Skip to main content

Biosynthesis and Processing of Gastrointestinal Peptide Hormones

  • Chapter
  • 179 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 8))

Abstract

The field of gut peptides is constantly evolving, as new members are being discovered and knowledge of existing members increases. This review is by nature selective, and the description of each peptide and the bibliography reflects that. The peptide growth factors and cytokines produced by the gut were not included. A very good book reviewing the gut peptides that includes these substances appeared in 1994 (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walsh JH, Dockray GJ (1994) Gut Peptides: Biochemistry and Physiology. Raven, New York.

    Google Scholar 

  2. Furness JB, Costa M (1987) The Enteric Nervous System. Churchill Livingstone, Edinburgh.

    Google Scholar 

  3. Elde R, Hokfelt T (1993) Coexistence of opioid peptides with other neurotransmitters. In: Opioids Herz A, (ed.) Springer-Verlag, Berlin, pp. 585–624.

    Google Scholar 

  4. Sundler P, Ekblad E, Hakanson R (1993) Localization and colocalization of gastrointestinal peptides. In: Gastrointestinal regulatory peptides Brown DR, (ed.) Springer-Verlag, Berlin, pp. 1–28.

    Google Scholar 

  5. Furness JB, Morris JL, Gibbins I, Costa M (1989) Chemical coding of neurons and plurichemical transmission. Ann Rev Pharmacol Toxicol 29: 289–306.

    Article  CAS  Google Scholar 

  6. Rouille Y, Duguay S, Lund K, Furuta M, Gong Q, Lipkind G, Oliva AA, Jr., Chan SJ, Steiner DF (1995) Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Frontiers Neuroendocrinol 16: 322–361.

    Article  CAS  Google Scholar 

  7. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAS encoding different polypeptide products. Nature 298: 240–244.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenfeld MG, Emeson RB, Yeakley JM, Merillat N, Hedjran F, Lenz J, Delsert C (1994) Calcitonin gene-related peptide: A neuropeptide generated as a consequence of tissue-specific, developmentally regulated alternative RNA processing events. Annals of New York Acad Sci 657: 1–17.

    Google Scholar 

  9. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84: 3881–3885.

    Article  PubMed  CAS  Google Scholar 

  10. Rodrigo J, Polak JM, Fernandez L, Ghatei MA, Mulderry P, Bloom SR (1985) Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat and monkey esophagus. Gastroenterology 88: 444–451.

    PubMed  CAS  Google Scholar 

  11. Stemini C, Reeve JR, Jr., Brecha N (1987) Distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal and capsaicin-treated rats. Gastroenterology 93: 852–862.

    Google Scholar 

  12. Ekblad E, Ekman R, Hakanson R, Sundler F (1988) Projfections of peptide-containing neurons in rat colon. Neuroscience 27: 655–674.

    Article  PubMed  CAS  Google Scholar 

  13. Furness JB, Costa M, Rokaeus A, Mcdonald TJ, Brooks B (1987) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and releationship to other enteric neurons. Cell Tissue Res 250: 607–615.

    Article  PubMed  CAS  Google Scholar 

  14. Furness JB, Pompolo S, Murphy R, Giraud A (1989) Projections of neurons with neuromedin U-like immunoreactivity in the small intestine of the guinea pig. Cell Tissue Res 257: 415–422.

    Article  PubMed  CAS  Google Scholar 

  15. Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 65: 599–613.

    Google Scholar 

  16. Harper AA, Raper HS (1943) Pancreozymin, a stimulant of secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 102: 115–125.

    PubMed  CAS  Google Scholar 

  17. Vanderhaeghen JJ, Signeau JC, Gepts LO (1975) New peptide in the vertebrate CNS reacting with gastrin antibodies. Nature (London) 257: 604–605.

    Article  CAS  Google Scholar 

  18. Dockray GJ, Gregory RA, Hutchinson JB (1978) Isolation, structure, and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 264: 568–570.

    Article  Google Scholar 

  19. Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE (1984) Cloning and sequence analysis of a cDNA encoding rat precholecysotokinin Proc Natl Acad Sci USA 81: 726–730.

    CAS  Google Scholar 

  20. Beinfeld MC, Meyer DK, Eskay RL, Jensen RT, Brownstein MJ (1981) The distribution of cholecystokinin in the central nervous system of the rat as determined by radioimmunoassay. Brain Res 212: 51–57.

    Article  PubMed  CAS  Google Scholar 

  21. Baeuerle PA, Huttner WB (1987) Tyrosine sulfation is a trans-golgi-specific modification. Journal of Cell Biology 105: 2655–2664.

    Article  PubMed  CAS  Google Scholar 

  22. Niehrs C, Huttner WB (1990) Purification and characterization of tyrosylprotein sulfotransferase. EMBO J 9: 35–42.

    PubMed  CAS  Google Scholar 

  23. Varro A, Dockray GJ (1986) Identification of the c-terminal flanking peptide of precholecystokinin in rat brain by a novel radioimmunoassay. Brain Res 376: 213–216.

    Article  PubMed  CAS  Google Scholar 

  24. Meek JL, Iadarola MJ, Giorgi 0 (1983) Cholecystokinin turnover in brain. Brain Res 276: 375–378.

    CAS  Google Scholar 

  25. Beinfeld MC (1994) Inhibition of pro-cholecystokinin sulfation by treatment with sodium chlorate alters its processing and decreases cellular content and secretion of CCK 8. Neuropeptides 26: 195–200.

    Article  PubMed  CAS  Google Scholar 

  26. Viereck JC, Beinfeld MC (1992) Purification and characterization of an endoprotease from rat brain synaptosomes which generates CCK 8 from CCK 33. J Biol Chem 267:19, 475–19, 481.

    Google Scholar 

  27. Cawley NX, Chen H, Beinfeld MC, Loh YP (1996) Specificity and kinetic studies on the cleavage of various prohormone mono- and paired-basic residue sites by yeast aspartic protease 3. J Biol Chem 271: 4168–4176.

    Article  PubMed  CAS  Google Scholar 

  28. Loh YP, Chang TL (1982) Pro-opiocortin converting activity in rat intermediate and neural lobe secretory granules. FEBS Lett 137: 57–62.

    Article  PubMed  CAS  Google Scholar 

  29. Azaryan AV, Wong M, Friedman TC, Cawley NX, Estivariz FE, Chen H, Loh YP (1993) Purification and characterization of a paired basic residue-specific yeast aspartic protease encoded by the YAP3 gene: Similarity to the mammalian pro-opiomelanocortin converting enzyme. J Biol Chem 268: 11,968–11, 975.

    Google Scholar 

  30. Shafer MKH, Day R, Cullinan WE, Chretien M, Seidah NG, Watson SJ (1993) Gene expression of prhormone and proprotein convertases in the rat CNS: A comparative in situ hybridization analysis. J Neuros 13: 1258–1279.

    Google Scholar 

  31. Yoon JY, Beinfeld MC (1994) A mouse intestinal tumor cell line, STC-1, expresses CCK, PC1, and PC2 mRNA, processes pro CCK to CCK 8, and displays cAMP regulated release. Endocrine 2: 973–977.

    CAS  Google Scholar 

  32. Scopsi L, Gullo M, Rilke F, Martin S, Steiner DF (1995) Proprotein convertases (PCl/PC3 and PC2) in normal and neoplastic human tissues: Their use as markers of neuroendocrine differentiation. J Clin Endocrinol Metab 80: 294–301.

    Google Scholar 

  33. Yoon JY, Beinfeld MC (1995) Expression of antisense PC1 in stably transfected RINSF cells significantly reduces CCK 8 biosynthesis. Regul Pept 59: 221–227.

    Article  PubMed  CAS  Google Scholar 

  34. Yoon JY, Beinfeld MC (1997) Prohermone convertase 1 is necessary for the formation of cholecystokinin 8 in RInSF and ST-1 cells. J Biol Chem 272: 9450–9456.

    Article  PubMed  CAS  Google Scholar 

  35. Yanagisawa M, Kirihara H, Kimura S (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415.

    Article  PubMed  CAS  Google Scholar 

  36. Yanagisawa M, Inoue A, Ishikawa T (1988) Primary structure, synthesis, and biological activity of rat endothelin, and endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci USA 85: 6964–6947.

    Article  PubMed  CAS  Google Scholar 

  37. Saida K, Mitsui Y, Ishida N (1989) A novel peptide, vasoactive intestinal contractor, of a new (endothelin) peptide family. Molecular cloning, expression and biological activity. J Biol Chem 264:14, 613–14, 616.

    Google Scholar 

  38. Inagaki H, Bishop AE, Escrig C, Wharton J, Allen-Mersh TG, Polak JM (1991) Localization of endothelinlike immunoreactivity and endothelin binding sites in human colon. Gastroenterology 101: 47–54.

    PubMed  CAS  Google Scholar 

  39. Ghatei MA, Takahashi K, Kirkland SC, Jones PM, Perera T, Wright NA, Bloom SR (1994) Endothelin. In: Walsh JH and Dockray GJ, ed. Gut Peptides: Biochemistry and Physiology, Raven, New York, p. 389–399.

    Google Scholar 

  40. Eaker E, Sallustio J, Kohler J, Visner G (1995) Endothelin-1 expression in myenteric neurons cultured from rat small intestine. Regul Pept 55: 167–177.

    Article  PubMed  CAS  Google Scholar 

  41. Dilella AG, Ohlstein E, Elshourbagy N, Bratnagar PK, Nambi P, Dewolf WEJ, Caltabiano MM (1991) Expression of human preproendothelin-1 cDNA in cos cells results in the production of mature vasoactive endothelin-1. Biochem Biophys Res Comm 175: 697–705.

    Article  PubMed  CAS  Google Scholar 

  42. Kosaka T, Suzuki T, Ishibashi Y, Matsumoto H, Itoh Y, Ohkubo S, Ogi K, Kitada C, Onda H, Fujino M (1994) Biosynthesis of human endothelins in transformants expressing cDNAs for human preproendothelins. J Biochem 116: 443–449.

    PubMed  CAS  Google Scholar 

  43. Yorimitsu K, Moroi K, Inagaki N, Saito T, Musuda Y, Masaki T, Seino S, Kimura S (1995) Cloning and sequencing of a human endothelin converting enzyme in renal adenocarcinoma (ACHN) cells producing endothelin-2. Biochem Biophys Res Comm 208: 721–727.

    Article  PubMed  CAS  Google Scholar 

  44. Tatemoto K, Rokaeus A, Jornvall H, Mcdonald TJ, Mutt V (1983) Galanin-a novel biologically active peptide from porcine intestine. FEBS Lett 164: 124–128.

    Article  PubMed  CAS  Google Scholar 

  45. Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci USA 75: 4115–4119.

    Article  PubMed  CAS  Google Scholar 

  46. Evans HF, Shine J (1991) Human galanin: molecular cloning reveals a unique structure. Endocrinology 129: 1682–1684.

    Article  PubMed  CAS  Google Scholar 

  47. Rokaeus A (1994) Galanin. In: Walsh JH and Dockray GJ Gut Peptides: Biochemistry and Physiology. Raven, New York, p. 525–552.

    Google Scholar 

  48. Beinfeld MC, Meyer DK, Brownstein MJ (1980) Cholecystokinin octapeptide in the rat hypothalamoneuro-hypophysial system. Nature 288: 376–378.

    Article  PubMed  CAS  Google Scholar 

  49. Melander T, Hokfelt T, Rokaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several vertebrate species. Cell Tissue Res 239: 253–270.

    Article  PubMed  CAS  Google Scholar 

  50. Bersani M, Thin L, Rasmussen T, Holst JJ (1991) Galanin and galanin extended at the N-terminus with seven and nine amino acids are produced in and secreted from the porcine adrenal medulla in almost equal amounts. Endocrinology 129: 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  51. Bersani M, Johnsen AH, Hojrup P, Dunning BE, Andreasen JJ, Holst JJ (1991) Human galanin: primary structure and identificatin of two molecular forms. FEBS Lett 283: 189–194.

    Article  PubMed  CAS  Google Scholar 

  52. Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–117.

    Article  PubMed  CAS  Google Scholar 

  53. Kopin AS, Lee Y, Mcbride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF, Jr., Beinborn M (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA 89: 3605–3609.

    Article  PubMed  CAS  Google Scholar 

  54. Mcguigan JL (1968) Gastrin mucosal intracellular localization by immunofluorescence. Gastroenterology 55: 315–327.

    PubMed  CAS  Google Scholar 

  55. Sundler F, Hakanson R (1991) Gastric endocrine cell typing at the light microscopic level. In: The stomach as an endocrine organ, Hakanson R and Sundler F, ed. Elsevier, Amsterdam, pp. 9–26.

    Google Scholar 

  56. Larsson LI (1978) ACTH-like immunoreactivity in the gastrin cell. Independent changes in gastrin and ACTH-like immunoreactivity during ontogeny. Histochemistry 56: 245–251.

    Article  PubMed  CAS  Google Scholar 

  57. Tsuruo Y, Hokfelt T, Visser TJ, Kimmel JR, Brown JC, Verhofstadt A, Walsh J (1988) TRH-like immunoreactivity in endocrine cells and neurons in the gastrointestinal tract of the rat and guinea pig. Cell Tissue Res 253: 347–356.

    Article  PubMed  CAS  Google Scholar 

  58. Bjartell A, Ekman R, Hedenbro J, Sjolund K, Sundler F (1989) Delta sleep-inducing peptide (DSIP)-like immunoreactivity in gut: coexistence with known peptide hormones. Peptides 10: 163–170.

    Article  PubMed  CAS  Google Scholar 

  59. Yoo GJ, Powell CT, Agarwal KL (1982) Molecular cloning and nucleotide sequence of full-length cDNA coding for porcine gastrin. Proc Natl Acad Sci USA 79: 53–57.

    Article  Google Scholar 

  60. Varndell IM, Harris A, Tapia FJ, Yanaihara N, Demey J, Bloom SR, Polak JM (1983) Intracellular topography of immunoreactive gastrin demonstrated using electron immunocytochemistry. Experientia 39: 713–717.

    Article  PubMed  CAS  Google Scholar 

  61. Rehfeld JF, Johnsen AH (1994) Identification of gastrin component I as gastrin-71. European J Biochem 223: 765–773.

    Article  CAS  Google Scholar 

  62. Varro A, Desmond H, Pauwels S, Gregory H, Young J, Dockray GJ (1988) The human gastrin precursor. Characterization of phosphorylated forms and fragments. Biochem J 256: 951–957.

    Google Scholar 

  63. Varro A, Nemeth J, Bridson J, Lonovics J, Dockray GJ (1990) Modulation of posttranslational processing of gastrin precursor in dogs. Am J Physiol 258: G904 - G909.

    PubMed  CAS  Google Scholar 

  64. Sugano K, Aponte GW, Yamada T (1985) Identification and characterization of glycine-extended post-translational processing intermediates of pro gastrin in porcine stomach. J Biol Chem 260:11, 724–11, 729.

    Google Scholar 

  65. Hilstead L, Rehfeld JF, Schwartz TW (1986) Impaired alpha-carboxyamidation of gastrin in vitamin C-deficient guinea pigs. FEBS Lett 196: 151–155.

    Article  Google Scholar 

  66. Azuma T, Taggart RT, Walsh JH (1987) Effects of bombesin on the release of glycine-extended pro-gastrin (gastrin G) in rat antral tissue culture. Gastroenterology 93: 322–329.

    PubMed  CAS  Google Scholar 

  67. Seva C, Dickinson CJ, Yamada T (1994) Growth-promoting effects of glycine-extended progastrin. Science 265: 410–412.

    Article  PubMed  CAS  Google Scholar 

  68. Marino LR, Takeuch T, Dickinson CJ, Yamada T (1991) Expression and post-translational processing of gastrin in heterologous endocrine cells. J Biol Chem 266: 6133–6136.

    PubMed  CAS  Google Scholar 

  69. Brown JC, Dryburgh JR (1971) A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 49: 867–872.

    Google Scholar 

  70. Polak JM, Bloom SR, Kuzio M, Brown JC, Pearse AGE (1973) Cellular localisation of gastric inhibitory polypeptide in the duodenum and jejunum. Gut 15: 284–288.

    Article  Google Scholar 

  71. Buchan AM, Polak JM, Kuzio M, Solcia E, Pearse AGE (1978) Electron immunocytochemical evidence for the K cell localization of gastric inhibitory peptide ( GIP) in man. Histochemistry 546: 37–44.

    Google Scholar 

  72. Takeda J, Seino Y, Tanaka K-I, Fukumoto H, Kayano T, Takahashi H, Mitani T, Kurono M, Suzuki T, Tobe T, Imura H (1987) Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Nat Natl Acad Sci USA 84: 7005–7008.

    Article  CAS  Google Scholar 

  73. Karup T, Holst JJ (1984) The heterogeneity of gastric inhibitory polypeptide in porcine and human gastrointestinal mucosa evaluated with fiver different antisera. Regul Pept 9: 35–46.

    Article  Google Scholar 

  74. Erspamer V, Falconiers-erspamer G, Inselvini M, Negri L (1972) Occurrence of bombesin and alytensin in extracts of the skin of three european discoglossid frogs and pharmacological actions of bombesin on extravascular smooth muscle. Bri J Pharmacol 45: 333–348.

    CAS  Google Scholar 

  75. Minamino N, Kangawa K, Matsuo, H (1972) Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Comm 1983; 114: 541–548.

    Google Scholar 

  76. Dockray GJ, Vaillant C, Walsh JH (1979) The neuronal origin of bombesin-like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4: 1561–1568.

    Article  PubMed  CAS  Google Scholar 

  77. Moghimazadeh E, Ekman R, Hakanson R, Yanaihara N, Sundler F (1983) Neuronal gastrin-releasing peptide in the mammalian gut and pancreas. Neuroscience 10: 553–563.

    Article  Google Scholar 

  78. Sundler F, Ekelund M, Hakanson R (1991) Morphological aspects of gastrin cell activation In• Hakanson R and Sundler F, eds. The stomach as an endocrine organ. Elsevier, Amsterdam p. 167–178.

    Google Scholar 

  79. Kuwahara A, Mikami S, Yanaihara N (1985) Coexistence of immunoreactive gastrin-releasing peptide and substance P in the myenteric plexus of rat stomach. Biomed Res 6: 443–446.

    CAS  Google Scholar 

  80. Namba M, Ghatei MA, Bishop AE, Gibson SJ, Mann DJ, Polak JM, Bloom SR (1983) Presence of neuromedin B-like immunoreactivity in the brain and gut of rat and guinea-pig. Peptides 6 (Suppl 3): 257–263.

    Google Scholar 

  81. Spindel ER, Chin MW, Price J, Rees LH, Besser GM, Habener JF (1984) Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81: 5699–5703.

    Article  PubMed  CAS  Google Scholar 

  82. Sausville EA, Lebacq-Verheyden A, Spindel ER, Cuttitta F, Gasdar AF, Battey JF (1986) Expression of the gastrin-releasing peptide gene in human small cell lung cancer. Evidence for alternative processing resulting in three distinct mRNAs. J Biol Chem 261: 2451–2457.

    Google Scholar 

  83. Krane IM, Naylor SL, Helin-Davis D, Chin WW, Spindel ER (1988) Molecular cloning of cDNAs encoding the human bombesin-like peptide neuromedin B. J Biol Chem 263:13, 317–13, 323.

    Google Scholar 

  84. Doi K, Prentki M, Yip C (1979) Identical biological effects of pancreatic glucagon and a purified moiety of canine gastric immunoreactive glucagon. J Clin Invest 63: 525–531.

    Article  PubMed  CAS  Google Scholar 

  85. Garaud JC, Eloy R, Moody AJ (1980) Glucagon- and glicentin-immunoreactive cells in the human digestive tract. Cell Tissue Res 213: 121–136.

    Article  PubMed  CAS  Google Scholar 

  86. Bottcher G, Sjolund K, Ekblad E (1985) Coexistence of peptide YY and glicentin immunoreactivity in the endocrine cells of the gut. Regul Pept 8: 261–270.

    Article  Google Scholar 

  87. Bell GI, Santerre RF, Mullenbach GT (1983) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302: 716–718.

    Article  PubMed  CAS  Google Scholar 

  88. Rouille Y, Martin S, Steiner DF (1995) Differential processing of proglucagon by the subtilisin-like prohormone convertase PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem 270:26, 488–26, 496.

    Google Scholar 

  89. Brown JC, Cook MA, Dryburgh, JR (1972) Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can J Biochem 51: 533–537.

    Google Scholar 

  90. Bond CT, Nilaver G, Godfrey B, Zimmerman EA, Adelman JP (1988) Characterization of complementary dexoyribonucleic acid for precursor of porcine motilin. Molec Endocrinol 2: 175–180.

    Article  CAS  Google Scholar 

  91. Polak JM (1979) Buchan AMJ, Motilin immunocytochemical localization indicates possible molecular heterogeneity or the existence of a motilin family. Gastroenterology 76: 1065–1068.

    PubMed  CAS  Google Scholar 

  92. Beinfeld MC, Korchak DM, Roth BL, O’Donohue TL (1984) The distribution and chromatographic characterization of PHI (peptide histidine isoleucine amide)-27-like-peptides in rat and porcine brain. J Neurosc 4: 2681–2688.

    CAS  Google Scholar 

  93. Nilaver G, Beinfeld MC, Bond CT, Paikh D, Godfrey B, Adelman JP (1988) Heterogeneity of motilin immunoreactivity in mammalian tissue. Synapse 2: 266–275.

    Article  PubMed  CAS  Google Scholar 

  94. Poitras P, Trudel L, Lahai RG, Pomier-Layrargues, G (1987) Motilin-like immunoreactivity in intestine and brain of dog. Life Sci 40: 1391–1395.

    Article  PubMed  CAS  Google Scholar 

  95. Yanaihara N, Yanaihara C, Nagai K, Sato H, Shimizu F, Yamaguchi K, Abe K (1980) Motilin-like immunoreactivity in porcine, canine, human and rat tissue. Biomed Res 1: 76–83.

    CAS  Google Scholar 

  96. Poitras P, Reeve JR, Jr, Hunkapiller MW, Hood LE, Walsh JH (1983) Purification and characterization of canine intestinal motilin. Regul Pept 5: 197–208.

    Article  PubMed  CAS  Google Scholar 

  97. Christofides ND, Bryant MJ, Ghatei MA, Kishimoto S, Buchan AM, Polak JM, Bloom SR (1981) Molecular forms of motilin in the mammalian and human gut and human plasma. Gastroenterology 80: 292–300.

    PubMed  CAS  Google Scholar 

  98. Dickerson IM, Dixon JE, Mains RE (1990) Biosynthesis and posttranslational processing of site-directed endoproteolytic cleavage mutants of pro-neuropeptide Y in mouse pituitary cells. J Biol Chem 265: 2462–2469.

    PubMed  CAS  Google Scholar 

  99. Dickerson IM, Dixon JE, Mains RE (1987) Transfected human neuropeptide Y cDNA expression in mouse pituitary cells. J Biol Chem 262:13, 646–13, 653.

    Google Scholar 

  100. Minamino N, Kangawa K, Matsuo H (1985) Neuromedin U-8 and U-25: novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem Biophys Comm 130: 1078–1085.

    Article  CAS  Google Scholar 

  101. Austin C, Lo G, Nandha KA, Meleagros L, Bloom SR (1995) Cloning and characterization of the cDNA encoding the human neuromedin U ( NmU) precursor: NmU expression in the human gastrointestinal tract. J Mol Endo 14: 157–169.

    Google Scholar 

  102. Ballestra J, Carlei F, Bishop AE, Steel JH, Gibson SJ, Fehey M, Hennessey R, Domin J, Bloom SR, Polak JM (1988) Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 25: 797–816.

    Article  Google Scholar 

  103. Carraway R, Leeman SE (1975) The amino acid sequence of a hypothalamic peptide, neurotensin. J Biol Chem 250: 1907–1911.

    PubMed  CAS  Google Scholar 

  104. Shaw C, Thim L, Johnston CF, Buchanan KD (1990) Characteristics of neurotenin-immunoreactivity in porcine ileum using region-specific radioimmunoassay and chromatographic fractionation: isolation and primary structure of porcine neurotensin. Comp Bioch Physiol 95C: 291–295.

    Article  CAS  Google Scholar 

  105. Sundler F, Hakanson R, Leander S, Uddman R (1982) Light and electron microscopic localization of neurotensin in gastrointestinal tract. Ann NY Acad Sci 400: 94–104.

    Article  PubMed  CAS  Google Scholar 

  106. Schultzberg M, Hokfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said SI (1980) Distribution of peptide- and catecholamine-containing neuronsin the gastrointestinal tract of rat and guinea-pig• immunohistochemical studies with antisera to substance P, vasoactive intestinaly polypeptide, enkephalin, somatostatin, gastrin/cholecysokinin, neurotensin, and dopamine beta hydroxylase. Neuroscience 5: 689–744.

    Article  PubMed  CAS  Google Scholar 

  107. Dobner PR, Barber DL, Villa-Komaroff L, McKierman C (1987) Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor. Proc Nat Acad Sci USA 84: 3516–3520.

    Article  CAS  Google Scholar 

  108. Carraway R, Mitra SP (1990) Differential processing of neurotensin/neuromedin N precursor(s) in canine brain and intestine. J Biol Chem 265: 8627–8631.

    CAS  Google Scholar 

  109. Carraway R (1984) Rapid proteolytic generation of neurotensin-related peptide(s) and biologic activity during extraction of rat and chicken gastric tissues. J Biol Chem 259:10, 328–10, 334.

    Google Scholar 

  110. Tatemoto K (1982) Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Nat Acad Sci USA 79: 5485–5489.

    Article  PubMed  CAS  Google Scholar 

  111. Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95: 32–41.

    PubMed  CAS  Google Scholar 

  112. Lee Y, Shiosaka S, Emson PC, Powell JF, Smith AD, Tohyama M (1985) Neuropeptide Y-like immunoreactive structures in the rat stomach with special reference to the noradrenaline neuron system. Gastroenterology 89: 118–126.

    PubMed  CAS  Google Scholar 

  113. Minth CD, Bloom SR, Polak JM, Dixon JE (1987) Cloning, characterization and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc Nat Acad Sci USA 84: 2068–2072.

    Article  Google Scholar 

  114. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related peptides from the brain with potent opiate agonist activity. Nature 258: 577–579.

    Article  PubMed  CAS  Google Scholar 

  115. Nakanishi S, Inoue A, Kita T (1979) Nucleotide seuqence of cloned cDNA for bovine corticotropin-13lipotropin precursor. Nature 278: 423–427.

    Article  PubMed  CAS  Google Scholar 

  116. Comb M, Seeburg P, Adelman J, Eiden LE, Herbert E (1982) Primary structure of the human met- and leu-enkephalin precursor and its mRNA. Nature 295: 663–666.

    Article  PubMed  CAS  Google Scholar 

  117. Noda M, Furutani Y, Takahashi H (1982) Cloning and sequence analysis of cDNA for bovine adrenal proenkephalin. Nature 295: 202–206.

    Article  PubMed  CAS  Google Scholar 

  118. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta neo-endorphin/ dynorphin precursor. Nature 298: 245–249.

    Article  PubMed  CAS  Google Scholar 

  119. Ferri G-L, Watkinson A, Dockray GJ (1996) Proenkephalin A-derived peptides in the human gut. Gastroenterology 95: 1011–1017.

    Google Scholar 

  120. Larsson LI (1996) Adrenocortiotropin-like and melanotropin-like peptides in a subpopulation of human gastrin cell granules. Bioassay, immunoassay and immunocytochemical evidence. Proc Natl Acad Sci USA 78: 2990–2994.

    Article  Google Scholar 

  121. Lindh B, Hokfelt T, Elvin L (1996) Distribution and origin of peptide-containing nerve fibers in the celiac superior mesentric ganglion of the guinea-pig. Neuroscience 26: 1037–1071.

    Article  Google Scholar 

  122. Bloomquist BT, Eipper BA Mains RE (1991) Pro-hormone converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol 5: 2014–2024.

    Article  PubMed  CAS  Google Scholar 

  123. Giraud, AS, Dockray GJ, Williams RG (1984) Immunoreactive Met-enkephalin Arg6in rat brain and bovine brain, gut and adrenal. J Neurochem 43: 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  124. Watkinson A, Dockray GJ, Young J Gregory H (1988) Poenkephalin A processing in the upper digestive tract; Isolation and characterization of phosphorylated N-terminally extended Met-enkephalin Arg6Phe7 variants. J Neurochem 51: 1252–1257.

    Article  PubMed  CAS  Google Scholar 

  125. Sosa RP, McKnight AT, Hughes J, Kosterlitz HW (1977) Incorporation of labeled amino acids into the enkephalins. FEBS Lett 84: 32–37.

    Article  Google Scholar 

  126. Johanning K, Mathis JP Lindberg I (1995) Role of PC2 in proenkephalin processing: antisense and overexpression studies. J Neurochem 66: 898–907.

    Article  Google Scholar 

  127. Hook, VYH, Schiller MR, Azaryan AV, Tezapsidis N (1995) Proenkephalin-processing enzymes in chromaffin granules. Ann Acad Sci 780: 121–133.

    Article  Google Scholar 

  128. Devi L, Gupta P, Fricker LD (1991) Subcellular localization, partial purification, and characterization for a dynorphin processing endopeptidase from bovine pituitary. J Neurochem 56: 320–329.

    Article  PubMed  CAS  Google Scholar 

  129. Dupuy A, Lindberg I, Zhou Y, Akil H, Lazure C, Chretien M, Seidah N, Day R (1994) Processing of prodynorphin by the prohormone convertase PC1 results in high molecular weight intermediate forms. FEBS Lett 337: 60–65.

    Article  PubMed  CAS  Google Scholar 

  130. Devi L, Gupta P, Douglass JO (1989) Expression and post-translational processing of prodynorphine cDNA in the mouse anterior pituitary cell line. AtT-20 Mol Endocrinol 3: 1852–1860.

    Article  CAS  Google Scholar 

  131. Felley CP, Qian JM, Mantey S, Pradhan T Jensen RT (1992) Chief cells possess a receptor with high affinity for PACAP and VIP that stimulates pepsinogen release. Am J Physiol 263: G901 - G907.

    PubMed  CAS  Google Scholar 

  132. Portbury AL, McConalogue K, Furness JB, Young HM (1995) Distribution of pituitary adenylyl cyclase activating peptide ( PACAP) immunoreactivity in neurons of the guinea-pig digestive tract and their projections in the ileum and colon. Cell Tissue Res 279: 385–392.

    Google Scholar 

  133. Sundler F, Ekblad E, Absood A, Hakanson R, Koves K, Arimura A (1992) Pituitary adenylate cyclase activating peptide: a novel vasoactive intestinal peptide-like neuropeptide in the gut. Neuroscience 46: 439–454.

    Article  PubMed  CAS  Google Scholar 

  134. Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund K, Uddman R, Sundler F (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide. Immunocytochemical and immunochemical evidence. Neuroscience 57: 725–732.

    Google Scholar 

  135. Ohkubo S, Kimura C, Ogi K, Okazaki K, Hosoya M, Onda H, Miyata A, Arimura A, Fujino M (1992) Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Biol 11: 21–30.

    Article  PubMed  CAS  Google Scholar 

  136. Tatemoto K (1982) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 79: 2514–2518.

    Article  PubMed  CAS  Google Scholar 

  137. Lundberg JM, Tatemoto K, Terenius L (1982) Localization of peptide YY ( PYY) in gastrointestinal cells and effects on intestinal blood flow. Proc Nat Acad Sci USA 79: 4471–4475.

    Google Scholar 

  138. Ali-Rachedi A, Vardell IM, Adrian TE, Gapp DA, van Noorden S, Bloom SR, Polak JM (1984) The peptide YY ( PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry 80: 487–491.

    Google Scholar 

  139. Leiter AB, Toder A, Wolfe H, Taylor IL, Cooperman S, Mandel G, Goodman RH (1987) Peptide YY: structure of the precurfsor and expression in exocrine pancreas. J Biol Chem 262:12, 984–12, 988.

    Google Scholar 

  140. Eberlein GA, Eysselein V, Schaeffer M (1989) A new molecular form of PYY: structural characteristics of human PYY (3–36) and PYY (1–36). Peptides 10: 797–803.

    Article  PubMed  CAS  Google Scholar 

  141. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretin. J Physiol Lond 28: 325–353.

    PubMed  CAS  Google Scholar 

  142. Mutt V, Jorpes JE, Magnusson, S (1970) Structure of porcine secretin: the amino acid sequence. Europ J Biochem 15: 513.

    Article  PubMed  CAS  Google Scholar 

  143. Kopin AS, Wheeler MB, Leiter MB (1990) Secretin: structure of the precursor and tissue distribution of the mRNA. Proc Nat Acad Sci USA 87: 2299–2303.

    Article  PubMed  CAS  Google Scholar 

  144. Polak JM, Bloom SR, Coiling I, Pearse AGE (1974) Immunofluorescent localization of secretin in the canine duodenum. Gut 12: 605–610.

    Article  Google Scholar 

  145. Inokuchi H, Fujimoto S, Hattori T, Kawai K (1985) Tritiated thymidine radioautographic study on the origin and renewal of secretin cells in the rat duodenum. Gastroenterology 89: 1014–1020.

    PubMed  CAS  Google Scholar 

  146. Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin and substance P in normal and transgenic mice. Proc Nat Acad Sci USA 87: 6408–6412.

    Article  PubMed  CAS  Google Scholar 

  147. Usellini L, Finzi G, Riva C (1990) Ultrastructural identification of human secretin cells by the immun gold technique. Their costorage of chromogranin A and serotonin. Histochemistry 94: 113–120.

    Google Scholar 

  148. Straus E, Yalow RS (1978) Immunoreactive secretin in gastrointestinal mucosa of several mammalian species. Gastroenterology 78: 401–404.

    Google Scholar 

  149. Gafvelin G, Jornvall H, Mutt V (1990) Processing of prosecretin: Isolation of a secretin precursor from porcine intestine. Proc Nat Acad Sci USA 87: 6781–6785.

    Google Scholar 

  150. Kopin AS, Wheeler M, Nishitani J (1996) The secretin gene: evolutionary history, alternative splicing, and developmental regulation. Proc Nat Acad Sci USA 88: 5335–5339.

    Article  Google Scholar 

  151. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79.

    Article  PubMed  CAS  Google Scholar 

  152. Larsson LI, Goltermann NR, deMagistris L, Rehfeld JF, Schwartz TW (1979) Somatostatin cell processes as pathways for paracrine secretion. Science 205: 1393–1395.

    Article  PubMed  CAS  Google Scholar 

  153. Costa M, Patel YC, Furness JB, Arimura A (1977) Evidence that some intrinsic neurons of the intestine contain somatostatin. Neuros Lett 6: 215–222.

    Article  CAS  Google Scholar 

  154. Goodman RH, Aron DC, Roos BA (1983) Rat pre-prosomatostatin. Structure and processing by microsomal membranes. J Biol Chem 258: 5570–5573.

    Google Scholar 

  155. Yamada T, Basinger S (1982) Biosynthesis of somatostatin-like immunoreactivity by frog retinas in vitro. J Neurochem 39: 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  156. Chiba T, Park J, Yamada T (1988) Biosynthesis of somatostatin in canine fundic D-cells. J Clin Invest 81: 282–287.

    Article  PubMed  CAS  Google Scholar 

  157. Stoller TJ, Shields D (1989) The role of paired basic amino acids in mediating proteolytic cleavage of prosomatostatin J Biol Chem 264: 6922–6928.

    CAS  Google Scholar 

  158. Brakch N, Rholam M, Nault C, Boileau G, Cohen P (1991) Differential processing of hormone precursor independent production of somatostins 14 and 28 in transfected neuroblastoma 2A cells. FEBS Letters 282: 363–367.

    Article  PubMed  CAS  Google Scholar 

  159. Gluschankof P, Morel A, Gomez S, Nicolas P, Fahy C, Cohen P (1984) Enzymes processing somatostatin precursors: an Arg-Lys esteropeptidase from the rat brain cortex converting somatostatin-28 into somatostatin-14. Proc Natl Acad Sci USA 81: 6662–6666.

    Article  PubMed  CAS  Google Scholar 

  160. Mackin RB, Noe BD (1987) Direct evidence for two distinct prosomatostatin converting enzymes. J Biol Chem 262: 6453–6456.

    PubMed  CAS  Google Scholar 

  161. Bourbonnais Y, Bolin D, Shields D (1988) Secretion of somatostatin in heterologous cells: biosynthesis, post-translational processing of pro-alpha-factor-somatostatin hybrids requires the products of the KEX2 and STE13 genes. J Biol Chem 263:15, 342–15, 437.

    Google Scholar 

  162. Galanopoulou AS, Seidah NG, Patel YC (1995) Heterologous processing of rat prosomatostatin to somatostatin-14 by PC2: requirement for secretory cell but not the secretion granule. Biochem J 311: 111–118.

    PubMed  CAS  Google Scholar 

  163. Galanopoulou AS, Seidah NG, Patel YC (1995) Direct role of furin in mammalian prosomatostain processing. Biochem J 309: 33–40.

    PubMed  CAS  Google Scholar 

  164. Beinfeld MC, Bourdais J, Kuks P, Morel A, Cohen P (1989) Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue. J Biol Chem 264: 4460–4465.

    PubMed  CAS  Google Scholar 

  165. Bourdais J, Pierotti AR, Boussetta H, Barre N, Devilliers G, Cohen P (1991) Isolation and functional properties of an arginine selective endoprotease from rat intestinal mucosa. J Biol Chem 266: 23, 386.

    Google Scholar 

  166. Brakch N, Galanopoulou AS, Patel YC, Boileau G, Seidah NG (1995) Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 PC5 in constitutive and regulated secretory pathways. FEBS Lett 362: 143–146.

    Article  PubMed  CAS  Google Scholar 

  167. Cawley NY, Noe BD, Loh YP (1993) Purified yeast aspartic protease 3 cleaves anglerfish pro-somatostatin I and H at di- and monobasic sites to generate somatostatin-14 and -28. FEBS Lett 332: 273–276.

    Article  PubMed  CAS  Google Scholar 

  168. Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nature 232: 86–87.

    Article  CAS  Google Scholar 

  169. Sokolski KN, Lechago J (1984) Human colonic substance P-producing cells are a separate population from the serotonin-producing enterochromaffin cells. Histochem Cytochem 32: 1066–1074.

    Article  CAS  Google Scholar 

  170. Sperk G, Singer EA (1982) In vivo synthesis of substance P in the corpus striatum of the rat and its transport to the substantia nigra. Brain Res 238: 127–135.

    Article  PubMed  CAS  Google Scholar 

  171. Harmar A, Schofield JG, Keen P (1980) Cycloheximide-sensitive synthesis of substance p by isolated dorsal root ganglia. Nature 284: 267–269.

    Article  PubMed  CAS  Google Scholar 

  172. Kessler JA, Friedin MM, Kalberg C, Chandross, KJ (1993) Cytokines regulate substance P expression in sympathetic neurons. Regul Pept 46: 70–75.

    Article  PubMed  CAS  Google Scholar 

  173. Hurst SM, Stanisz AM, Sharkey KA, Collins SM (1993) Interleukin 1 beta-induced increase in Substance P in rat myenteric plexus. Gastroenterology 105: 1754–1760.

    PubMed  CAS  Google Scholar 

  174. Mutt V, Said SI (1974) Structure of the porcine vasoactive intestinal octacosapeptide. The amino acid sequence. Use of kallikrein in its determination. Europ J Biochem 42: 581–589.

    Google Scholar 

  175. Itoh N, Obata K-I, Yanaihara N, Okamoto H (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304: 547–549.

    Article  PubMed  CAS  Google Scholar 

  176. Ekblad E, Hakanson R, Sundler F (1984) VIP and PHI coexist with an NPY-like peptide in intramural neurones of the small intestine. Regul Pep 10: 47–58.

    Article  CAS  Google Scholar 

  177. Costa M, Furness JB, Buffa R, Said SI (1980) Distribution of enteric nerve cell bodies and axons showing immunoreactivity for vasoactive intestinal polypeptide in the guinea-pig intestine. Neuroscience 5: 587–596.

    Article  PubMed  CAS  Google Scholar 

  178. Costa M, Furness JB (1983) The origins, pathways, and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience 8: 665–676.

    Article  PubMed  CAS  Google Scholar 

  179. Ekblad E, Winther C, Ekman R, Hakanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20: 169–188.

    Article  PubMed  CAS  Google Scholar 

  180. Hoshion M, Yanaihara C, Ogino K, Iguchi K, Sato H, Suzuki T, Yanaihara N (1984) Production of VIP and PHM (human PHI) related peptides in human neuroblastoma cells. Peptides 5: 155–160.

    Article  Google Scholar 

  181. Fahrenkrug J (1991) Glycine-extended processing intermediate of pro VIP: a new form of VIP in the rat. Biochem Biophy Res Comm 178: 173–177.

    Article  CAS  Google Scholar 

  182. Gafvelin G, Andersson M, Dimaline R, Jornvall H, Mutt V (1988) Isolation and characterization of a variant form of the vasoactive intestinal polypeptide. Peptides 9: 469–474.

    Article  PubMed  CAS  Google Scholar 

  183. Cauvin A, DeNeef P, Bastianelli E, Robberecht P, Christophe J (1991) Variable distribution, in four rat brain areas, of the three natural forms of peptide histidine isoleucinamide: PHI (1–27), PHI-Gly, and PHV (1–42). Neuroendocrinology 53: 190–193.

    Article  PubMed  CAS  Google Scholar 

  184. Cauvin A, Vandermeers A, Vandermeers-Piret MC, Robberecht P, Christophe J (1989) Variable distribution of three molecular forms of peptide histidine isoleucinamide in rat tissues: identification of the large molecular form as peptide histidine valine (1–42). Endocrinology 125: 2645–2655.

    Article  PubMed  CAS  Google Scholar 

  185. Ouellette AJ, Lualdi JC (1990) A novel mouse gene family coding for cationic, cysteinerich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem 265: 9831–9837.

    Google Scholar 

  186. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sc USA 89: 947–951.

    Article  CAS  Google Scholar 

  187. Cohen MB, Witte DP, Hawkins JA, Currie MG (1995) Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem Biophys Res Comm 209: 803–808.

    Article  PubMed  CAS  Google Scholar 

  188. Yamaguchi H, Nakazato M, Miyazato M, Kangawa K, Matsuo H, Matsukura S (1995) Two novel rat guanylin molecules, guanylin-94 and guanylin-16, do not increase cyclic GMP production in T84 cells. Biochem Biophys Res Comm 214: 1204–1210.

    Article  PubMed  CAS  Google Scholar 

  189. Fan X, Hamra FK, Freeman RH, Eber SL, Krause WJ, Lim RW, Pace VM, Currie MG, Forte LR (1996) Uroguanylin: cloning of preprouroguanylin cDNA, mRNA expression in the intestine and heart and isolation of uroguanylin and prouroguanylin from plasma. Biochem Biophy Res Comm 219: 457–462.

    Article  CAS  Google Scholar 

  190. Miyazato M, Nakazato M, Yamaguchi H, Date Y, Kojima M, Kangawa K, Matsuo H, Matsukura S (1996) Cloning and characterization of a cDNA encoding a precursor for human uroguanylin. Biochem Biophy Res Comm 219: 644–648.

    Article  CAS  Google Scholar 

  191. Hess R, Kuhn M, Schulz-Knappe P, Raida M, Fuchs M, Klodt J, Adermann K, Kaever V, Cetin Y, Forssmann WG (1995) GCAP-II: isolation and characterization of the circulating form of uroguanylin. FEBS Lett 374: 34–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beinfeld, M.C. (1999). Biosynthesis and Processing of Gastrointestinal Peptide Hormones. In: Greeley, G.H. (eds) Gastrointestinal Endocrinology. Contemporary Endocrinology, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-695-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-695-9_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-054-0

  • Online ISBN: 978-1-59259-695-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics