Skip to main content

Cholecystokinin

Hormonal and Neurocrine Regulator of Postprandial Gastrointestinal Function

  • Chapter
Gastrointestinal Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 8))

  • 176 Accesses

Abstract

After the ingestion of a meal, the proximal gastrointestinal tract releases a number of peptide substances into the interstitial space, blood stream, and interstitial lumen. These substances initiate a number of responses both in the gastrointestinal tract and in other organ systems. Within the GI tract, these responses, such as slowing of gastric emptying, gallbladder emptying, pancreatic exocrine secretion, and inhibition of gastric acid secretion, act to match the entry of nutrients into the small intestine with the absorptive and digestive capacity of the intestine to ensure efficient digestion and absorption of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA (1985) Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75: 1144–152.

    Google Scholar 

  2. Kleibeuker JH, Beekhuis H, Jansen JB, Piers DA, Lamers CB (1988) Cholecystokinin is a physiological hormonal mediator of fat-induced inhibition of gastric emptying in man. Eur J Clin Invest 18: 173–177.

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe SW, Chey WY, Lee KY, Chang TM (1984) Importance of pancreatic enzyme secretion in response to fat in dog. Gastroenterology 86: 1293.

    Google Scholar 

  4. Liddle RA, Green GM, Conrad CK, Williams JA (1986) Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol 251: G243 - G248.

    PubMed  CAS  Google Scholar 

  5. Lewis LD, Williams JA (1990) Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol 258: G512 - G518.

    PubMed  CAS  Google Scholar 

  6. Chen YF, Chey WY, Chang TM, Lee KY (1985) Duodenal acidification releases cholecystokinin. Am J Physiol 249: G29 - G33.

    PubMed  CAS  Google Scholar 

  7. Isaacs PET, Ladas S, Forgacs IC, Dowling RH, Ellam SV, Adrian TE, Bloom SR (1987) Comparison of effects of ingested medium-and long-chain triglyceride on gallbladder volume and release of cholecystokinin and other gut peptides. Dig Dis Sci 32: 481–486.

    Article  PubMed  CAS  Google Scholar 

  8. McLaughlin JT, Luca MG, Jones MN, Thompson DG, Dockray GJ (1996) Cholecystokinin is released by C12 but not C10 saturated acyl chain fatty acid in humans: evidence for a critical acyl chain length. Gastroenterology 110: A099.

    Google Scholar 

  9. Lee M, Lam T, Gomez G, Greeley GH Jr (1996) Effect of elevated dietary fat on intestinal cholecystokinin gene expression in the rat. Gastroenterology 110: A816.

    Google Scholar 

  10. Liddle RA (1994) Regulation of cholecystokinin synthesis and secretion in rat intestine. J. Nutr 124: 13085–13145.

    Google Scholar 

  11. Fujita T (1991) Taste cells in the gut and on the tongue: Their common, paraneuronal features. Physiol Behav 49: 883–885.

    Article  PubMed  CAS  Google Scholar 

  12. Furness JB, Costa M, Gibbins IL, Llewellyn-Smith IJ (1985) Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell Tissue Res 241: 155–163.

    Article  PubMed  CAS  Google Scholar 

  13. Mangel AW (1995) Electrophysiology of intestinal cholecystokinin secretion. Regul Pept 56: 121–129.

    Article  PubMed  CAS  Google Scholar 

  14. Debas HT, Farooq O, Grossman MI (1975) Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology 68: 1211–1217.

    PubMed  CAS  Google Scholar 

  15. Raybould HE, Tache Y (1988) Cholecystokinin inhibits gastric motility and emptying via a capsaicinsensitive vagal pathway in rats. Am J Physiol 255: G242 - G246.

    PubMed  CAS  Google Scholar 

  16. Forster ER, Green T, Elliot M, Bremner A, Dockray GJ (1990) Gastric emptying in rats: role of afferent neurons and cholecystokinin. Am J Physiol 258: G552 - G556.

    PubMed  CAS  Google Scholar 

  17. Raybould HE, Roberts ME, Dockray GJ (1987) Reflex decreases in intragastric pressure in response to cholecystokinin in rats. Am J Physiol 253: G165 - G170.

    PubMed  CAS  Google Scholar 

  18. Murphy RB, Smith GP, Gibbs J (1987) Pharmacological examination of cholecystokinin (CCK-8)induced contractile activity in the rat isolated pylorus. Peptides 8: 127–134.

    Article  PubMed  CAS  Google Scholar 

  19. Valenzuela JE, Grossman MI (1975) Effect of pentagastrin and caerulein on intragastric pressure in the dog. Gastroenterology 69: 1383, 1384.

    Google Scholar 

  20. Roze C, Couturier D, Chariot J, Debray C (1977) Inhibition of gastric electrical and mechanical activity by intraduodenal agents in pigs and effects of vagotomy. Digestion 15: 526–539.

    Article  PubMed  CAS  Google Scholar 

  21. Raybould HE, Lloyd KCK (1994) Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways. Ann NY Acad Sci 713: 143–156.

    Google Scholar 

  22. Grider JR (1994) Role of cholecystokinin in the regulation of gastrointestinal motility. J Nutr 124: 1334S - 1339S.

    PubMed  CAS  Google Scholar 

  23. Borovicka J, Kreiss C, Asal K, Remy B, Mettraux C, Wells A, Read NW, Jansen JB, D’Amato M, Delaloye AB, Fried M, Schwizer W (1996) Role of cholecystokinin as a regulator of solid and liquid gastric emptying in humans. Am J Physiol 271: G448 - G453.

    PubMed  CAS  Google Scholar 

  24. Smith GP, Gibbs J (1994) Satiating effects of cholecystokinin. Ann NY Acad Sci 713: 236–241.

    Article  PubMed  CAS  Google Scholar 

  25. Ritter RC, Bremner LA, Tamura CS (1994) Endogenous CCK and peripheral neural substrates of intestinal satiety. Ann NY Acad Sci 713: 255–267.

    Article  PubMed  CAS  Google Scholar 

  26. McHugh PR, Moran TH (1991) Pyloric CCK receptors and the afferent vagal system mediate CCK satiety. In Brain-Gut Interactions ( Tache Y, Wingate D, eds.), CRC, Boca Raton, pp. 263–266.

    Google Scholar 

  27. Raybould HE, Zittel TT, Holzer HH, Lloyd KCK, Meyer JH (1994) Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal. Dig Dis Sci 39: 41S - 43S.

    Article  PubMed  CAS  Google Scholar 

  28. Grundy D, Scratcherd T (1989) Sensory afferents from the gastrointestinal tract. In: Schultz SG, Wood JD, Rauner BB, eds. Handbook of Physiology, Section 6: The Gastrointestinal System. American Physiological Society, Bethesda, vol 1, pp. 593–620.

    Google Scholar 

  29. Sengupta JN, Gebhart GF (1994) Gastrointestinal afferent fibers and sensation. In: Johnson LR, ed. Physiology of the Gastrointestinal Tract. Raven, York, vol 1, pp. 483–519.

    Google Scholar 

  30. Davison JS, Clarke GD (1988) Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol 255: G55 - G61.

    PubMed  CAS  Google Scholar 

  31. Schwartz GJ, Moran TH (1996) Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 20: 47–56.

    Article  PubMed  CAS  Google Scholar 

  32. Blackshaw LA, Grundy D (1990) Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nery Syst 31: 191–201.

    Article  CAS  Google Scholar 

  33. Moran TH, Norgren R, Crosby RJ, McHugh PR (1990) Central and peripheral transport of vagal cholecystokinin binding sites occurs in vagal afferent fibers. Brain Res 526: 95–102.

    Article  PubMed  CAS  Google Scholar 

  34. Corp ES, McQuade J, Moran TH, Smith GP (1993) Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res 623: 161–166.

    Article  PubMed  CAS  Google Scholar 

  35. Mercer JG, Lawrence CB (1992) Selectivity of cholecystokinin (CCK) receptor antagonists, MK-329 and L-365,260, for axonally-transported CCK binding sites on the rat vagus nerve. Neurosci Lett 137: 229–231.

    Article  PubMed  CAS  Google Scholar 

  36. Ghilardi JR, Allen CJ, Vigna SR, McVey DC, Mantyh PW (1994) Cholecystokinin and neuropeptide Y receptors on single rabbit vagal afferent ganglion neurons: site of prejunctional modulation of visceral sensory neurons. Brain Res 633: 33–40.

    Article  PubMed  CAS  Google Scholar 

  37. Mercer JG, Farningham DAH, Lawrence CB (1992) Effect of neonatal capsaicin treatment on cholecystokinin (CCK-8) satiety and axonal transport of CCK binding sites in the rat vagus nerve. Brain Res 569: 311–316.

    Article  PubMed  CAS  Google Scholar 

  38. Widdop RE, Krstew E, Mercer LD, Carlberg M, Beart PM, Jarrott B (1994) Electrophysiological and autoradiographical evidence for cholecystokinin A receptors on rat isolated nodose ganglia. J Auton Nerve Syst 46: 65–73.

    Article  CAS  Google Scholar 

  39. Raybould, HE, Middlekauf HR, Mayer EA, Ennes H (1996) Cholecystokinin ( CCK) increases intracellular calcium in nodose neurons in short term culture. FASEB 10: A380

    Google Scholar 

  40. Davison JS, Fraser KA (1994) Hormonal modulation of vagal afferents. In: Tache Y, Wingate DL, Burks TF, eds. Innervation of the Gut: Pathophysiological Implications. CRC Press, Boca Raton, pp. 103–115.

    Google Scholar 

  41. Mönnekes H, Liauer G, Arnold H (1996) Intraduodenal infusion of lipids induces c-fos expression in the locus coeruleus area postema, nucleus of the solitary tract and paraventricular nucleus of the hypothalamus via CCK-A receptors and capsaicin-sensitive vagal pathways. Regul Peptides 64: A130.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raybould, H.E. (1999). Cholecystokinin. In: Greeley, G.H. (eds) Gastrointestinal Endocrinology. Contemporary Endocrinology, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-695-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-695-9_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-054-0

  • Online ISBN: 978-1-59259-695-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics