Skip to main content

Intraluminal Regulatory Peptides and Intestinal Cholecystokinin Secretion

  • Chapter
  • 178 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 8))

Abstract

The gastrointestinal hormone cholecystokinin (CCK) was purified from porcine intestinal mucosa and sequenced almost 30 yr ago (1), yet the lack of progress in understanding how CCK secretion is regulated is apparent when one compares what is known about the regulation of gastrin secretion with that established for CCK (2,3). This is more remarkable because gastrin, which is phylogenetically CCK’s younger sibling (4), was purified and sequenced from porcine antral mucosa a few years before CCK (5). Thus, whereas neural and paracrine pathways controlling gastrin secretion have been well-established (6), the mechanisms that mediate CCK secretion from the small intestine are relatively unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. Eur J Biochem 6: 156–162.

    PubMed  CAS  Google Scholar 

  2. Wiener I, Khalil T, Thompson JC, Rayford PL (1987) Gastrin. In: Gastrointestinal Endocrinology. ( Thompson JC, Greeley GH, Jr., Rayford PL, Townsend CM, Jr, eds.) McGraw-Hill, New York, pp. 194–212.

    Google Scholar 

  3. Marx M, Gomez G, Lonovics J, Thompson JC (1987) Cholecystokinin. In: Gastrointestinal Endocrinology. ( Thompson JC, Greeley GH, Jr, Rayford PL, Townsend CM, Jr, eds.), McGraw-Hill, New York, pp. 213–222.

    Google Scholar 

  4. Dimaline R, Dockray GJ (1994) Evolution of the gastrointestinal endocrine system (with special reference to gastrin and CCK). Baillieres Clin Endocrinol Metab 8: 1–24.

    PubMed  CAS  Google Scholar 

  5. Gregory H, Hardy PM, Jones DS, Kenner GW, Sheppard RC (1964) The antral hormone gastrin. I. Structure of gastrin. Nature 204: 931–933.

    Google Scholar 

  6. Schubert ML, Makhlouf GM (1992) Neural, hormonal, and paracrine regulation of gastrin and acid secretion. Yale J Biol Med 65: 553–560.

    PubMed  CAS  Google Scholar 

  7. Owyang C, Louie DS, Tatum D (1986) Feedback regulation of pancreatic enzyme secretion. Suppression of cholecystokinin release by trypsin. J Clin Invest 77: 2042–2047.

    Google Scholar 

  8. Owyang C, May D, Louie DS (1986) Trypsin suppression of pancreatic enzyme secretion. Differential effect on cholecystokinin release and the enteropancreatic reflex. Gastroenterology 91: 637–643.

    Google Scholar 

  9. Li P, Lee KY, Ren XS, Chang TM, Chey WY (1990) Effect of pancreatic proteases on plasma cholecystokinin, secretin, and pancreatic exocrine secretion in response to sodium oleate. Gastroenterology 98: 1642–1648.

    PubMed  CAS  Google Scholar 

  10. Jin HO, Song CW, Chang TM, Chey WY (1994) Roles of gut hormones in negative-feedback regulation of pancreatic exocrine secretion in humans. Gastroenterology 107: 1828–1834.

    PubMed  CAS  Google Scholar 

  11. Jansen JBMJ, Jebbink MCW, Mulders HJA, Lamers CBHW (1989) Effect of pancreatic enzyme supplementation on postprandial plasma cholecystokinin secretion in patients with pancreatic insufficiency. Regul Pept 25: 333–342.

    PubMed  CAS  Google Scholar 

  12. Lluis F, Gomez G, HashimotO T, Fujimura M, Greeley GH, Jr, Thompson JC (1989) Pancreatic juice enhances fat-stimulated release of enteric hormones in dogs. Pancreas 4: 23–30.

    PubMed  CAS  Google Scholar 

  13. Funakoshi A, Tateishi K, Shinozaki H, Miyasaka K, Ito T, Wakasugi H (1990) Plasma pancreastatin responses after intrajejunal infusion of liquid meal in patients with chronic pancreatitis. Dig Dis Sci 35: 721–725.

    PubMed  CAS  Google Scholar 

  14. Nusted R, Kohle H, Folsch UR, Schafmayer A (1991) Plasma concentrations of neurotensin and CCK in patients with chronic pancreatitis with and without enzyme substitution. Pancreas 6: 260–265.

    Google Scholar 

  15. Lewis LD, Williams JA (1990) Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol 258: G512 - G518.

    PubMed  CAS  Google Scholar 

  16. Green GM, Miyasaka K (1983) Rat pancreatic response to intestinal infusion of intact and hydrolyzed protein. Am J Physiol 245: G394 - G398.

    PubMed  CAS  Google Scholar 

  17. Liddle RA, Green GM, Conrad CK, Williams JA (1986) Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol 251: G243 - G248.

    PubMed  CAS  Google Scholar 

  18. Cuber JC, Bernard G, Fushiki T, Bernard C, Yamanishi R, Sugimoto E, Chayvialle JA (1990) Luminal CCK-releasing factors in the isolated vascularly perfused rat duodenojejunum. Am J Physiol 259: G191 - G197.

    PubMed  CAS  Google Scholar 

  19. Spannagel AW, Green GM (1994) Role of intraluminal nutrients in feedback regulation of pancreatic enzyme secretion. Ann NY Acad Sci 713: 424–426.

    PubMed  CAS  Google Scholar 

  20. Li Y, Owyang C (1996) Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons. J Clin Invest 97: 1463–1470.

    PubMed  CAS  Google Scholar 

  21. Li P, Lee KY, Chang TM, Chey WY (1990) Hormonal mechanism of sodium oleate-stimulated pancreatic secretion in rats. Am J Physiol 259: G960 - G965.

    PubMed  CAS  Google Scholar 

  22. Jo YH, Lee YL, Lee KY, Chang TM, Chey WY (1992) Neurohormonal mechanism of pancreatic exocrine secretion stimulated by sodium oleate and L-tryptophan in dogs. Am J Physiol 263: G12 - G16.

    PubMed  CAS  Google Scholar 

  23. Gomez G, Upp JR, Lluis F, Alexander RW, Poston GJ, Greeley GH, Jr, Thompson JC (1988) Regulation of the release of cholecystokinin by bile salts in dogs and humans Gastroenterology 94: 1036–1046.

    CAS  Google Scholar 

  24. Green GM, Nasset ES (1980) Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenterology 79: 695–702.

    PubMed  CAS  Google Scholar 

  25. Ohta H, Guan D, Tawil T, Liddle RA, Green GM (1990) Regulation of plasma cholecystokinin levels by bile and bile acids in the rat. Gastroenterology 99: 819–825.

    PubMed  CAS  Google Scholar 

  26. Mizutani S, Miyata M, Izukura M, Tanaka Y, Matsuda H (1995) Role of bile and trypsin in the release of cholecystokinin in humans. Pancreas 10: 194–199.

    PubMed  CAS  Google Scholar 

  27. Miyasaka K, Funakoshi A, shikado F, Kitani K (1992) Stimulatory and inhibitory effects of bile salts on rat pancreatic secretion. Gastroenterology 102: 598–604.

    PubMed  CAS  Google Scholar 

  28. Miyasaka K, Funakoshi A, Matsumoto M, Jimi A, Shikado F, Kitani K (1991) Absence of luminal bile increases duodenal content of cholecystokinin in rats. Proc Soc Exp Biol Med 197: 175–180.

    PubMed  CAS  Google Scholar 

  29. Nakamura R, Miyasaka K, Kuyama Y, Kitani K (1990) Luminal bile regulates cholecystokinin release in conscious rats. Dig Dis Sci 35: 55–60.

    PubMed  CAS  Google Scholar 

  30. Nakamura R, Miyasaka K, Funakoshi A, Kitani K (1989) Interactions between bile and pancreatic juice diversions on cholecystokinin release and pancreas in conscious rats. Proc Soc Exp Biol Med 192: 182–186.

    PubMed  CAS  Google Scholar 

  31. Noda A, Magee DF, Sarles H (1982) The role of gastric secretion in post-diverted pancreatic hypersecretion in conscious rats. J Physiol 326: 453–459.

    PubMed  CAS  Google Scholar 

  32. Green GM (1990) Role of gastric juice in feedback regulation of rat pancreatic secretion by luminal proteases. Pancreas 5: 445–451.

    PubMed  CAS  Google Scholar 

  33. Konturek SJ (1991) The importance of gastric secretion in the feedback control of interdigestive and postprandial pancreatic secretion in rats. Regul Pept 36: 85–97.

    PubMed  CAS  Google Scholar 

  34. Spannagel AW, Nakano I, Tawil T, Chey WY, Liddle RA, Green GM (1996) Adaptation to fat markedly increases the pancreatic secretory response to intraduodenal fat in the rat. Am J Physiol 270: G128 - G135.

    PubMed  CAS  Google Scholar 

  35. Green GM, Levan VH, Liddle RA (1986) Plasma cholecystokinin and pancreatic growth during adaptation to dietary protein. Am J Physiol 251: G70 - G74.

    PubMed  CAS  Google Scholar 

  36. Sharara AI, Bouras EP, Misukonis MA, Liddle RA (1993) Evidence for indirect dietary regulation of cholecystokinin release in rats. Am J Physiol 265: G107 - G112.

    PubMed  CAS  Google Scholar 

  37. Iwai K, Fukuoka S, Fushiki T, Tsujikawa M, Hirose M, Tsunasawa S, Sakiyama E (1987) Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem 262: 8956–8959.

    Google Scholar 

  38. Liddle RA, Misukonis MA, Pacy L, Balber AE (1992) Cholecystokinin cells purified by fluorescence-activated cell sorting respond to monitor peptide with an increase in intracellular calcium. Proc Natl Acad Sci USA 89: 5147–5151.

    PubMed  CAS  Google Scholar 

  39. Bouras EP, Misukonis MA, Liddle RA (1992) Role of calcium in monitor peptide-stimulated cholecystokinin release from perifused intestinal cells. Am J Physiol 262: G791 - G796.

    PubMed  CAS  Google Scholar 

  40. Miyasaka K, Funakoshi A, Shikado F, Uda K, Kitani K (1992) Effect of taurocholate on CCK release and pancreatic secretion produced by two CCK-releasing peptides in conscious rats. Pancreas 7: 536–542.

    PubMed  CAS  Google Scholar 

  41. Yamanishi R, Kotera J, Fushiki T, Soneda T, Saitoh T, Oomori T, Satoh T, Sugimoto E (1993) A specific binding of the cholecystokinin-releasing peptide (monitor peptide) to isolated rat small-intestinal cells. Biochem J 291: 57–63.

    PubMed  CAS  Google Scholar 

  42. Yamanishi R, Kotera J, Fushiki T, Soneda T, Iwanaga T, Sugimoto E (1993) Characteristic and localization of the monitor peptide receptor. Biosci Biotech Biochem 57: 1153–1156.

    CAS  Google Scholar 

  43. Bernard C, Charles N, Chayvialle JA, Cuber JC, Vilas F (1989) Bombesin and nutrients stimulate release of CCK through distinct pathways in the rat. Am J Physiol 256: G989 - G996.

    PubMed  Google Scholar 

  44. Cuber JC, Bernard G, Coy DH, Bernard C, Chayvialle JA (1990) Blockade of bombesin receptors with [Leu14-psi(CH2NH)-Leu13]bombesin fails to suppress nutrient-induced CCK release from rat duodenojejunum. Peptides 11: 255–258.

    PubMed  CAS  Google Scholar 

  45. Spannagel AW, Green GM, Guan D, Liddle RA, Faull K, Reeve JR, Jr (1996) Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci USA 93: 4415–4420.

    PubMed  CAS  Google Scholar 

  46. Chernick SS, Lepkovsky S, Chaikoff IL (1948) A dietary factor regulating the enzyme content of the pancreas: changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soy bean meal. Am J Physiol 155: 33–41.

    PubMed  CAS  Google Scholar 

  47. Booth AN, DeEds F, Ribelin WE, Robbins DJ (1960) Effect of raw soybean meal and amino acids on pancreatic hypertrophy in rats. Proc Soc Exp Biol Med 104: 681–683.

    CAS  Google Scholar 

  48. Rackis JJ (1974) Biological and physiological factors in soybeans. J Am Oil Chem Soc 51: 161A - 174A.

    PubMed  CAS  Google Scholar 

  49. Schneeman BO, Gallaher D (1986) Pancreatic response to dietary trypsin inhibitor: variations among species. In: Friedman M. ed. Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods. Plenum, New York, 199, pp. 185–187.

    Google Scholar 

  50. Liener IE, Hasdai A (1986) The effect of the long-term feeding of raw soyflour on the pancreas of the mouse and hamster. In: Friedman M. ed. Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods. Plenum, New York, 199, pp. 189–197.

    Google Scholar 

  51. Schwizer W, Fraser R, Borovicka J, Asal K, Crelier G, Kunz P, Boesiger P, Fried M (1996) Measurement of proximal and distal gastric motility with magnetic resonance imaging. Am J Physiol 34: G217 - G222.

    Google Scholar 

  52. Lyman RL, Monsen ER, Wilcox SS (1962) Pancreatic enzyme secretion produced in the rat by trypsin inhibitors. Am J Physiol 202: 1077–1082.

    PubMed  CAS  Google Scholar 

  53. Rothman SS, Wells H (1969) Selective effects of dietary egg white trypsin inhibitor on pancreatic enzyme secretion. Am J Physiol 216: 504–507.

    PubMed  CAS  Google Scholar 

  54. Rothman SS, Wells H (1967) Enhancement of pancreatic enzyme synthesis by pancreozymin. Am J Physiol 213: 215–218.

    PubMed  CAS  Google Scholar 

  55. Khayambashi H, Lyman RL (1969) Secretion of rat pancreas perfused with plasma from rats fed soybean trypsin inhibitor. Am J Physiol 217: 646–651.

    PubMed  CAS  Google Scholar 

  56. Brand SJ, Morgan RGH (1981) The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bio-assay. J Physiol 319: 325–343.

    PubMed  CAS  Google Scholar 

  57. Liddle RA, Goldfine ID, Williams JA (1984) Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87: 542–549.

    PubMed  CAS  Google Scholar 

  58. Green GM, Lyman RL (1972) Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc Soc Exp Biol Med 140: 6–12.

    PubMed  CAS  Google Scholar 

  59. Schneeman BO, Lyman RL (1977) Distribution of cholecystokinin activity in the rat small intestine. Digestion 15: 28–33.

    PubMed  CAS  Google Scholar 

  60. Schneeman BO, Lyman RL (1975) Factors involved in the intestinal feedback regulation of pancreatic enzyme secretion in the rat. Proc Soc Exp Biol Med 148: 897–903.

    PubMed  CAS  Google Scholar 

  61. Lyman RL, Olds BA, Green GM (1974) Chymotrypsinogen in the intestine of rats fed soybean trypsin inhibitor and its inability to suppress pancreatic enzyme secretions. J Nutr 104: 105–110.

    PubMed  CAS  Google Scholar 

  62. Green GM, Levan VH (1985) Inhibition of rat pancreatic secretion by elastase. IRCS Med Sci 13: 153, 154.

    Google Scholar 

  63. Fushiki T, Fukuoka S, Iwai K (1984) Stimulation of rat pancreatic enzyme secretion by diet components. Agric Biol Chem 48: 1867–1874.

    CAS  Google Scholar 

  64. Green GM, Olds BA, Matthews G, Lyman RL (1973) Protein, as a regulator of pancreatic enzyme secretion in the rat. Proc Soc Exp Biol Med 142: 1162–1167.

    PubMed  CAS  Google Scholar 

  65. Louie DS, May D, Miller P, Owyang C (1986) Cholecystokinin mediates feedback regulation of pancreatic enzyme secretion in rats. Am J Physiol 250: G252 - G259.

    PubMed  CAS  Google Scholar 

  66. Folsch UR, Cantor P, Wilms HM, Schafmayer A, Becker HD, Creutzfeldt W (1987) Role of cholecystokinin in the negative feedback control of pancreatic enzyme secretion in conscious rats. Gastroenterology 92: 449–458.

    PubMed  CAS  Google Scholar 

  67. Ihse I, Lilja P, Lundquist I (1977) Feedback regulation of pancreatic enzyme secretion by intestinal trypsin in man. Digestion 15: 303–308.

    PubMed  CAS  Google Scholar 

  68. Schafmayer A, Becker HD, Werner M, Folsch UR, Creutzfeldt W (1985) Plasma cholecystokinin levels in patients with chronic pancreatitis. Digestion 32: 136–139.

    PubMed  CAS  Google Scholar 

  69. Slaff J, Jacobson D, Tillman CR, Curington C, Toskes P (1984) Protease-specific suppression of pancreatic exocrine secretion. Gastroenterology 87: 44–52.

    PubMed  CAS  Google Scholar 

  70. Slaff JI, Wolfe MM, Toskes PP (1985) Elevated fasting cholecystokinin levels in pancreatic exocrine impairment: evidence to support feedback regulation. J Lab Clin Med 105: 282–285.

    PubMed  CAS  Google Scholar 

  71. Ederle A, Vantini I, Harvey RF, Cavallini G, Piubello W, Benini L, Scuro LA (1978) Fasting serum cholecystokinin immunoreactivity in chronic relapsing pancreatitis. Ric Clin Lab 8: 199–206.

    PubMed  CAS  Google Scholar 

  72. Gomez Cerezo J, Codoceo R, Fernandez Calle P, Molina F, Tenias JM, Vazquez JJ (1991) Basal and postprandial cholecystokinin values in chronic pancreatitis with and without abdominal pain. Digestion 48: 134–140.

    Google Scholar 

  73. Koide M, Okabayashi Y, Hasegawa H, Tani S, Fujisawa T, Nakamura T, Fujii M, Otsuki M (1989) [Plasma cholecystokinin concentration in patients with chronic pancreatitis measured by bioassay]. Nippon Shokakibyo Gakkai Zasshi 86: 2419–2424.

    Google Scholar 

  74. Jansen JBMJ, Hopman WPM, Lamers CBHW (1984) Plasma cholecystokinin concentrations in patients with pancreatic insufficiency measured by sequence-specific radioimmunoassays. Dig Dis Sci 29: 1109–1117.

    PubMed  CAS  Google Scholar 

  75. Cantor P, Petronijevic L, Worning H (1986) Plasma cholecystokinin concentrations in patients with advanced chronic pancreatitis. Pancreas 1: 488–493.

    PubMed  CAS  Google Scholar 

  76. Nustede R, Kohler H, Folsch UR, Schafmayer A (1991) Plasma concentrations of neurotensin and CCK in patients with chronic pancreatitis with and without enzyme substitution. Pancreas 6: 260–265.

    PubMed  CAS  Google Scholar 

  77. Liener IE, Goodale RL, Deshmukh A, Satterberg TL, Ward G, Dipietro CM, Bankey PE, Borner JW (1988) Effect of a trypsin inhibitor from soybeans ( Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology 94: 419–427.

    Google Scholar 

  78. Dlugosz J, Folsch UR, Creutzfeldt W (1983) Inhibition of intraduodenal trypsin does not stimulate exocrine pancreatic secretion in man. Digestion 26: 197–204.

    PubMed  CAS  Google Scholar 

  79. Adler G, Mullenhoff A, Koop I, Bozkurt T, Goke B, Beglinger C, Arnold R (1988) Stimulation of pancreatic secretion in man by a protease inhibitor (camostate). Eur J Clin Invest 18: 98–104.

    PubMed  CAS  Google Scholar 

  80. Layer P, Jansen JBMJ, Cherian L, Lamers CBW, Goebell H (1990) Feedback regulation of human pancreatic secretion. Gastroenterology 98: 1311–1319.

    PubMed  CAS  Google Scholar 

  81. Uvnas-Wallensten K, Efendic S, Johansson C (1980) Intraluminal secretion of gastrointestinal hormones. In: Creutzfeldt W, ed. Frontiers of Hormone Research. S. Karger, Basel, vol 7, pp. 65–71.

    Google Scholar 

  82. Uvnas-Wallensten K (1980) Luminal secretion of gut peptides. Clin Gastroenterol 9: 545–553.

    PubMed  CAS  Google Scholar 

  83. Lake-Bakaar G, Li H, Straus E, Tovoli S, Yalow RS (1981) Recovery of secretin in acid small intestinal lumen perfusates in the rabbit. Horm Metab Res 13: 682–685.

    PubMed  CAS  Google Scholar 

  84. Chang TM, Chey WY, Kim MS, Lee KY (1981) The release of biologically active secretin-like immunoreactivity into duodenal lumen of dogs. J Physiol (Lond) 320: 393–401.

    CAS  Google Scholar 

  85. Miyasaka K, Green GM (1983) Effect of rapid washout of proximal small intestine on pancreatic secretion in conscious rat. Gastroenterology 84: 1251 (Abstract).

    Google Scholar 

  86. Miyasaka K, Guan DF, Liddle RA, Green GM (1989) Feedback regulation by trypsin: evidence for intraluminal CCK-releasing peptide. Am J Physiol 257: G175 - G181.

    PubMed  CAS  Google Scholar 

  87. Lewis LD, Fordtran JS (1975) Effect of perfusion rate on absorption, surface area, unstirred water layer thickness, permeability, and intraluminal pressure in the rat ileum in vivo. Gastroenterology 68: 1509–1516.

    PubMed  CAS  Google Scholar 

  88. Lu L, Louie D, Owyang C (1989) A cholecystokinin releasing peptide mediates feedback regulation of pancreatic secretion. Am J Physiol 256: G430 - G435.

    PubMed  CAS  Google Scholar 

  89. Guan D, Ohta H, Tawil T, Liddle RA, Green GM (1990) CCK-releasing activity of rat intestinal secretion: effect of atropine and comparison with monitor peptide. Pancreas 5: 677–684.

    PubMed  CAS  Google Scholar 

  90. Herzig KH, Louie DS, Owyang C (1994) Somatostatin inhibits CCK release by inhibiting secretion and action of CCK-releasing peptide. Am J Physiol 266: G1156 - G1161.

    PubMed  CAS  Google Scholar 

  91. Owyang C, Herzig K, Lu L, Louie D (1990) Pancreatic enzymes in feedback regulation of cholecystokinin release. In: Thompson JC, ed. Gastrointestinal Endocrinology: Receptors and Post-Receptor Mechanisms. Academic Press, Inc., New York, pp. 297–306.

    Google Scholar 

  92. Li Y, Hao Y, Owyang C (1995) Evidence for autoregulation of cholecystokinin secretion during diversion of bile pancreatic juice in rats. Gastroenterology 109: 231–238.

    PubMed  CAS  Google Scholar 

  93. Levan VH, Liddle RA, Green GM (1987) Jejunal bypass stimulation of pancreatic growth and cholecystokinin secretion in rats: importance of luminal nutrients. Gut 28: 25–29.

    PubMed  Google Scholar 

  94. Spannagel AW, Saucedo J, Guan D, Green GM (1994) Role of intestinal CCK-releasing peptide in peptone-stimulated pancreatic enzyme secretion. Gastroenterology 106: A1051 (Abstract).

    Google Scholar 

  95. Miyasaka K, Funakoshi A (1992) Isolation and bioactivity of putative cholecystokinin-releasing peptide from rat small intestinal mucosa. Gastroenterol Jpn 27: 83–87.

    PubMed  CAS  Google Scholar 

  96. Herzig K-H, Schon I, Tatemoto K, Ohe Y, Li Y, Folsch UR (1996) Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc Natl Acad Sci USA 93: 7927–7932.

    PubMed  CAS  Google Scholar 

  97. Whitcomb DC, Hoffman G, Wood PG, Kraykovic RL, Spannagel AW, Guan D, Liddle RA, Reeve JR, Jr, Green GM (1996) Luminal CCK releasing factor (LCRF) is a neuropeptide localized to nerves in the gastrointestinal tract and pancreas. Pancreas 13: 460 (Abstract).

    Google Scholar 

  98. Tarasova N, Spannagel AW, Green GM, et al. (1997) Distribution and localization of a novel cholecystokinin releasing factor in the rat gastrointestinal tract. Endocrinology 138: 5550–5554.

    PubMed  CAS  Google Scholar 

  99. Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49: 325–344.

    PubMed  CAS  Google Scholar 

  100. Spannagel AW, Knudsen J, Liddle RA, Greeley GH, Jr Reeve JR, Jr, Green GM (1996) Bioactivity of synthetic LCRF peptides. Pancreas 13: 457 (Abstract).

    Google Scholar 

  101. Straus E, Yalow RS (1976) Artifacts in the radioimmunoassay of peptide hormones in gastric and duodenal secretions. J Lab Clin Med 87: 292–298.

    PubMed  CAS  Google Scholar 

  102. Ayalon A, Inoue K, Rayford PL, Thompson JC, Watson LC, Yazigi R (1982) Removal of circulating gastrin and cholecystokinin into the lumen of the small intestine. Digestion 24: 118–125.

    PubMed  Google Scholar 

  103. Jordan PH, Jr, Yip BSSC (1974) Origin of gastrin in gastric juice. Am J Surg 128: 336–339.

    PubMed  Google Scholar 

  104. Yip BS, Jordan PH, Jr (1973) The recovery of intravenously administered radiolabeled gastrin in gastric juice of dogs. Surgery 74: 412–419.

    PubMed  CAS  Google Scholar 

  105. Uvnas-Wallensten K (1977) Occurrence of gastrin in gastric juice, in antral secretion, and in antral perfusates of cats. Gastroenterology 73: 487–491.

    PubMed  CAS  Google Scholar 

  106. Fujita T, Kobayashi S (1981) The endocrine cell. In: Bloom SR, Polak JM, eds. Gut Hormones. Churchill Livingstone, New York, pp. 90–95.

    Google Scholar 

  107. Solcia E, Frigerio B, Capella C (1979) Gastrin cells and related endocrine cells modulating gastric secretion. In: Rehfeld J, Amdrup E, eds. Gastrins and the Vagus. Academic Press, London, pp. 31–39.

    Google Scholar 

  108. Uvnas-Wallensten K (1978) Release of substance P-like immunoreactivity into the antral lumen of cats. Acta Physiol Scand 104: 464–468.

    PubMed  CAS  Google Scholar 

  109. Playford RJ, Woodman AC, Clark P, Watanapa P, Vesey D, DePrez PH, Williamson RCN, Calam J (1993) Effect of luminal growth factor preservation on intestinal growth. Lancet 341: 843–848.

    PubMed  CAS  Google Scholar 

  110. Madara JL (1988) Tight junction dynamics: is paracellular transport regulated? Cell 53: 497–498.

    PubMed  CAS  Google Scholar 

  111. Madara JL (1989) Loosening tight junctions. Lessons from the intestine. J Clin Invest 83: 1089–1094.

    PubMed  CAS  Google Scholar 

  112. Pappenheimer JR, Dahl CE, Karnovsky ML, Maggio JE (1994) Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci USA 91: 1942–1945.

    PubMed  CAS  Google Scholar 

  113. Franco-Saenz R, Kong A, Papahadjopoulos D, Saffran M, Szoka F (1979) A model for the study of the oral administration of peptide hormones. Can J Biochem 57: 548–553.

    PubMed  Google Scholar 

  114. Alino SF, Uvnas-Moberg K (1989) Differential effect of bombesin on intraluminal and intravascular release of gastric gastrin and somatostatin in anaesthetized rats. Acta Physiol Scand 135: 565–571.

    PubMed  CAS  Google Scholar 

  115. Fukuoka S, Tsujikawa M, Fushiki T, Iwai K (1986) Stimulation of pancreatic enzyme secretion by a peptide purified from rat bile-pancreatic juice. J Nutr 116: 1540–1546.

    PubMed  CAS  Google Scholar 

  116. Fushiki T, Kajiura H, Fukuoka S, Kido K, Semba T, Iwai K (1989) Evidence for an intraluminal mediator in rat pancreatic enzyme secretion: reconstitution of the pancreatic response with dietary protein, trypsin and the monitor peptide. J Nutr 119: 622–627.

    PubMed  CAS  Google Scholar 

  117. Bohe M, Borgström A, Lindström C, Ohlsson, K (1986) Pancreatic endoproteases and pancreatic secretory trypsin inhibitor immunoreactivity in human Paneth cells. J Clin Pathol 39: 786–793.

    PubMed  CAS  Google Scholar 

  118. Fukayama M, Hayashi Y, Koike M, Ogawa M, Kosaki G (1986) Immunohistochemical localization of pancreatic secretory trypsin inhibitor in fetal and adult pancreatic and extrapancreatic tissues. J Histochem Cytochem 29: 227–235.

    Google Scholar 

  119. Freeman TC, Playford RJ, Quinn C, Beardshall K, Poulterm L, Young J, Calam J (1990) Pancreatic secretory trypsin inhibitor in gastrointestinal mucosa and gastric juice. Gut 31: 1318–1323.

    PubMed  CAS  Google Scholar 

  120. Guan D, Ohta H, Tawil T, Spannagel AW, Liddle RA, Green GM (1990) Lack of cholinergic control in feedback regulation of pancreatic secretion in the rat. Gastroenterology 98: 437–443.

    PubMed  CAS  Google Scholar 

  121. Levan VH, Green GM (1986) Effect of atropine on rat pancreatic secretory response to trypsin inhibitors and protein. Am J Physiol 251: G64 - G69.

    PubMed  CAS  Google Scholar 

  122. Krawisz BR, Miller LJ, Dimagno EP, Go VLW (1980) In the absence of nutrients, pancreatic-biliary secretions in the jejunum do not exert feedback control of human pancreatic or gastric function. J Lab Clin Med 95: 13–18.

    PubMed  CAS  Google Scholar 

  123. Toskes PP (1986) Negative feedback inhibition of pancreatic exocrine secretion in humans. Adv Exp Med Biol 199: 143–152.

    PubMed  CAS  Google Scholar 

  124. Liddle RA (1995) Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Physiol 269: G319 - G327.

    PubMed  CAS  Google Scholar 

  125. Green GM (1994) Feedback inhibition of cholecystokinin secretion by bile acids and pancreatic proteases. Ann NY Acad Sci 713: 167–179.

    PubMed  CAS  Google Scholar 

  126. Spannagel AW (1996) Theoretical resolution of disparate views concerning feedback regulation of pancreatic secretion. Gastroenterology 110: A432 (Abstract).

    Google Scholar 

  127. Levan VH, Green GM (1986) Effect of diversion of bile-pancreatic juice to the ileum on pancreatic secretion and adaptation in the rat. Proc Soc Exp Biol Med 181: 139–143.

    PubMed  CAS  Google Scholar 

  128. Miyasaka K, Green GM (1983) Effect of atropine on rat basal pancreatic secretion during return or diversion of bile-pancreatic juice. Proc Soc Exp Biol Med 174: 187–192.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spannagel, A.W., Green, G.M. (1999). Intraluminal Regulatory Peptides and Intestinal Cholecystokinin Secretion. In: Greeley, G.H. (eds) Gastrointestinal Endocrinology. Contemporary Endocrinology, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-695-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-695-9_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-054-0

  • Online ISBN: 978-1-59259-695-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics