Skip to main content

Neuroendocrine Immune Axis in the Intestine

  • Chapter
Gastrointestinal Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 8))

Abstract

An extensive interrelationship exists between the endocrine, nervous, and immune systems: These systems regulate each other through complex, multidirectional channels of communication. The magnitude and diversity of this association is well-illustrated in the mucosal immune system of the gastrointestinal tract. The gastrointestinal mucosal immune system is an important component of the normal host response to bacterial, nutritional, viral, parasitic, and other environmental antigens. The mucosal immune system also plays a key role in the pathogenesis of inflammatory bowel disease and graft vs host disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelletier M, Montplaisir S, Dardenne M, Bach JF (1976) Thymic hormone activity and spontaneous autoimmunity in dwarf mice and their littermates. Immunology 30: 783–788.

    PubMed  CAS  Google Scholar 

  2. Esquifino AI, Villanua MA, Szary A, Yau J, Bartke A (1991) Ectopic pituitary transplants restore immunocompetence in Ames dwarf mice. Acta Endocrinol 125: 67–72.

    PubMed  CAS  Google Scholar 

  3. Spangelo BL, Gorospe WG (1995) Role of the cytokines in the neuroendocrine-immune system axis. Front Neuroendocrinol 16: 1–22.

    Article  PubMed  CAS  Google Scholar 

  4. Imura H, Fukata J (1994) Endocrine-paracrine interaction in communication between the immune and endocrine systems. Activation of the hypothalamic-pituitary-adrenal axis in inflammation. Eur J Endocrinol 130: 32–37.

    Google Scholar 

  5. Weigent DA, Blalock JE (1995) Associations between the neuroendocrine and immune systems. J Leukoc Biol 57: 137–150.

    Google Scholar 

  6. DeSouza EB (1993) Corticotropin-releasing factor and interleukin-1 receptors in the brain-endocrineimmune axis. Roles in stress response and infection. Ann N Y Acad Sci 697: 9–27.

    Article  CAS  Google Scholar 

  7. Jain R, Zwickler D, Hollander CS, Brand H, Saperstein A, Hutchinson B, Brown C, Audhya T (1991) Corticotropin-releasing factor modulates the immune response to stress in the rat. Endocrinology 128: 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  8. McCann SM, Karanth S, Kamat A, LesDees W, Lyson K, Gimeno M, Rettori V (1994) Induction by cytokines of the pattern of pituitary hormone secretion in infection. Neuroimmunomodulation 1: 2–13.

    Article  PubMed  CAS  Google Scholar 

  9. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238: 522–524.

    Article  PubMed  CAS  Google Scholar 

  10. Webster EL, Tracey DE, DeSouza EB (1991) Upregulation of interleukin-1 receptors in mouse AtT-20 pituitary tumor cells following treatment with corticotropin-releasing factor. Endocrinology 129: 2796–2798.

    Article  PubMed  CAS  Google Scholar 

  11. Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci USA 88: 2961–2965.

    Article  PubMed  CAS  Google Scholar 

  12. Navarra P, Tsagarakis S, Faria MS, Rees LH, Besser GM, Grossman AB (1991) Interleukins-1 and -6 stimulate the release of corticotropin-releasing hormone-41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology 128: 37–44.

    Article  PubMed  CAS  Google Scholar 

  13. Spangelo BL, Judd AM, Isakson PC, MacLeod RM (1989) Interleukin-6 stimulates anterior pituitary hormone release in vitro Endocrinology 125: 575–577.

    CAS  Google Scholar 

  14. Spangelo BL, MacLeod RM, Isakson PC (1990) Production of interleukin-6 by anterior pituitary cells in vitro. Endocrinology 126: 582–586.

    Article  PubMed  CAS  Google Scholar 

  15. Lyson K, McCann SM (1992) Induction of adrenocorticotropic hormone release by interleukin-6 in vivo and in vitro. Ann N Y Acad Sci 650: 182–185.

    Article  PubMed  CAS  Google Scholar 

  16. Smith EM (1988) Hormonal activities of lymphokines, monokines, and other cytokines. Prog Allergy 43: 121–139.

    PubMed  CAS  Google Scholar 

  17. Gonzalez MC, Riedel M, Rettori V, Yu WH, McCann SM (1990) Effect of recombinant human gamma-interferon on the release of anterior pituitary hormones. Prog Neuroendocrinimmunol 3: 49–54.

    Google Scholar 

  18. Bernardini R, Kamilaris TC, Calogero AE, Johnson ED, Gomez MT, Gold PW, Chrousos GP (1990) Interactions between tumor necrosis factor-alpha, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology 126: 2876–2881.

    Article  PubMed  CAS  Google Scholar 

  19. Clarke BL, Bost KL (1989) Differential expression of functional adrenocorticotropic hormone receptors by subpopulations of lymphocytes. J Immunol 143: 464–469.

    PubMed  CAS  Google Scholar 

  20. Carr, DJJ (1992) Neuroendocrine peptide receptors on cells of the immune system. Chem Immunol 52: 84–105.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson HM, Smith EM, Tones BA, Blalock JE (1982) Neuroendocrine hormone regulation of in vitro antibody production. Proc Natl Acad Sci USA 79: 4171–4174.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson HM, Tones BA (1988) Immunoregulatory properties of neuroendocrine peptide hormones. Prog Allergy 43: 37–67.

    PubMed  CAS  Google Scholar 

  23. Johnson HM, Torres BA, Smith EM, Dion LD, Blalock JE (1984) Regulation of lymphokine (y-interferon) production by corticotropin. J Immunol 132: 246–250.

    PubMed  CAS  Google Scholar 

  24. Koff WC, Dunegan MA (1985) Modulation of macrophage-mediated tumoricidal activity by neuropeptides and neurohormones. J Immunol 135: 350–354.

    PubMed  CAS  Google Scholar 

  25. Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69: 1–32.

    PubMed  CAS  Google Scholar 

  26. Muller M, Renkawitz R (1991) The glucocorticoid receptor. Biochem Biophys Acta 1088: 171–182.

    Article  PubMed  CAS  Google Scholar 

  27. Lebeau MC, Massol N, Herrick J, Faber LE, Renoir J-M, Radanyi C, Baulieu E-E (1992) P59, an hsp 90-binding protein. J Biol Chem 267: 4281–4284.

    PubMed  CAS  Google Scholar 

  28. Gronemeyer H (1992) Control of transcription activation by steroid hormone receptors. FASEB J 6: 2524–2529.

    PubMed  CAS  Google Scholar 

  29. Jonat C, Rahmsdorf HJ, Park K-K, Cato ACB, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 ( Fos/Jun) activity by glucocorticoid hormone. Cell 62: 1189–1204.

    Google Scholar 

  30. Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato ACB (1994) A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 13: 4087–4095.

    PubMed  CAS  Google Scholar 

  31. Konig H, Ponta H, Rahmsdorf HJ, Herrlich P (1992) Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J 11: 2241–2246.

    PubMed  CAS  Google Scholar 

  32. Helmberg A, Auphan N, Caelles C, Karin M (1995) Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J 14: 452–460.

    PubMed  CAS  Google Scholar 

  33. Adcock IM, Brown CR, Gelder CM, Shirasaki H, Peters MJ, Barnes Pt (1995) Effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells. Am J Physiol 268: C331 - C338.

    PubMed  CAS  Google Scholar 

  34. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kB and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756.

    Article  PubMed  CAS  Google Scholar 

  35. Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S-I, Kasahara T, Matsushima K (1994) Novel mechanism of glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269: 13289–13295.

    PubMed  CAS  Google Scholar 

  36. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS (1995) Characterization of mechanisms involved in transrepression of NF-kB by activated glucocorticoid receptors. Mol Cell Biol 15: 943–953.

    PubMed  CAS  Google Scholar 

  37. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS (1995) Role of transcriptional activation of IkBa in mediation of immunosuppression by glucocorticoids. Science 270: 283–290.

    Article  PubMed  CAS  Google Scholar 

  38. Aron DC, Tyrrell JB (1994) Glucocorticoids and adrenal androgens, In: Basic and Clinical Endocrinology, ( Greenspann FS, Baxter JD, eds.), Appleton and Lange, Norwalk, 307–346.

    Google Scholar 

  39. Ishii Y, Shinoda M, Shikita M (1983) Specificity of the suppressive action of glucocorticoids on the proliferation of monocyte/macrophages in the CSF-stimulated cultures of mouse bone marrow. Exp Hematol 11: 178–186.

    PubMed  CAS  Google Scholar 

  40. Rinehart JJ, Wuest D, Ackerman GA (1982) Corticosteroid alteration of human monocyte to macrophage differentiation. J Immunol 129: 1436–1440.

    PubMed  CAS  Google Scholar 

  41. Deschaux P, Khan NA (1995) Immunophysiology: The immune system as a multifunctional physiological unit. Cell Mol Biol Res 41: 1–10.

    Google Scholar 

  42. Chensue SW, Terebuh PD, Remick DG, Scales WE, Kunkel SL (1991) In vivo biologic and immunohistochemical analysis of interleukin-1 alpha, beata and tumor necrosis factor during experimental endotoxemia. Am J Pathol 138: 395–402.

    PubMed  CAS  Google Scholar 

  43. Vacca A, Felli MP, Farina AR, Martinotti S, Maroder M, Screpanti I, Meco D, Petrangeli E, Frati L, Gulino A (1992) Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements. J Exp Med 175: 637–646.

    Article  PubMed  CAS  Google Scholar 

  44. Cohen JJ, Duke RC, Fadok VA, Selimns KS (1992) Apoptosis and programmed cell death in immunity. Annu Rev Immunol 10: 267–293.

    Article  PubMed  CAS  Google Scholar 

  45. Zubiaga AM, Munoz E, Huber BT (1992) IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. J Immunol 149: 107–112.

    PubMed  CAS  Google Scholar 

  46. Snyder DS, Unanue ER (1982) Corticosteroids inhibit murine macrophage la expression and interleukin 1 production. J Immunol 129: 1803–1805.

    PubMed  CAS  Google Scholar 

  47. Lew W, Oppenheim JJ, Matsushima K (1988) Analysis of suppression of IL-la and IL-(3 production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone. J Immunol 140: 1895–1902.

    PubMed  CAS  Google Scholar 

  48. AyanlarBatuman O, Ferrero AP, Diaz A, Jimenez SA (1991) Regulation of transforming growth factor-131 gene expression by glucocorticoids in normal human T lymphocytes. J Clin Invest 88: 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  49. Krajci P, Solberg R, Sandberg M, Oyen O, Jahnsen T, Brandtzaeg P (1989) Molecular cloning of the human transmembrane secretory component ( Poly-Ig receptor) and its mRNA expression in human tissues. Biochem Biophys Res Commun 158: 783–789.

    Google Scholar 

  50. Brandtzaeg P, Halstensen TS, Huitfeld HS, Krajci P, Kvale D, Scott H, Thrane PS (1992) Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract. Ann N Y Acad Sci 664: 157–179.

    Article  PubMed  CAS  Google Scholar 

  51. Wira CR, Rossoll RM (1991) Glucocorticoid regulation of the humoral immune system. Dexamethasone stimulation of secretory component in serum, saliva, and bile. Endocrinology 128: 835–842.

    Google Scholar 

  52. Wira CR, Sandoe CP, Steele MG (1990) Glucocorticoid regulation of the humoral immune system. J Immunol 142: 142–146.

    Google Scholar 

  53. Karanth S, Aguila MC, McCann SM (1993) The influence of interleukin-2 on the release of somatostatin and growth hormone-releasing hormone by mediobasal hypothalamus. Neuroendocrinology 53: 185–190.

    Article  Google Scholar 

  54. Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15: 504–511.

    Article  PubMed  CAS  Google Scholar 

  55. Vassilopoulou-Sellin R (1994) Endocrine effects of cytokines. Oncology 8: 43–50.

    PubMed  CAS  Google Scholar 

  56. Gonzalez MC, Aguila MC, McCann SM (1991) In vitro effects of recombinant human gamma-interferon on growth hormone release. Prog Neuroendocrinimmunol 4: 222–227.

    Google Scholar 

  57. Gala RR (1991) Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med 198: 513–527.

    PubMed  CAS  Google Scholar 

  58. Dardenne M, Kelly PA, Bach J-F, Savino W (1991) Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci USA 88: 9700–9704.

    Article  PubMed  CAS  Google Scholar 

  59. Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87: 6934–6938.

    Article  PubMed  CAS  Google Scholar 

  60. Goff BL, Roth JA, Arp LH, Incefy GS (1987) Growth hormone treatment stimulates thymulin production in aged dogs. Clin Exp Immunol 68: 580–587.

    PubMed  CAS  Google Scholar 

  61. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF (1989) Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 125: 3–12.

    Google Scholar 

  62. Timsit J, Savino W, Safieh B, Chanson P, Gagnerault M-C, Bach J-F, Dardenne M (1992) Growth hormone and insulin-like growth factor-I stimulate hormonal function and proliferation of thymic epithelial cells. J Clin Endocrinol Metab 75: 183–188.

    Article  PubMed  CAS  Google Scholar 

  63. Kelley KW (1989) Growth hormone, lymphocytes and macrophages. Biochem Pharmacol 38: 705–713.

    Article  PubMed  CAS  Google Scholar 

  64. Johnson EW, Jones LA, Kozak RW (1992) Expression and function of insulin-like growth factor receptors on anti-CD3-activated human T lymphocytes. J Immunol 148: 63–71.

    PubMed  CAS  Google Scholar 

  65. Baxter Jb, Blalock JE, Weigent DA (1991) Characterization of immunoreactive insulin-like growth factor-I from leukocytes and its regulation by growth hormone. Endocrinology 129: 1727–34.

    Article  Google Scholar 

  66. Baroni C (1967) Thymus, peripheral lymphoid tissues and immunological responsiveness of the pituitary dwarf mouse. Experientia 23: 282–283.

    Article  PubMed  CAS  Google Scholar 

  67. Pierpaoli W, Baroni C, Fabris N, Sorkin E (1969) Hormones and immunological capacity. II. Reconstitution of antibody production in hormonally deficient mice by somatotropic hormone, thyrotropic hormone and thyroxin. Immunology 16: 217–230.

    Google Scholar 

  68. Pierpaoli W, Sorkin E (1968) Hormones and immunologic capacity. I. Effect of heterologous anti-growth hormone (ASTH) antiserum on thymus and peripheral lymphatic tissue in mice. Induction of a wasting syndrome. J Immunol 101: 1036–1043.

    Google Scholar 

  69. Cross RJ, Bryson JS, Roszman TL (1992) Immunologic disparity in the hypopituitary dwarf mouse. J Immunol 148: 1347–1352.

    PubMed  CAS  Google Scholar 

  70. Harbour DV, Leon S, Keating C, Hughes TK (1990) Thyrotropin modulates B-cell function through specific bioactive receptors. Prog Neuroendocrinimmunol 3: 266–276.

    Google Scholar 

  71. Harbour DV, Hughes TK (1991) Thyrotropin releasing hormone induces gamma interferon release. FASEB J 5:A5884 Abstract.

    Google Scholar 

  72. Blalock JE (1992) Production of peptide hormones and neurotransmitters by the immune system. Chem Immunol 52: 1–24.

    Article  PubMed  CAS  Google Scholar 

  73. Kruger TE, Smith LR, Harbour DV, Blalock JE (1989) Thyrotropin: an endogenous regulator of the in vitro immune response. J Immunol 142: 744–747.

    PubMed  CAS  Google Scholar 

  74. Peele ME, Can FE, Baker JR, Wartofsky L, Burman KD (1993) TSH beta subunit gene expression in human lymphocytes. Am J Med Sci 305: 1–7.

    Article  PubMed  CAS  Google Scholar 

  75. Provinciali M, DiStefano G, Fabris N (1992) Improvement in the proliferative capacity and natural killer cell activity of murine spleen lymphocytes by thyrotropin. Int J Immunopharmacol 14: 865–870.

    Article  PubMed  CAS  Google Scholar 

  76. Abou-Rabia N, Kendall MD (1994) Involution of the rat thymus in experimentally induced hypothyroidism. Cell Tissue Res 277: 447–455.

    Article  PubMed  CAS  Google Scholar 

  77. Erf GF (1993) Immune development in young-adult C.RF-hyt mice is affected by congenital and maternal hypothyroidism. Proc Soc Exp Biol Med 204: 40–48.

    PubMed  CAS  Google Scholar 

  78. Dubuis JM, Dayer JM, Siegrist-Kaiser CA, Burger AG (1988) Human recombinant interleukin-1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats. Endocrinology 123: 2175–2181.

    Article  PubMed  CAS  Google Scholar 

  79. Blalock JE, Costa O (1989) Immune neuroendocrine interactions: implications for reproductive physiology. Ann N Y Acad Sci 564: 261–566.

    Article  PubMed  CAS  Google Scholar 

  80. Kalra PS, Sahu A, Kalra SP (1990) Interleukin-1 inhibits the ovarian steroid-induced luteinizing hormone surge and release of hypothalamic luteinizing hormone-releasing hormone in rats. Endocrinology 126: 2145–2152.

    Article  PubMed  CAS  Google Scholar 

  81. Rivier C, Rivest S (1993) Mechanisms mediating the effects of cytokines on neuroendocrine functions in the rat. Corticotropin-releasing factor Ciba Found Symp 172: 204–225.

    CAS  Google Scholar 

  82. Brannstrom M, Norman RJ, Seamark RF, Robertson SA (1994) Rat ovary produces cytokines during ovulation. Biol Reprod 50: 88–94.

    Article  PubMed  CAS  Google Scholar 

  83. Gaillard RC, Turnill D, Sappino P, Muller AF (1990) Tumor necrosis factor alpha inhibits the hormmonal response of the pituitary gland to hypothalamic releasing factors. Endocrinology 127: 101–106.

    Article  PubMed  CAS  Google Scholar 

  84. Daynes RA, Dudley DJ, Araneo BA (1990) Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur J Immunol 20: 793–802.

    Article  PubMed  CAS  Google Scholar 

  85. Araneo BA, Dowell T, Diegel M, Daynes RA (1991) Dihydrotestosterone exerts a depressive influence on the production of interleukin-4 (IL-4), IL-5, and F-interferon, but not IL-2 by activated murine T cells. Blood 78: 688–699.

    PubMed  CAS  Google Scholar 

  86. Marsh JA, Scanes CG (1994) Neuroendocrine-immune interactions. Poult Sci 73: 1049–1061.

    Article  PubMed  CAS  Google Scholar 

  87. Sullivan DA, Wira CR (1983) Variations in Free Secretory Component Levels in Mucosal Secretions of the Rat. J Immunol 130: 1330–1335.

    PubMed  CAS  Google Scholar 

  88. Stern JE, Wira CR (1986) Immunoglobulin and secretory component regulation in the rat uterus at the time of decidualization. Endocrinology 19: 2427–2432.

    Article  Google Scholar 

  89. Stern JE, Wira CR (1985) Secretory component and IgA in the uterus of the pregnant rat. In: Peters H (ed) Protides in Biological Fluids. Plenum, New York, pp. 95–97.

    Google Scholar 

  90. Sullivan DA, Underdown BJ, Wira CR (1983) Steroid hormone regulation of free secretory component in the rat uterus. Immunology 49: 379–386.

    PubMed  CAS  Google Scholar 

  91. Stern JE, Wira CR (1988) Progesterone regulation of secretory component (SC): uterine SC response in organ culture following in vivo hormone treatment. J Steroid Biochem 30: 233–237.

    Article  PubMed  CAS  Google Scholar 

  92. Wira CR, Sullivan DA (1985) Estradiol and progesterone regulation of immunoglobulin A and G and secretory component in cervicovaginal secretions of the rat. Biol Reprod 32: 90–95.

    Article  PubMed  CAS  Google Scholar 

  93. Wira CR, Kaushic C, Richardson K (1995) Sex hormone and glucocorticoid regulation of mucosal immunity in the female reproductive tract. Mucosal Immunol Update 3: 1–15.

    Google Scholar 

  94. Pudney J, Quayle Al (1995) Hormonal regulation of mucosal immunity in the male reproductive tract. Mucosal Immunol Update 3 (1): 1–14.

    Google Scholar 

  95. Sullivan DA (1990) Hormonal influence on the secretory immune system of the eye. In: Freier S, ed. The Nueroendocrine-Immune Network. CRC, Boca Raton, FL, pp. 199–237.

    Google Scholar 

  96. Gao J, Lambert RW, Wickham LA, Banting G, Sullivan DA (1995) Androgen control of secretory component mRNA levels in the rat lacrimal gland. J Steriod Biochem Mol Biol 52: 239–249.

    Article  CAS  Google Scholar 

  97. Stern JE, Gardner S, Qiurk D, Wira C (1992) Secretory immune system of the male reproductive tract: Effects of dihydrotestosterone and estradiol on IgA and secretory component levels. J Reprod Immunol 22: 73–85.

    Google Scholar 

  98. Dardenne M, deMoraes MC, Kelly PA, Gagnerault MC (1994) Prolactin receptor expression in human hematopoietic tissues analyzed by flow cytofluorometry. Endocrinology 134: 2108–2114.

    Article  PubMed  CAS  Google Scholar 

  99. Bernton EW, Meltzer MS, Holaday JW (1988) Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science 239: 401–404.

    Article  PubMed  CAS  Google Scholar 

  100. Clevenger CV, Altmann SW, Prystowsky MB (1991) Requirement of nuclear prolactin for interleukin-2stimulated proliferation of T lymphocytes. Science 253: 77–79.

    Article  PubMed  CAS  Google Scholar 

  101. Stevens AM, Yu-Lee LY (1994) Multiple prolactin-responsive elements mediate G1 and S phase expression of the interferon regulatory factor-1 gene. Mol Endocrinol 8: 345–355.

    Article  PubMed  CAS  Google Scholar 

  102. Berczi I, Nagy E, deToledo SM, Matusik RJ, Friesen HG (1991) Pituitary hormones regulate c-myc and DNA synthesis in lymphoid tissue. J Immunol 146: 2201–2206.

    PubMed  CAS  Google Scholar 

  103. Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H (1978) Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 103: 554–558.

    Article  PubMed  CAS  Google Scholar 

  104. Ruberg M, Rotsztejn WH, Arancibia S, Besson J, Enjalbert A (1978) Stimulation of prolactin release by vasoactive intestinal peptide ( VIP ). Eur J Pharmacol 51: 319–320.

    Google Scholar 

  105. Enjalbert A, Arancibia S, Ruberg M, Priam M, Bluet-Pajot MT, Rotsztejn WH, Kordon C (1980) Stimulation of in vitro prolactin release by vasoactive intestinal peptide. Neuroendocrinology 31: 200–204.

    Article  PubMed  CAS  Google Scholar 

  106. Emson PC, Fahrenkrug J, Schaffalitzky de Muckadell OB, Jessell TM, Iversen LL (1978) Vasoactive intestinal polypeptide (VIP): vesicular localization and potassium evoked release from rat hypothalamus. Brain Res 143: 174–178.

    Article  PubMed  CAS  Google Scholar 

  107. Sims Kb, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183.

    Article  Google Scholar 

  108. Arnaout MA, Garthwaite TL, Martinson DR, Hagen TC (1986) Vasoactive intestinal polypeptide is synthesized in anterior pituitary tissue. Endocrinology 119: 2052–2057.

    Article  PubMed  CAS  Google Scholar 

  109. Segerson TP, Lam KS, Cacicedo L, Minamitani N, Fink JS, Lechan RM, Reichlin S (1989) Thyroid hormone regulates vasocative intestinal peptide ( VIP) mRNA levels in the rat anterior pituitary gland. Endocrinology 125: 2221–2223.

    Google Scholar 

  110. Hagen TC, Arnaout MA, Scherzer WJ, Martinson DR, Garthwaite TL (1986) Antisera to vasoactive intestinal polypeptide inhibit basal prolactin release from dispersed anterior pituitary cells. Neuroendocrinology 43: 641–645.

    Article  PubMed  CAS  Google Scholar 

  111. Nagy G, Mulchahey JJ, Neill JD (1988) Autocrine control of prolactin secretion by vasoactive intestinal peptide. Endocrinology 122: 364–366.

    Article  PubMed  CAS  Google Scholar 

  112. Balsa JA, Cacicedo L, Lara JI, Lorenzo MJ, Pazos F, Sanchez-Franco F (1996) Autocrine and/or paracrine action of vasoactive intestinal peptide on thyrotropin-releasing hormone-induced prolactin release. Endocrinology 137: 144–150.

    Article  PubMed  CAS  Google Scholar 

  113. Fishman JB, Dickey BF, Fine RE (1987) Purification and characterization of the rat liver vasopressin ( VI) receptor. J Biol Chem 262: 14049–14055.

    Google Scholar 

  114. Fahrenholz F, Kojro E, Muller M, Boer R, Lohr R, Grzonka Z (1986) Iodinated photoreactive vasopressin antagonist: labelling of hepatic vasopressin receptor subunits. Eur J Biochem 161: 321–328.

    Article  PubMed  CAS  Google Scholar 

  115. Melis MR, Stancampiano R, Argiolas A (1993) Oxytocin-and vasopressin-like immunoreactivity in the rat thymus: characterization and possible involvement in the immune response. Regul Pept 45: 269–272.

    Article  PubMed  CAS  Google Scholar 

  116. Johnson HM, Torres BA (1985) Regulation of lymphokine production by arginine vasopressin and oxytocin: modulation of lymphocyte function by neurohypophyseal hormones. J Immunol 135 (2 suppl): 773s - 775s.

    PubMed  CAS  Google Scholar 

  117. Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J (1983) Effects of synthetic ovine corticotropinreleasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  118. Heijnen CJ, Zijlstra J, Kavelaars A, Croiset G, Ballieux RE (1987) Modulation of the immune response by POMC-derived peptides. I. Influence on proliferation of human lymphocytes. Brain Behav Immun 1: 284–291.

    Google Scholar 

  119. Bartanusz V, Jezova D, Bertini LT, Tilders FJ, Aubry JM, Kiss JZ (1993) Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology 132: 895–902.

    Article  PubMed  CAS  Google Scholar 

  120. Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13: 307–338.

    Article  PubMed  CAS  Google Scholar 

  121. Brandtzaeg P (1985) Role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobins in man. Scand J Immunol 22: 111–146.

    CAS  Google Scholar 

  122. Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale DT, Rognum TO, Scott H, Sollid LM (1989) Immunobiology and immunopathology of human gut mucosa; humoral immunity and intraepithelial lymphocytes. Gastroenterology 97: 1562–1584.

    PubMed  CAS  Google Scholar 

  123. Deusch K, Reich K (1994) Phenotypic features of human intestinal intraepithelial lymphocytes in health and disease. Mucosal Immunol Update 2 (4): 1–15.

    Google Scholar 

  124. McKay DM, Bienenstock J (1994) The interaction between mast cells and nerves in the gastrointestinal tract. Immunol Today 15: 533–538.

    Article  PubMed  CAS  Google Scholar 

  125. Mayer L (1994) Lymphoepithelial interactions: Activation of T-cells by epithelial cells. Mucosal Immunology Update 2 (2): 1–14.

    Google Scholar 

  126. Bellanti JA, Kadlec JV, Escobar-Gutierrez A (1994) Cytokines and the immune response. Pediatr Clin North Am 41: 597–621.

    PubMed  CAS  Google Scholar 

  127. Chen F. and MS O’Dorisio (1993) Peptidergic regulation of mucosal immune function In: Handbook of Experimental Pharmacology. Springer-Verlag Inc, New York, pp. 363–385.

    Google Scholar 

  128. Wilson CB, Lewis DB (1990) Basis and implications of selectively diminished cytokine production in neonatal susceptibility to infection. Rev Infect Dis 12: S410 - S420.

    Article  PubMed  Google Scholar 

  129. Insoft RM, Sanderson IR, Walker WA (1996) Development of immune function in the intestine and its role in neonatal diseases. Pediatr Clin North Am 43: 551–571.

    Article  PubMed  CAS  Google Scholar 

  130. Bond MW, Shrader B, Mosmann TR, Coffman RL (1987) A mouse T cell product that preferentially enhances IgA production. J Immunol 139: 3691–3696.

    PubMed  CAS  Google Scholar 

  131. Tominaga A, Takaki S, Koyama N, Katoh S, Matsumoto R, Migita M, Hitoshi Y, Hosoya Y, Yamauchi S, Kanai Y, Miyazaki J-I, Usuku G, Yamamura K-I, Takatsu K (1991) Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production. J Exp Med 173: 429–437.

    Article  PubMed  CAS  Google Scholar 

  132. Kunimoto DY, Nordan RP, Strober W (1989) IL-6 is a potent cofactor of IL-1 in IgM synthesis and of IL-5 in IgA synthesis. J Immunol 143: 2230–2235.

    PubMed  CAS  Google Scholar 

  133. Coffman RL, Lebman DA, Shrader B (1989) Transforming growth factor 13 specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J Exp Med 170: 1039–1044.

    Article  PubMed  CAS  Google Scholar 

  134. Kim P-H, Kagnoff MF (1990) Transforming growth factor 01 increases IgA isotype switching at the clonal level. J Immunol 145: 3773–3778.

    PubMed  CAS  Google Scholar 

  135. Tomasi TBJ (1983) Mechanisms of immune regulation at mucosal surfaces. Rev Infect Dis 5: S784 - S792.

    Article  PubMed  Google Scholar 

  136. Sollid LM, Kvale D, Brandtzaeg P, Markussen G, Thorsby E (1987) Interferon-y enhances expression of secretory component, the epithelial receptor for polymeric immunoglobulins. J Immunol 138: 4303–4306.

    PubMed  CAS  Google Scholar 

  137. Kvale D, Brandtzaeg P, Lovhaug D (1988) Up-regulation of the expression of secretory component and HLA molecules in a human colonic cell line by tumour necrosis factor-a and gamma interferon. Scand J Immunol 28: 351–357.

    Article  PubMed  CAS  Google Scholar 

  138. Phillips JO, Everson MP, Moldoveanu Z, Lue C, Mestecky J (1990) Synergistic effect of IL-4 and IFN-gamma on the expression ofpPolymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J Immunol 145: 1740–1744.

    PubMed  CAS  Google Scholar 

  139. Youngman KR, Fiocchi C, Kaetzel CS (1994) Inhibition of IFN-gamma activity in supernatants from stimulated human intestinal mononuclear cells prevents up-regulation of the polymeric Ig receptor in an intestinal epithelial cell line. J Immunol 153: 675–681.

    PubMed  CAS  Google Scholar 

  140. Weihe E, Nohr D, Michel S, Muller S, Zentel HJ, Fink T, Krekel J (1991) Molecular anatomy of the neuro-immune connection. Int J Neurosci 59: 1–23.

    Article  PubMed  CAS  Google Scholar 

  141. Merrill JE, Jonakait GM (1995) Interactions of the nervous and immune systems in development, normal brain homeostasis, and disease. FASEB J 9: 611–618.

    PubMed  CAS  Google Scholar 

  142. Patterson PH (1994) Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology. Proc Natl Acad Sci USA 91: 7833–7835.

    Article  PubMed  CAS  Google Scholar 

  143. Swain MG, Agro A, Blennerhassett P, Stanisz A, Collins SM (1992) Increased levels of substance P in the myenteric plexus of trichinella-infected rats. Gastroenterology 102: 1913–1919.

    PubMed  CAS  Google Scholar 

  144. Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J (1987) Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci USA 84: 2975–2979.

    Article  PubMed  CAS  Google Scholar 

  145. Camerini V, Panwala C, Kronenberg M (1993) Regional specialization of the mucosal immune system. J Immunol 151: 1765–1776.

    PubMed  CAS  Google Scholar 

  146. Gordon JR, Burd PR, Galli SJ (1990) Mast cells as a source of multifunctional cytokines. Immunol Today 11: 458–464.

    Article  PubMed  CAS  Google Scholar 

  147. Karman Y, Stead RH, Goldsmith CH, Bienenstock J (1994) Lymphoid tissues induce NGF-dependent and NGF-independent neurite outgrowth from rat superior cervical ganglia explants in culture. J Neurosi Res 37: 374–383.

    Article  Google Scholar 

  148. Hurst S, Collins SM (1993) Interleukin-1 beta modulation of norepinephrine release from rat myenteric nerves. Am J Physiol 264: G30 - G35.

    PubMed  CAS  Google Scholar 

  149. Perdue MH, McKay DM (1994) Integrative immunophysiology in the intestinal mucosa. Am J Physiol 267: G151 - G165.

    PubMed  CAS  Google Scholar 

  150. Walsh JH, Mayer EA (1993) Gastrointestinal hormones In: Gastrointestinal Disease: Sleisenger MH, Fordtran JS, eds. Pathophysiology/Diagnosis/Management. W. B. Saunders, Philadelphia, pp. 18–44.

    Google Scholar 

  151. Sundler F, Ekblad E, Hakanson R (1993) Localization and colocalization of gastrointestinal peptides. In: Handbook of Experimental Pharmacology. Springer Verlag, New York, pp. 1–25.

    Google Scholar 

  152. Accili EA, Dhatt N, Buchan AMJ (1995) Neural somatostatin, vasoactive intestinal polypeptide and substance P in canine and human jejunum. Neurosci Lett 185: 37–340.

    Article  PubMed  CAS  Google Scholar 

  153. Cooke HJ (1986) Neurobiology of the Intestinal Mucosa. Gastroenterology 90: 1057–1081.

    PubMed  CAS  Google Scholar 

  154. Ekblad E, Winther C, Ekman R, Hakanson R, Sundler F (1987) Projections of Peptide-Containing Neurons in Rat Small Intestine. Neuroscience 20: 169–188.

    Article  PubMed  CAS  Google Scholar 

  155. Probert L, DeMey J, Polak JM (1981) Distinct subpopulations of enteric p-type neurones contain substance P and vasoactive intestinal polypeptide. Nature 294: 470–471.

    Article  PubMed  CAS  Google Scholar 

  156. Pearse AGE, Polak JM, Bloom SR (1977) The newer gut hormones. Cellular sources, physiology, pathology and clinical aspects. Gastroenterology 72: 746–761.

    Google Scholar 

  157. Nio DA, Moylan RN, Roche JK (1993) Modulation of T lymphocyte function by neuropeptides. J Immunol 150: 5281–5288.

    PubMed  CAS  Google Scholar 

  158. Roche JK (1983) Immunological mechanisms for chronic inflammatory diseases of mucosa. In: Lynn WS (ed) Inflammatory Cells and Lung Disease. CRC Press, New York, pp. 63–84.

    Google Scholar 

  159. Bellinger DL, Lorton D, Romano TD, Olschowka JA, Felten SY, Felten DL (1990) Neuropeptide innervation of lymphoid organs. Ann NY Acad Sci 594: 17–33.

    Article  PubMed  CAS  Google Scholar 

  160. Payan DG, Goetzl EJ (1988) Neuropeptide regulation of immediate and delayed hypersensitivity. Int J Neurosci 38: 211–221.

    Article  PubMed  CAS  Google Scholar 

  161. Weinstock JV (1992) Neuropeptides and the regulation of granulomatous inflammation. Clin Immunol Immunopathol 64: 17–22.

    Article  PubMed  CAS  Google Scholar 

  162. Weinstock JV, Blum AM (1990) Detection of vasoactive intestinal peptide and localization of its mRNA within granulomas of murine schistosomiasis. Cell Immunol 125: 291–300.

    Article  PubMed  CAS  Google Scholar 

  163. Weinstock JV, Blum AM (1989) Tachykinin production in granulomas of murine schistosomiasis mansoni. J Immunol 142: 3256–3261.

    PubMed  CAS  Google Scholar 

  164. Weinstock JV, Blum A, Walder J, Walder R (1988) Eosinophils from granulomas in murine schistosomiasis mansoni produce substance P. J Immunol 141: 961–966.

    PubMed  CAS  Google Scholar 

  165. Payan DG (1989) Neuropeptides and inflammation: The role of substance P. Annu Rev Med 40: 341–352.

    Article  PubMed  CAS  Google Scholar 

  166. Maggio JE (1988) Tachkinins. Annu Rev Neurosci 11: 13–28.

    Article  CAS  Google Scholar 

  167. Payan DG, Brewster DR, Goetzl EJ (1984) Stereospecific receptors for substance P on cultured human IM-9 lymphoblast. J Immunol 133: 3260–3265.

    PubMed  CAS  Google Scholar 

  168. Payan DG, Brewster DR, Missirian-Bastian A, Goetzl EJ (1984) Substance P recognition by a subset of human T lymphocytes. J Clin Invest 74: 1532–1539.

    Article  PubMed  CAS  Google Scholar 

  169. Payan DG, Goetzl EJ (1987) Substance P receptor-dependent responses of leukocytes in pulmonary inflammation. Am Rev Respir Dis 136: s39 - s43.

    PubMed  CAS  Google Scholar 

  170. Jeurissen F, Kavelaars A, Korstjens M, Broeke D, Franklin RA, Gelfand EW, Heijnen CJ (1994) Monocytes express a non-neurokinin substance P receptor that is functionally coupled to MAP kinase. J Immunol 152: 2987–2994.

    PubMed  CAS  Google Scholar 

  171. Payan DG, Brewster DR, Goetzel EJ (1983) Specific stimulation of human T lymphocytes by substance P. J Immunol 131: 1613–1617.

    PubMed  CAS  Google Scholar 

  172. Eglezos A, Andrews PV, Boyd RL, Helme RD (1990) Effects of capsaicin treatment on immunoglobulin secretion in the rat: further evidence for involvement of tachykinin-containing afferent nerves. J Neuroimmunol 126: 131–138.

    Article  Google Scholar 

  173. Moore TC, Lami JL, Spruck CH (1989) Substance P increases lymphocyte traffic and lymph flow through peripheral lymph nodes of sheep. Immunology 67: 109–114.

    PubMed  CAS  Google Scholar 

  174. Bost KL (1988) Hormone and neuropeptide receptors on mononuclear leukocytes. Prog Allergy 43: 68–83.

    PubMed  CAS  Google Scholar 

  175. Pascual DW, Bost KL (1990) Substance P production by P388D1 macrophages: a possible autocrine function for this neuropeptide. Immunology 71: 52–56.

    PubMed  CAS  Google Scholar 

  176. Fewtrell CM, Roemena JC, Jordan CC, Oehme P, Renner H, Stewart JM (1982) The effects of substance P on histamine and 5-hydroxytryptamine release in the rat. J Physiol 330: 393–411.

    PubMed  CAS  Google Scholar 

  177. Lowman MA, Benyon RC, Church MK (1988) Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells. Br J Pharmcol 95: 121–130.

    Article  CAS  Google Scholar 

  178. Iwamoto I, Tomoe S, Tomioka H, Yoshida S (1992) Substance P-induced granulocyte infiltration in mouse skin: the mast cell-dependent granulocyte infiltration by the N-terminal peptide is enhanced by the activation of vascular endothelial cells by the C-terminal peptide. Clin Exp Immunol 87: 203–207.

    Article  PubMed  CAS  Google Scholar 

  179. Stanisz AM, Scicchitano R, Dazin P, Bienenstock J, Payan DG (1987) Distribution of Substance P Receptors on Murine Spleen and Peyer’s Patch T and B Cells. J Immunol 139: 749–754.

    PubMed  CAS  Google Scholar 

  180. Rameshwar P, Gascon P, Ganea D (1992) Immunoregulatory effects of neuropeptides. Stimulation of interleukin-2 production by Substance P. J Neuroimmunol 37: 65–74.

    Article  PubMed  CAS  Google Scholar 

  181. Rameshwar P, Gascon P, Ganea D (1993) Stimulation of IL-2 production in murine lymphocytes by substance P and related tachykinins. J Immunol 151: 2484–2496.

    PubMed  CAS  Google Scholar 

  182. Calvo C-F, Chavanel G, Senik A (1992) Substance P enhances IL-2 expression in activated human T cells. J Immunol 148: 3498–3504.

    PubMed  CAS  Google Scholar 

  183. Lotz M, Vaughan JH, Carson DA (1988) Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241: 1218–1221.

    Article  PubMed  CAS  Google Scholar 

  184. Ansel JC, Brown JR, Payan DG, Brown MA (1993) Substance P selectively activates TNF-u gene expression in murine mast cells. J Immunol 150: 4478–4485.

    PubMed  CAS  Google Scholar 

  185. Rameshwar P, Ganea D, Gascon P (1993) In vitro stimulatory effect of substance P on hematopoiesis. Blood 81: 391–398.

    PubMed  CAS  Google Scholar 

  186. Rameshwar P, Ganea D, Gacon P (1994) Induction of IL-3 and granulocyte-macrophage colony-stimulating factor by substance P in bone marrow cells is partially mediated through the release of IL-1 and IL-6. J Immunol 152: 4044–4054.

    PubMed  CAS  Google Scholar 

  187. Blum AM, Metwali A, Cook G, Mathew RC, Elliott D, Weinstock JV (1993) Substance P modulates antigen-induced, IFN-y production in murine schistosomiasis mansoni. J Immunol 151: 225–233.

    Google Scholar 

  188. Neil GA, Blum A, Weinstock JV (1991) Substance P but not vasoactive intestinal peptide modulates immunoglobulin secretion in murine schistosomiasis. Cell Immunol 135: 394–401.

    Article  PubMed  CAS  Google Scholar 

  189. Cook GA, Elliott D, Metwali A, Blum AM, Sandor M, Lynch R, Weinstock JV (1994) Molecular evidence that granuloma T lymphocytes in murine schistosomiasis mansoni express an authentic substance P (NK-1) receptor. J Immunol 152: 1830–1835.

    PubMed  CAS  Google Scholar 

  190. O’Dorisio MS (1990) The role of substance P, somatostatin and vasoactive intestinal peptide in modulation of mucosal immunity. In: Baker M, ed. The Neuroendocrine-Immune Network. CRC, Boca Raton, pp. 187–98.

    Google Scholar 

  191. Kubota Y, Petras RE, Ottaway CA, Tubbs RR, Farmer RG, Fiocchi C (1992) Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. Gastroenterology 102: 1242–1251.

    PubMed  CAS  Google Scholar 

  192. Wiik P (1989) Vasoactive intestinal peptide inhibits the respiratory burst in human monocytes by a cyclic AMP-mediated mechanism. Regul Pept 25: 187–197.

    Article  PubMed  CAS  Google Scholar 

  193. Danek A, O’Dorisio MS, O’Dorisio TM, George JM (1983) Specific binding sites for vasoactive intestinal polypeptide on nonadherent peripheral blood lymphocytes. J Immunol 131: 1173–1177.

    PubMed  CAS  Google Scholar 

  194. Ottaway CA, Lay TE, Greenberg GR (1990) High affinity specific binding of vasoactive intestinal peptide to human circulating T cells, B cells and large granular lymphocytes. J Neuroimmunol 29: 149–155.

    Google Scholar 

  195. Finch RJ, Sreedharan SP, Goetzl EJ (1989) High-affinity receptors for vasoactive intestinal peptide on human myeloma cells. J Immunol 142: 1977–1981.

    PubMed  CAS  Google Scholar 

  196. O’Dorisio MS, Shannon BT, Fleshman DJ, Campolito LB (1989) Identification of high affinity receptors for vasoactive intestinal peptide on human lymphocytes of B cell lineage. J Immunol 42: 3533–3536.

    Google Scholar 

  197. Ottaway CA, Greenberg GR (1984) Interaction of VIP with mouse lymphocytes: Specific binding and the modulation of mitogen responses. J Immunol 32: 417–423.

    Google Scholar 

  198. Laburthe M, Couvineau A (1988) Molecular analysis of vasoactive intestinal peptide receptors. A comparison with receptors for VIP-related peptides. Ann NY Acad Sci 527: 296–313.

    Google Scholar 

  199. Sreedharan SP, Patel DR, Huang JX, Goetzl EJ (1993) Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 193: 546–553.

    Article  PubMed  CAS  Google Scholar 

  200. Couvineau A, Rouyer-Fessard C, Darmoul D, Maorett JJ, Carrero I, Ogier-Denis E, Laburthe M (1994) Human intestinal VIP receptor: cloning and functional expression of two cDNA endocrine proteins with different N-terminal domains. Biochem Biophys Res Commun 200: 769–776.

    Article  PubMed  CAS  Google Scholar 

  201. Park SK, Olson TA, Ercal N, Summers M, O’Dorisio MS (1996) Characterization of vasoactive intestinal peptide receptors on human megakaryocytes and platelets. Blood 87: 4629–4635.

    PubMed  CAS  Google Scholar 

  202. Gomariz RP, Garrido E, Leceta J, Martinez C, Abalo R, Delgado M (1994) Gene expression of VIP receptor in rat lymphocytes. Biochem Biophys Res Commun 203: 1599–1604.

    Article  PubMed  CAS  Google Scholar 

  203. Adamou JE, Aiyar N, VanHorn S, Elshourbagy NA (1995) Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)-2 receptor. Biochem Biophys Res Commun 209: 385–392.

    Article  PubMed  CAS  Google Scholar 

  204. Christophe J, Cauvin A, Vervisch E, Buscail L, Damien C, Abello J, Gourlet P, Robberecht P (1990) VIP receptors in human SUP-T1 lymphoblasts. Digestion 46 (Suppl 2): 148–155.

    Article  PubMed  CAS  Google Scholar 

  205. O’Dorisio MS, Hermina N, Balcerzak SP, O’Dorisio TM (1981) Vasoactive intestinal polypeptide stimulation of adenylate cyclase in purified human leukocytes J Immunol 127: 2551–2554.

    Google Scholar 

  206. Lathe R (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data Theoretical and practical consideration. J Mol Biol 183: 1–12.

    Article  PubMed  CAS  Google Scholar 

  207. Krco CJ, Gores A, Go VLW (1986) Gastrointestinal regulatory peptides modulate in vitro immune reactions of mouse lymphoid cells. Clin Immunol Immunopathol 39: 308–318.

    Article  PubMed  CAS  Google Scholar 

  208. Stanisz AM, Befus D, Bienenstock J (1986) Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer’s patches, mesenteric lymph nodes, and spleen. J Immunol 136: 152–156.

    PubMed  CAS  Google Scholar 

  209. Annibale B, Fais S, Boirivant M, Delle-Fave G, Pallone R (1990) Effects of high in vivo levels of vasoactive intestinal polypeptide on function of circulating lymphocytes in humans. Gastroenterology 98: 1693–1698.

    PubMed  CAS  Google Scholar 

  210. Ohkubo N, Miura S, Serizawa H, Yan HJ, Kimura H, Imaeda H, Tashiro H, Tsuchiya M (1994) In vivo effect of chronic administration of vasoactive intestinal peptide on gut-associated lymphoid tissues in rats. Regul Pept 50: 127–135.

    Article  PubMed  CAS  Google Scholar 

  211. Martinez, DA, O’Dorisio MS, Goldblum RM, and DL Pyron (1992) Vasoactive intestinal peptide modulates secretory component content of cultured intestinal epithelial cells. (poster). [Abstract] Conf on Neuroimmuno Physiology of Gastronintestinal Murosa, Tuscon, AZ.

    Google Scholar 

  212. Rola-Pleszczynski M, Bolduc D, S.St. Pierre (1985) The effects of VIP on NK cell function. J Immunol 135: 2569–2573.

    PubMed  CAS  Google Scholar 

  213. Sirianni MC, Annibale B, Tagliaferri F, Fais S, DeLuca S, Pallone F, Fave GD, Aiuti F (1992) Modulation of human natural killer activity by vasoactive intestinal peptide (VIP) family. VIP, glucagon and GHRF specifically inhibit NK activity. Regul Pept 38: 79–87.

    Google Scholar 

  214. Bonavida B, Wright SC (1986) Role of natural killer cytotoxic factors in the mechanism of target-cell killing by natural killer cells. J Clin Immunol 6: 1–8.

    Article  PubMed  CAS  Google Scholar 

  215. Xin Z, Tang H, Ganea D (1994) Vasoactive intestinal peptide inhibits interleukin (IL)-2 and IL-4 production in murine thymocytes activated via the TCR/CD3 complex. J Neuroimmunol 54: 59–68.

    Article  PubMed  CAS  Google Scholar 

  216. Ganea D, Sun L (1993) Vasoactive intestinal peptide downregulates the expression of IL-2 but not of IFN-y from stimulated murine T lymphocytes. J Neuroimmunol 47: 147–158.

    Article  PubMed  CAS  Google Scholar 

  217. Tang H, Welton A, Ganea D (1995) Neuropeptide regulation of cytokine expression: effects of VIP and Ro 25–1553. J Interferon Cytokine Res 5: 993–1003.

    Article  Google Scholar 

  218. Sun L, Ganea D (1993) Vasoactive intestinal peptide inhibits IL-2 and IL-4 production through different molecular mechanisms in T cells activated via the TCR/CD3 complex. J Neuroimmunol 48: 59–69.

    Article  PubMed  CAS  Google Scholar 

  219. Wang H-Y, Xin Z, Tang H, Ganea D (1996) Vasoactive intestinal peptide inhibits IL-4 production in murine T cells by a post-transcriptional mechanism. J Immunol 156: 3243–3253.

    PubMed  CAS  Google Scholar 

  220. Metwali A, Blum AM, Ferraris L, Klein JS, Fiocchi C, Weinstock JV (1994) Eosinophils within the healthy or inflamed human intestine produce substance P and vasoactive intestinal peptide. J Neuroimmunol 52: 69–78.

    Article  PubMed  CAS  Google Scholar 

  221. Metwali A, Blum A, Mathew R, Sandor M, Lynch RG, Weinstock JV (1993) Modulation of T lymphocyte proliferation in mice infected with schistosoma mansoni: VIP suppresses mitogen-and antigen-induced T cell proliferation possibly by inhibiting IL-2 production. Cell Immunol 149: 11–23.

    Article  PubMed  CAS  Google Scholar 

  222. Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237: 299–308.

    Google Scholar 

  223. Feher E, Fodor M, Burnstock G (1992) Distribution of somatostatin-immunoreactive nerve fibres in Peyer’s patches. Gut 33: 1195–1198.

    Article  PubMed  CAS  Google Scholar 

  224. Reichlin S (1986) Somatostatin: Historical aspects. Scand J Gastroenterol 21: 1–10.

    Article  Google Scholar 

  225. Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB (1994) All five cloned human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem Biophys Res Commun 98: 605–612.

    Article  Google Scholar 

  226. Patel YC, Greenwood MT, Papetta R, Demchyshyn L, Niznik H, Srikant CB (1995) Mini review: The somatostatin receptor family. Life Sci 57: 1249–1265.

    Google Scholar 

  227. Bhatena SJ, Louie J, Scheitter GP, Redman RS, Wahl L, Recant L (1981) Identification of human mononuclear leukocytes bearing receptors for somatostatin and glucagon. Diabetes 30: 127–134.

    Article  Google Scholar 

  228. Scicchitano R, Dazin P, Bienenstock J, Payan DG, Stanisz AM (1987) Distribution of somatostatin receptors on murine spleen and peyer’s patch T and B lymphocytes. Brain Behav Immun 1: 173–184.

    Article  PubMed  CAS  Google Scholar 

  229. Sreedharan SP, Kodama KT, Peterson KE, Goetzl EJ (1989) Distinct subsets of somatostatin receptors on cultured human lymphocytes. J Biol Chem 264: 949–952.

    PubMed  CAS  Google Scholar 

  230. Fais S, Annibale B, Boirivant M, Santoro A, Pallone F, Delle Faye G (1991) Effects of somatostatin on human intestinal lamina propria lymphocytes. J Neuroimmunol 31: 211–219.

    Article  PubMed  CAS  Google Scholar 

  231. Blum AM, Metwali A, Mathew RC, Cook G, Elliott D, Weinstock JV (1992) Granuloma T lymphocytes in murine schistosomiasis mansoni have somatostatin receptors and respond to somatostatin with decreased IFN-y secretion. J Immunol 149: 3621–3626.

    PubMed  CAS  Google Scholar 

  232. Elliott DE, Metwali A, Blum AM, Sandor M, Lynch R, Weinstock JV (1994) T lymphocytes isolated from the hepatic granulomas of schistosome-infected mice express somatostatin receptor subtype II (SSTR2) messenger RNA. J Immunol 153: 1180–1186.

    PubMed  CAS  Google Scholar 

  233. Fischer EG (1988) Opioid peptides modulate immune functions. A review. Immunopharmacology and Immunotoxicology 10: 265–326.

    Article  PubMed  CAS  Google Scholar 

  234. Gilmore W, Moloney M, Weiner LP (1990) The role of opioid peptides in immunomodulation. Ann N Y Acad Sci 597: 252–263.

    Article  PubMed  CAS  Google Scholar 

  235. Bhargava HN (1990) Opioid peptides, receptors and immune function. NIDA Res Monogr 96: 220–233.

    PubMed  CAS  Google Scholar 

  236. Teschemacher H, Koch G, Scheffler H, Hildebrand A, Brantl V (1990) Opioid peptides, immunological significance? Ann N Y Acad Sci 594: 66–77.

    Article  PubMed  CAS  Google Scholar 

  237. Fujimiya M, Okumiya K, Renda T, Kimura H, Maeda T (1994) Demonstration of [D-Ala2jdeltorphin I-like immunoreactivity in mucosal epithelial cells of the rat gastrointestinal tract. Peptides 15: 1095–1100.

    Article  PubMed  CAS  Google Scholar 

  238. McGuigan JE (1989) Hormones of the gastrointestinal tract. In: DeGroot LJ, Besser GM, Cahil GF, eds. Endocrinology. WB Sanders, Philadelphia, pp. 2741–2768.

    Google Scholar 

  239. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135: 755s - 765s.

    PubMed  CAS  Google Scholar 

  240. Roth KA, Lorenz RA, Unanue RA, Weaver CT (1989) Nonopiate active proenkephalin-derived peptides are secreted by T helper cells. FASEB J 3: 2401–2407.

    PubMed  CAS  Google Scholar 

  241. Rosen H, Behar O, Abramsky O, Ovadia H (1989) Regulated expression of proenkephalin in a normal lymphocytes. J Immunol 143: 3703–3707.

    PubMed  CAS  Google Scholar 

  242. Martin J, Prystowsky MB, Angeletti RH (1987) Preproenkephalin mRNA in T-cells, macrophages, and mast cells. J Neurosi Res 18: 82–87.

    Article  CAS  Google Scholar 

  243. Heijnen CJ, Croiset G, Zijlstra J, Ballieux RE (1987) Modulation of lymphocyte function by endorphins. Ann N Y Acad Sci 49: 161–165.

    Article  Google Scholar 

  244. Hsueh CM, Chen SF, Ghanta VK, Hiramoto RN (1995) Expression of the conditioned NK cell activity is beta-endorphin dependent. Brain Res 678: 76–82.

    Article  PubMed  CAS  Google Scholar 

  245. Harbour DV, and EM Smith (1990) Immunoregulatory activity of endogenous opioids. In: Freier S (ed) The Neuroendocrine-Immune Network. CRC, Boca Raton, pp. 141–159.

    Google Scholar 

  246. Heagy W, Shipp MA, Finberg RW (1992) Opioid receptor agonists and Cat+ modulation in human B cell lines. J Immunol 149: 4074–4081.

    PubMed  CAS  Google Scholar 

  247. Umeda Y, Takamiya M, Yoshizaki H, Arisawa M (1988) Inhibition of mitogen-stimulated T lymphocyte proliferation by calcitonin gene-related peptide. Biochem Biophys Res Commun 154: 227–235.

    Article  PubMed  CAS  Google Scholar 

  248. Bulloch K, McEwen BS, Diwa A, Radojcic T, Hausman J, Baird S (1994) The role of calcitonin gene-related peptide in the mouse thymus revisited. Ann NY Acad Sci 741: 129–136.

    Article  PubMed  CAS  Google Scholar 

  249. Wang X, Fiscus RR, Tang Z, Yang L, Wu J, Fan s, Mathews HL (1994) CGRP in the serum of endotoxintreated rats suppresses lymphoproliferation. Brain Behav Immun 8: 282–292.

    Article  PubMed  CAS  Google Scholar 

  250. Nong YH, Titus RG, Ribeiro JM, Remold HG (1989) Peptides encoded by the calcitonin gene inhibit macrophage function. J Immunol 143: 45–49.

    PubMed  CAS  Google Scholar 

  251. Abello J, Kaiserlian-Nicolas D, Cuber JC, Revillard JP, Chayvialle JA (1990) Identification of high affinity calcitonin gene-related peptide receptors on a murine macrophage-like cell line. Ann NY Acad Sci 694: 364–366.

    Article  Google Scholar 

  252. Manley HC, Haynes LW (1989) Eosinophil chemotactic response to rat CGRP-1 is increased after exposure to trypsin or guinea-pig lung particulate fraction. Neuropeptides 13: 29–34.

    Article  PubMed  CAS  Google Scholar 

  253. Schwarz H, Villiger PM, von Kempis J, Lotz M (1994) Neuropeptide Y is an inducible gene in the human immune system. J Neuroimmunol 51: 53–61.

    Article  PubMed  CAS  Google Scholar 

  254. Petitto JM, Huang Z, McCarthy DB (1994) Molecular cloning of NPY-Y1 receptor cDNA from rat splenic lymphocytes: evidence of low levels of mRNA expression and binding sites. J Neuroimmunol 54: 81–86.

    Article  PubMed  CAS  Google Scholar 

  255. Ball HJ, Shine J, Herzog H (1995) Multiple promoters regulate tissue-specific expression of the human NPY-Y1 receptor gene. J Biol Chem 270:27, 272–27, 276.

    Google Scholar 

  256. Rose PM, Fernandes P, Lynch JS, Frazier ST, Fisher SM, Kodukula K, Kienzle B, Seethala R (1995) Cloning and functional expression of a cDNA encoding a human Type 2 neuropeptide Y receptor. J Biol Chem 270: 22661–22664.

    Article  PubMed  CAS  Google Scholar 

  257. Dureus P, Louis D, Grant AV, Bilfinger TV, Stefano GB (1993) Neuropeptide Y inhibits human and invertebrate immunocyte chemotaxis, chemokinesis, and spontaneous activation. Cell Mol Neurobiol 13: 541–546.

    Article  PubMed  CAS  Google Scholar 

  258. Elitsur Y, Luk GD, Colberg M, Gesell MS, Dosescu J, Moshier JA (1994) Neuropeptide Y ( NPY) enhances proliferation of human colonic lamina propria lymphocytes. Neuropeptides 26: 289–295.

    Google Scholar 

  259. Freier S, E Lebenthal (1990) The neuroendocrine-immune network in the gastrointestinal tract. In: Freier S (ed) The Neuroendocrine-Immune Network. CRC, Boca Raton, FL, pp. 239–255.

    Google Scholar 

  260. Freier S, Eran M, Faber J (1987) Effect of cholecystokinin and of its antagonist, of atropine and of food on the release of immunoglobulin A and immunoglobulin G antibodies in rat intestine. Gastroenterology 93: 1242–1246.

    PubMed  CAS  Google Scholar 

  261. McMillen MA, Ferrara A, Adrian TE, Margolis DS, Schaefer HC, Zucker KA (1995) Cholecystokinin effect on human lymphocyte ionized calcium and mitogenesis. J Surg Res 58: 149–158.

    Article  PubMed  CAS  Google Scholar 

  262. Lloyd AR, Johnston J (1993) Cytokines and cytokine receptors in health and disease. A summary of the National Heart, Lung and Blood Institute Frontiers in Basic Sciences Symposium, Dec. 2–3, 1992. Cytokine 5: 399–406.

    Google Scholar 

  263. Dantal J, Soulillou JP (1991) Use of monoclonal antibodies in human transplantation. Curr Opin Immunol 3: 740–747.

    Article  PubMed  CAS  Google Scholar 

  264. Heaney ML, Golde DW (1996) Soluble cytokine receptors. Blood 87: 847–857.

    PubMed  CAS  Google Scholar 

  265. Howard OMZ, Clouse KA, Smith C, Goodwin RG, Farrar WL (1993) Soluble tumor necrosis factor receptor: inhibition of human immunodeficiency virus activation. Proc Natl Acad Sci USA 90: 2335–2339.

    Article  PubMed  CAS  Google Scholar 

  266. Fanslow WC, Clifford KN, Park LS, Rubin AS, Voice RF, Beckmann MP, Widmer MB (1991) Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol 147: 535–540.

    PubMed  CAS  Google Scholar 

  267. Jacobs CA, Baker PE, Roux ER, Picha KS, Toivola B, Waugh S, Kennedy MK (1991) Experimental autoimmune encephalomyelitis is exacerbated by IL-1 a and suppressed by soluble IL-1 receptor. J Immunol 146: 2983–2989.

    PubMed  CAS  Google Scholar 

  268. Krenning EP, Breeman WAP, Kooij PPM, Lameris JS, Bakker WH, Koper JW, Ausema L, Reubi JC, Lamberts SWJ (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1: 242–244.

    Article  PubMed  CAS  Google Scholar 

  269. Kvols LK (1993) Somatostatin-receptor imaging of human malignancies: a new era in the localization, staging, and treatment of tumors. Gastroenterology 105: 1909–1914.

    PubMed  CAS  Google Scholar 

  270. Reubi JC, Waser B, Horisberger U, Krenning E, Lamberts SWJ, Gebbers J-O, Gersbach P, Laissue JA (1993) In vitro autoradiographic and in vivo scintigraphic localization of somatostatin receptors in human lymphatic tissue. Blood 82: 2143–2151.

    PubMed  CAS  Google Scholar 

  271. Reubi JC, Laissure J, Krenning E, Lamberts SW (1992) Somatostatin receptors in human cancer: incidence, characteristi, functional correlate and clinical implications. J Steroid Biochem Mol Biol 43: 27–35.

    Article  PubMed  CAS  Google Scholar 

  272. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WAP, Kooij PPM, Oei HY, van Hagen M, Postema PTE, de Jong M, Reubi JC, Visser TJ, Reijs AEM, Hofland LJ, Koper JW, Lambert SWJ (1993) Somatostatin receptor scintigraphy with [“’In-DTPA-d-Phe’]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patient. Eur J Nucl Med 20: 716–731.

    Article  PubMed  CAS  Google Scholar 

  273. Reubi JC, Krenning E, Lambert SW, Kvols L (1993) In vitro detection of somatostatin receptor in human tumors. Digestion 54 (Suppl 1): 76–83.

    Article  PubMed  Google Scholar 

  274. Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q, Li S, Banyi M, Pidlich J, Niederle B, Scheithauer W, Valent P (1994) Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med 331 (17): 1116–21.

    Article  PubMed  CAS  Google Scholar 

  275. Reubi JC (1995) In vitro identification of vasoactive intestinal peptide receptors in human tumors: implications for tumor imaging. J Nucl Med 86: 1846–1853.

    Google Scholar 

  276. Haegerstrand A, Jonzon B, Dalsgaard C-J, Nilsson J (1989) Vasoactive intestinal polypeptide stimulates cell proliferation and adenylate cyclase activity of cultures human keratinocytes. Proc Natl Acad Sci USA 86: 5993–5996.

    Article  PubMed  CAS  Google Scholar 

  277. Moody TW, Zia F, Makheja A (1993) Pituitary adenylate cyclase activating polypeptide receptors are present on small cell lung cancer cells. Peptides 14: 241–246.

    Article  PubMed  CAS  Google Scholar 

  278. Pinus DW, DiCico-Bloom EM, Black IB (1990) Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature 343: 564–567.

    Article  Google Scholar 

  279. Scholar EM, Paul S (1991) Stimulation of tumor cell growth by vasoative intestinal peptide. Cancer 67: 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  280. Moddy TW, Zia F, Draoui M, Brenneman DE, Fridkin M, Davidsson A, Gozes I (1993) A vasoactive intestinal peptide antagonist inhibits non-small cell lung cancer growth. Proc Natl Acad Sci USA 90: 4345–4349.

    Article  Google Scholar 

  281. Gozes I, Shani Y, Rostene WH (1987) Developmental expression of the VIP-gene in brain and intestine. Mol Brain REs 2: 137–2148.

    Article  CAS  Google Scholar 

  282. O’Dorisio MS, Fleshman DJ, Qualman SJ, O’Dorisio TM (1992) Vasoactive intestinal peptide: autocrine growth factor in neuroblastoma. Regul Pept 87: 213–226.

    Article  Google Scholar 

  283. Krenning EP, Kooij PPM, Bakker WH, Breman WAP, Potema PTE, Kwekkeboom DJ, Oei HY, deJong M, Viser TJ, Reij AEM, Lamberts SWJ (1994) Radiotherapy with a radiolabeled somatostatin analogoues, [1111n-DTPA-d-Phe]-octreotide. Ann N Y Acad Sci 733: 496–506.

    Article  PubMed  CAS  Google Scholar 

  284. Weiss RA (1996) HIV receptors and the pathogenesis of AIDS. Science 272: 1885–1886.

    Article  PubMed  CAS  Google Scholar 

  285. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1a, MIP-13 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955–1958.

    Article  PubMed  CAS  Google Scholar 

  286. Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, Ruff MR, Pert CB (1988) Neuronal cell killing by the envelope protein of HIV and prevention by vasoactive intestinal peptide. Nature 335: 639–642.

    Article  PubMed  CAS  Google Scholar 

  287. Pert CB, Ruff MR (1986) Peptide T[4–81: a pentapeptide sequence in the AIDS virus envelope which blocks infectivity is essentially conserved across nine isolates. Clin Neuropharmacol (Suppl 4 ): 482–484.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, S.K., O’Dorisio, M.S. (1999). Neuroendocrine Immune Axis in the Intestine. In: Greeley, G.H. (eds) Gastrointestinal Endocrinology. Contemporary Endocrinology, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-695-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-695-9_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-054-0

  • Online ISBN: 978-1-59259-695-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics