987.

    Google Scholar 

  9. Mills MD, Almond PR, and Boyer AL. Shielding considerations for an operating room based intraoperative electron radiotherapy unit, Int. J. Radiat. Oncol. Biol. Phys., 18 (1990) 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  10. Biggs PJ. The effect of beam angulation on central axis percent depth dose for 4–29 MeV electrons, Phys. Med. Biol., 29 (1984) 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  11. McCullough EC and Gunderson LL. Energy as well as applicator size and shape utilized in over 200 intraoperative electron beam procedures, Int. J. Radial. Oncol. Biol. Phys., 15 (1988) 1041–1042.

    Article  CAS  Google Scholar 

  12. Hogstrom KR, Boyer AL, and Shiu AS. Design of metallic electron beam cones for an intraoperative therapy linear accelerator, Int. J. Radiat. Oncol. Biol. Phys., 18 (1990) 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  13. Palta JR and Suntharalingham N. A non-docking intraoperative electron beam applicator system, Int. J. Radiat. Oncol. Biol. Phys., 17 (1989) 411–417.

    Article  PubMed  CAS  Google Scholar 

  14. Nyerick CE, Ochran TG, Boyer AL, and Hogstrom KR. Dosimetry characteristics of metallic cones for intraoperative radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 21 (1991) 501–510.

    Article  PubMed  CAS  Google Scholar 

  15. Bagne FR, Samsani N, and Dobelbower RR. Radiation contamination and leakage assessment of intra-operative electron applicators, Med. Phys., 15 (1988) 530–537.

    Article  PubMed  CAS  Google Scholar 

  16. Noyes RD, Weiss SM, Krall JM, et al. Surgical complications of intraoperative radiation therapy: the Radiation Therapy Oncology Group experience, J. Surg. Oncol., 50 (1992) 209–215.

    Article  PubMed  CAS  Google Scholar 

  17. Biggs PJ. Evidence for photoneutron production in the lead shielding of a dedicated intra-operative electron-only facility, Health Physics,submitted.

    Google Scholar 

  18. Schmidt FAR. The attenuation properties of concrete for shielding of neutrons of energy less than 15 MeV. Oak Ridge National Laboratory, Oak Ridge, TN, 1970.

    Google Scholar 

  19. NCRP Report No. 38. Protection against neutron radiation. National Council on Radiation Protection, Washington, DC, 1971.

    Google Scholar 

  20. Nelson CE, Cock R, and Rakfal S. The dosimetric properties of an intraoperative radiation therapy applicator system for a Mevatron-80, Med. Phys., 16 (1989) 794–799.

    Article  PubMed  CAS  Google Scholar 

  21. AAPM Radiation Therapy Committee Task Group 25. Clinical electron-beam dosimetry, Med. Phys., 18 (1991) 73–109.

    Article  Google Scholar 

  22. Dahl RA and McCullough EC. Determination of accurate dosi metric parameters for beveled intraoperative electron beam applicators, Med. Phys., 16 (1989) 130–131.

    Article  PubMed  CAS  Google Scholar 

  23. Biggs PJ and McCullough EC. Physical aspects of intraoperative electron beam energy. In Gunderson LL and Tepper, JE (eds.), Intraoperative +1- External Beam Irradiation, Yearbook Medical, Chicago, 1983.

    Google Scholar 

  24. Tepper JE, Gunderson LL, Goldson AL, et al. Quality control parameters of intraoperative radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 12 (1986) 1687–1695.

    Article  PubMed  CAS  Google Scholar 

  25. Davis MG and Ochran TG. A quality assurance program for intraoperative linear accelerator. In Physics Starkschall, G. and Horton, J (eds.), Quality Assurance In Radiotherapy, American College of Medical Physics, Reston, VA, 1991.

    Google Scholar 

  26. Hazle JD, Chu JCH, and Kennedy P. Quality assurance for intraoperative electron radiotherapy clinical trials: ionization chamber and mailable thermoluminescent dosimeter results, Int. J. Radial. Oncol. Biol. Phys., 24 (1992) 559–563.

    Article  CAS  Google Scholar 

  27. McCullough EC. Intraoperative electron beam radiation therapy (IORT). In Purdy JA (ed.), Advances in Radiation Oncology Physics, American Association of Physicists in Medicine, College Park, MD, 1991.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCullough, E.C., Biggs, P.J. (1999). Physical Aspects of Intraoperative Electron-Beam Irradiation. In: Gunderson, L.L., Willet, C.G., Harrison, L.B., Calvo, F.A. (eds) Intraoperative Irradiation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-696-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-696-6_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5576-3

  • Online ISBN: 978-1-59259-696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics