Skip to main content

General Rationale and Historical Perspective of Intraoperative Irradiation

  • Chapter
Book cover Intraoperative Irradiation

Abstract

Most of the major advances in clinical applications of radiation therapy in the treatment of cancer have been because of differences in dose distribution between tumor and normal tissue. For most tumor types, the likelihood of achieving local tumor control improves if increasing irradiation doses can be delivered to the tumor mass. However, in many clinical situations, the dose that can be delivered safely to the tumor volume is limited by the normal tissues that are in close proximity to the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe M, Fukada M, Yamano K, et al. Intraoperative irradiation in abdominal and cerebral tumours, Acta Radiol, 10 (1971) 408–416.

    Article  CAS  Google Scholar 

  2. Goldson A. Preliminary clinical experience with intraoperative radiotherapy, J. Nat. Med. Assoc., 70 (1978) 493–495.

    CAS  Google Scholar 

  3. Gunderson LL, Tepper JE, Biggs PJ, et al. Intraoperative ± external beam irradiation, Curr. Probi. Cancer, 7 (1983) 1–69.

    Article  CAS  Google Scholar 

  4. Gunderson LL, Nagorney DM, Martenson JA, et al. External beam plus intraoperative irradiation for gastrointestinal cancers, World J. Surg., 19 (1995) 191–197.

    Article  PubMed  CAS  Google Scholar 

  5. Gunderson LL and Willett C. Pancreas and hepatobiliary tract cancer, In Perez CA, Brady LW (eds.), Principles and Practice of Radiation Oncology,3rd ed. Lippincott, Philadelphia, 1997, pp. 14671488.

    Google Scholar 

  6. Whittington R, Solin L, and Mohiuddin M. Multimodality therapy of localized unresectable pancreatic adenocarcinoma, Cancer, 54 (1984) 1991–1998.

    Article  PubMed  CAS  Google Scholar 

  7. Brierly JD, Cummings BJ, Wong CS, et al. Adenocarcinoma of the rectum treated by radical external radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 31 (1995) 255–259.

    Article  Google Scholar 

  8. O’Connell MJ, Childs DS, Moertel CG, et al. A prospective controlled evaluation of combined pelvic radiotherapy and methanol extraction residue of BCG (MER) for locally unresectable or recurrent rectal carcinoma, Int. J. Radiat. Oncol. Biol. Phys., 8 (1982) 1115–1119.

    Article  PubMed  Google Scholar 

  9. Gunderson LL, Cohen AM, Dosoretz DE, et al. Residual, unresectable or recurrent colorectal cancer: external beam irradiation and intraoperative electron beam boost ± resection, Int. J. Radiat. Oncol. Biol. Phys., 9 (1983) 1597–1606.

    Article  PubMed  CAS  Google Scholar 

  10. Tewfik HH, Buchsbaum Hi, Latourette HB, et al. Para-aortic lymph node irradiation in carcinoma of the cervix after exploratory laparotomy and biopsy proven aortic nodes, Int. J. Radiat. Oncol. Biol. Phys., 8 (1982) 13–18.

    Article  PubMed  CAS  Google Scholar 

  11. Piver MS and Barlow JJ. High dose irradiation in biopsy confirmed aortic node metastases from carcinoma of the uterine cervix, Cancer, 39 (1977) 1243–1246.

    Article  PubMed  CAS  Google Scholar 

  12. Delgado G, Goldson AL, Ashayeri E, et al. Intraoperative radiation in the treatment of advanced cervical cancer, Obstet. Gynecol., 63 (1984) 246–252.

    PubMed  CAS  Google Scholar 

  13. Garton GR, Gunderson LL, Webb MJ, et al. Intraoperative irradiation in gynecologic cancer: the Mayo Clinic experience, Gyn. Oncol., 48 (1993) 328–332.

    Article  CAS  Google Scholar 

  14. Haddock M, Petersen I, Webb MJ, et al. Intraoperative irradiation therapy for locally advanced gynecologic malignancies, In Vaeth J, Meyer J (eds), The Role of Intraoperative Radiation Therapy in the Treatment of Cancer. S. Karger, Basel, Front. Radiat. Ther. Oncol., 31 (1997) 256–259.

    Chapter  Google Scholar 

  15. Stelzer K, Koh W, Greer B, et al. Intraoperative electron beam therapy (IOEBT) as an adjunct to radical surgery for recurrent cancer of the cervix, In Schildberg FW, Willich N, Kramling H (eds), Intraoperative Radiation Therapy, Verlag Die Blaue Eule, Verlag, 1993, pp. 411–414.

    Google Scholar 

  16. Mahe M, Dargent D, Chabert P, et al. Intraoperative radiation therapy (IORT) in recurrent carcinoma of the uterine cervix: report of the French IORT group about 70 patients, Lyon Int’l. IORT Abst. Hepatogastroenterol., 41 (1994) 6.

    Google Scholar 

  17. Sindelar WF, Kinsella TJ, Chen PW, et al. Intraoperative radiotherapy in retroperitoneal sarcomas: final results of a prospective, randomized trial, Arch. Surg., 128 (1993) 402–410.

    Article  PubMed  CAS  Google Scholar 

  18. Gunderson LL, Nagorney DM, McIlrath DC, et al. External beam and intraoperative electron irradiation for locally advanced soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys., 25 (1993) 647–656.

    Article  PubMed  CAS  Google Scholar 

  19. Petersen I, Haddock M, Donohue J, et al. Use of intraoperative electron beam radiation therapy (IOERT) in the management of retroperitoneal and pelvic soft tissue sarcomas, ASTRO Abst. Int. J. Radiat. Oncol. Biol. Phys., 36 (1) (1996) 184.

    Article  Google Scholar 

  20. Willett CG, Suit HD, Tepper JE, et al. Intraoperative electron beam radiation therapy for retroperitoneal soft tissue sarcoma, Cancer, 68 (1991) 278–283.

    Article  PubMed  CAS  Google Scholar 

  21. Suit HD. Radiation biology: a basis for radiotherapy, In Fletcher GH. (ed.), Textbook of Radiotherapy, 2nd ed. Lea and Fabiger, Philadelphia, 1973, pp. 75–121.

    Google Scholar 

  22. Hale CH and Holmes GW. Carcinoma of skin: influence of dosage on the success of treatment, Radiology, 48 (1947) 563–569.

    PubMed  CAS  Google Scholar 

  23. Kaplan HS. Evidence for a tumoricidal dose level in the radiotherapy of Hodgkin’s disease, Cancer Res, 26 (1966) 1221–1224.

    PubMed  CAS  Google Scholar 

  24. Choi CH and Carey R. Small cell anaplastic carcinoma of lung: reappraisal of current management, Cancer, 37 (1976) 2651–2657.

    Article  PubMed  CAS  Google Scholar 

  25. Fletcher GH. Clinical dose response curves of human malignant epithelial tumors, Brit. J. Radiol., 46 (1973) 1–12.

    Article  PubMed  CAS  Google Scholar 

  26. Fletcher GH and Shukovsky LJ. The interplay of radiocurability and tolerance in the irradiation of human cancers, J. Radiol. Electrol., 56 (1975) 383–400.

    PubMed  CAS  Google Scholar 

  27. Griscom NT and Wang CC. Radiation therapy of inoperable breast carcinoma, Radiology, 79 (1962) 18–23.

    PubMed  CAS  Google Scholar 

  28. Tepper J. Clonogenic potential of human tumors: a hypothesis, Acta Radiol. Oncol., 20 (1981) 283–288.

    Article  PubMed  CAS  Google Scholar 

  29. Rubin P and Siemann DW. Principles of radiation oncology and cancer radiotherapy, In Rubin P, McDonald S, Qazi R, (eds.), Clinical Oncology: A Multidisciplinary Approach, 7th ed. Saunders, Philadelphia, 1993, pp. 71–90.

    Google Scholar 

  30. Suit HD. Local control and patient survival Int. J. Radiat. Oncol. Biol. Phys., 23 (1992) 653–660.

    Article  PubMed  CAS  Google Scholar 

  31. Ramsay J, Suit HD, and Sedlacek R. Experimental studies on the incidence of metastases after failure of radiation treatment and the effect of salvage surgery, Int. J. Radiat. Oncol. Biol. Phys., 14 (1988) 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  32. Suit HD, Sedlacek RS, and Gillette EL. Examination for a correlation between probabilities of development of distant metastasis and of local recurrence, Radiology, 95 (1970) 189–194.

    PubMed  CAS  Google Scholar 

  33. Suit HD. Potential for improving survival rates for the cancer patient by increasing the efficacy of treatment of the primary lesion, Cancer, 50 (1982) 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  34. Fuks Z, Leibel SA, Wallner KE, et al. The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treatment with 125-I implantation, Int. J. Radiat. Oncol. Biol. Phys., 21 (1991) 537–547.

    Article  PubMed  CAS  Google Scholar 

  35. Leibel SA, Scott CB, Mohiuddin M, et al. The effect of local-regional control on distant metastatic dissemination in carcinoma of the head and neck: results of an analysis for RTOG head and neck database, Int. J. Radiat. Oncol. Biol. Phys., 21 (1991) 549–556.

    Article  PubMed  CAS  Google Scholar 

  36. Gunderson LL and Martenson JA. Gastrointestinal tract radiation tolerance. In Vaeth JM and Meyer JE (eds.), radiation tolerance of normal tissues, Karger, Basel, Front. Radiat. Ther. Oncol., 23 (1989) 277–298.

    Google Scholar 

  37. Medina R, Casas F, and Calvo FA. Radiation oncology in Spain: historical notes for the radiology centennial, Int. J. Radiat. Oncol. Biol. Phys., 35 (1996) 1075–1097.

    Article  PubMed  CAS  Google Scholar 

  38. Comas C and Prió A. Irradiation röetgen préventive intra-abdominale, aprés l’ intervention chirurgicable dans un cas de cancer de l’ uterus. Communication an III an. Congres International d’Electrólogie 1906. Barcelona: Imprenta Francisco Badia, 1907, pp. 5–14.

    Google Scholar 

  39. Finsterer H. Zur Therapie inoperabler Magen-und Darmkarzinome mit Freileung und nachfolgender Rontgenbenstrahlung, Strahlentherapie, 6 (1915) 205.

    Google Scholar 

  40. Henschke G and Henschke V. Zur technik der operations-strahlung, Strahlentherapie, 74 (1944) 223–239.

    Google Scholar 

  41. Barth G. Erfahrungen und Ergebnisse mit der Nahbestrahlung operativ freigelegten tumorem, Strahlentherapie, 109 (1953) 386.

    Google Scholar 

  42. Fuchs G and Uberall R. Die intraoperative Roentgentherapie des Blasenkarzinoms, Strahlentherapie, 135 (1968) 280.

    PubMed  CAS  Google Scholar 

  43. Sabitzer H, Manfreda D, Millonig H, Primik F, Redtenbacher M, and Schneider F. Chirurgischradiologisch kombinierters therapieverfahren beim Pankreaskarzonoma-Falldemonstration-Zukunftsasperte, Wien. Klin. Wochenschr., 95 (1983) 523.

    PubMed  CAS  Google Scholar 

  44. Beck C. On external roentgen treatment of internal structures (eventration treatment), NY Med. J., 89 (1919) 621–622.

    Google Scholar 

  45. Eloesser L. The treatment of some abdominal cancers by irradiation through the open abdomen combined with cautery excision, Ann. Surg., 106 (1937) 645–652.

    Article  PubMed  CAS  Google Scholar 

  46. Fairchild GC and Shorter A. Irradiation of gastric cancer, Br. J. Radiol., 20 (1947) 511–522.

    Article  PubMed  CAS  Google Scholar 

  47. Barth G. Erfahrungen und ergebnisse mit der nahbestrahlung operative freigelegter tumoren, Strahlentherapie, 91 (1959) 481–527.

    Google Scholar 

  48. Abe M and Takahashi M. Intraoperative radiotherapy: the Japanese experience, Int. J. Radiation Oncol. Biol. Phys., 7 (1981) 863–868.

    Article  CAS  Google Scholar 

  49. Goldson AL. Past, present and future prospects of intraoperative radiotherapy (IOR), Sem. Oncol., 8 (1981) 59–65.

    CAS  Google Scholar 

  50. Goldson AL. Update on 5 years of pioneering experience with intraoperative electron irradiation. In Session II-intraoperative electron therapy, Varian Users Proceedings, (1982) 21–27.

    Google Scholar 

  51. Gunderson LL, Shipley WU, Suit HD, et al. Intraoperative irradiation: a pilot study combining external beam photons with “boost” dose intraoperative electrons, Cancer, 49 (1982) 2259–2266.

    Article  PubMed  CAS  Google Scholar 

  52. Tepper J and Sindelar W. Summary on intraoperative radiation therapy Cancer Treat. Rep.65(1981) 911–918

    Google Scholar 

  53. Gunderson LL, Martin JK, Earle JD, Voss M, Kelly K, and Rorie D. Intraoperative and external beam irradiation ± resection: Mayo Pilot experience Mayo Clin. Proc.59 (1984) 691–699

    Google Scholar 

  54. Rich TA, Cady B, McDermott W, Kase K, Chaffey JT, and Hellman S. Orthovoltage intraoperative radiotherapy: a new look at an old idea, Int. J. Radiat. Oncol., 10 (1984) 1951–1965.

    Article  Google Scholar 

  55. Dobelbower RR and Abe M. (eds). Intraoperative Radiation Therapy. CRC Press, Boca Raton, FL, 1989.

    Google Scholar 

  56. Abe M and Takahashi M. (eds).Intraoperative Radiation Therapy. Proceedings of the Third International Symposium on Intraoperative Radiation Therapy. Pergamon Press, Philadelphia, 1991

    Google Scholar 

  57. Schildberg FW, Willich N, and Krämling HJ (eds). Intraoperative Radiation Therapy. Proceedings 4th International Symposium. Die Blane Eule, Essen, 1993

    Google Scholar 

  58. Dritschilo A, Harter KW, Thomas D, et al. Intraoperative radiation therapy of hepatic metastases: technical aspects and report of a pilot study, Int. J. Radiat. Oncol. Biol. Phys. 14(1988) 1007–1011

    Google Scholar 

  59. Lukas P, Stepan R, Ries G, et al. A new modality for intraoperative radiation therapy with a high doserate-afterloading unit Radiology 181(1991) 251.

    Google Scholar 

  60. Thomas DS, Nanta RJ, Rodgers JE, et al. Intraoperative high dose rate interstitial irradiation of hepatic metastases from colorectal carcinoma, Cancer, 71 (1993) 1977–1981.

    Article  PubMed  CAS  Google Scholar 

  61. Nag S and Orton C. Development of intraoperative high dose rate brachytherapy for treatment of resected tumor beds in anesthetized patients Endcurieth Hyperth. Oncol.9(1993) 187–193.

    Google Scholar 

  62. Harrison LB, Enker WE, and Anderson L. High dose rate intraoperative radiation therapy for colorectal cancer–part 1, Oncology, 9 (1995) 679–683.

    PubMed  CAS  Google Scholar 

  63. Harrison LB, Enker WE, and Anderson L. High dose rate intraoperative radiation therapy for colorectal cancer–part 2, Oncology, 9 (1995) 737–741.

    PubMed  CAS  Google Scholar 

  64. Huber FT, Stepan R, Zimmerman F, Fink V, Molls M, and Siewart JR. Locally advanced rectal cancer: resection and intraoperative radiotherapy using the flab method combined with preoperative or postoperative radiochemotherapy, Dis. Colon Rectum, 39 (1996) 774–779.

    Article  PubMed  CAS  Google Scholar 

  65. Zelefsky MJ, LaQuaglia MP, Ghavimi F, Bass J, and Harrison LB. Preliminary results of phase I/II study of high dose rate intraoperative radiation therapy for pediatric tumors, J. Surg. Oncol., 62 (1996) 267–272.

    Google Scholar 

  66. Harrison LB, Minsky BD, Enker WE, et al. High dose rate intraoperative radiation therapy (HDR-IORT) for locally advanced unresectable primary and recurrent rectal cancer, 1997 ASTRO Abstracts Int. J. Radiat. Oncol. Biol. Phys., 39S (1997) 168.

    Article  Google Scholar 

  67. Nag S, Martinez-Monge R, and Gupta N. Intraoperative radiation therapy using electron-beam and highdose-rate brachytherapy, Cancer J, 10 (1997) 94–101.

    Google Scholar 

  68. Calvo FA, Brady LW, and Micaily B. Intraoperative radiotherapy: a positive view, Am. J. Clin. Oncol.(1993) 418–423.

    Google Scholar 

  69. Calvo FA, Santos M, and Brady LW (eds). Intraoperative Radiotherapy. Clinical Experiences and Results. Springer Verlag, Heidelberg, Germany, 1992

    Google Scholar 

  70. Willett CG, Shellito PC, Tepper JE, et al. Intraoperative electron beam radiation therapy for primary locally advanced rectal and rectosigmoid carcinoma J. Clin. Oncol.9 (1991) 843–849

    Google Scholar 

  71. Tepper JE, Gunderson LL, Orlow E, et al. Complications of intraoperative radiation therapy Int. J. Radiat. Oncol. Biol. Phys10 (1984) 1831–1839

    Google Scholar 

  72. Gunderson LL, Nelson H, Martenson JA, et al. Intraoperative electron and external beam irradiation with or without 5-fluorouracil and maximum surgical resection for previously unirradiated, locally recurrent colorectal cancer, Dis. Colon Rectum, 39 (1996) 1379–1395.

    Article  PubMed  CAS  Google Scholar 

  73. Gunderson LL, Nelson H, Martenson JA, et al. Locally advanced primary colorectal cancer: intraoperative electron and external beam irradiation +1–5-FU, Int. J. Radiat. Oncol. Biol. Phys., 37 (1997) 601–614.

    Article  PubMed  CAS  Google Scholar 

  74. Gunderson LL. Past, present and future of intraoperative irradiation for colorectal cancer Int. J. Radiat. Oncol. Biol. Phys.34 (1996) 741–744.

    Google Scholar 

  75. Shaw EG, Gunderson LL, Martin JK, et al. Peripheral nerve and ureteral tolerance of intraoperative radiation therapy: clinical and dose response analysis, Radiother. Oncol., 18 (1990) 247–255.

    Article  PubMed  CAS  Google Scholar 

  76. Calvo FA, Henriquez I Santos M, et al. Intraoperative and external beam radiotherapy in advanced resectable gastric cancer: technical description and preliminary results, Int. J. Radiat. Oncol. Biol. Phys.(1989) 183–189.

    Google Scholar 

  77. Villa VV, Calvo FA, Bilbao JI, et al. Arteriodigestive fistula: a complication associated with intraoperative and external beam radiotherapy following surgery for gastric cancer, J. Surg. Oncol., 49 (1992) 52–57.

    Article  PubMed  Google Scholar 

  78. Goldson AL, Streeter 0E, Ashayeri E, et al. Intraoperative radiotherapy for intracranial malignancies, Cancer, 54 (1984) 2807–2813.

    Article  PubMed  CAS  Google Scholar 

  79. Hoekstra HJ, Restrepo C, Kinsella TJ, and Sindelar WF. Histopathological effects of intraoperative radiotherapy on pancreas and adjacent tissues: a postmortem analysis, J. Surg. Oncol., 37 (1988) 104–108.

    Article  PubMed  CAS  Google Scholar 

  80. Fraass BA, Miller RW, Kinsella TJ, et al. Intraoperative radiation therapy at the National Cancer Institute: technical innovations and dosimetry, Int. J. Radiat. Oncol. Biol. Phys., 11 (1985) 1299–1311.

    Article  PubMed  CAS  Google Scholar 

  81. Archambeau JO, Aitken D, Potts TM, and Slater JM. Cost-effective, available-on-demand intraoperative radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 15 (1988) 775–778.

    Article  PubMed  CAS  Google Scholar 

  82. Wolkow BB, Chenery SG, Asche DR, et al. Practical and technical considerations in establishing an intraoperative radiation therapy program in the community practice, Radiology, 168 (1988) 255–258.

    Google Scholar 

  83. Merrick HW, Milligan AJ, Woldenberg LS, et al. Intraoperative interstitial hyperthermia in conjunction with intraoperative radiation therapy in a radiation-resistant carcinoma of the abdomen: report on feasibility of a new technique, J. Surg. Oncol., 36 (1987) 48–51.

    Article  PubMed  CAS  Google Scholar 

  84. Tepper JE, Gunderson LL, Goldson AL, et al. Quality control parameters in intraoperative radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 12 (1986) 1687–1695.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gunderson, L.L., Calvo, F.A., Willett, C.G., Harrison, L.B., Santos, M. (1999). General Rationale and Historical Perspective of Intraoperative Irradiation. In: Gunderson, L.L., Willet, C.G., Harrison, L.B., Calvo, F.A. (eds) Intraoperative Irradiation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-696-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-696-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5576-3

  • Online ISBN: 978-1-59259-696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics