Skip to main content

The Selective Interaction of Neurosteroids with the GABAA Receptor

  • Chapter
Neurosteroids

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

Some endogenous pregnane steroids have long been known to produce rapid sedative and anesthetic effects (1). The speed of onset of these behavioral effects precludes a genomic mechanism of action for such steroids, but it was not until Harrison and Simmonds (2)demonstrated that a synthetic steroidal anesthetic, alphaxalone (3α-hydroxy-5α-pregnane-11,20-dione), selectively enhanced the interaction of GABA with the GABAA receptor, that a logical mechanism to explain the behavioral effects of these compounds emerged. GABA acting via the GABAA receptor mediates much of the “fast” inhibitory synaptic transmission in the mammalian brain (3).The GABAA receptor is a member of the cysteine-cysteine loop transmitter-gated ion channel family that includes glycine, nicotinic, and 5-HT3 receptors (4).Upon activation by GABA, the associated chloride selective ion channel is opened that increases neuronal membrane conductance and effectively shunts the influence of excitatory transmitters such as glutamate (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selye H. Anaesthetic effects of steroid hormones. Proc Soc Exp Biol Med 1941; 46: 116–121.

    CAS  Google Scholar 

  2. Harrison NL, Simmonds MA. Modulation of the GABAA receptor complex by a steroid anaesthetic. Brain Res 1984; 323: 287–292.

    Article  PubMed  CAS  Google Scholar 

  3. Mody I, DeKoninck Y, Otis TS, Soltesz I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci 1994; 17: 517–525.

    Article  PubMed  CAS  Google Scholar 

  4. Barnard EA. The transmitter-gated channel: a range of receptor types and structures. Trends Pharmacol Sci 1996; 17: 305–309.

    Article  PubMed  CAS  Google Scholar 

  5. Sieghart W. Structure and pharmacology of y-aminobutyric acidA receptor subtypes. Pharmacol Rev 1995; 47: 182–234.

    Google Scholar 

  6. Smith GB, Olsen RW. Functional domains of GABAA receptors. Trends Pharmacol Sci 1995; 16: 162–168.

    Article  PubMed  CAS  Google Scholar 

  7. Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 1992; 12: 1063–1076.

    PubMed  CAS  Google Scholar 

  8. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992; 12: 1040–1062.

    PubMed  CAS  Google Scholar 

  9. Barker JL, Harrison NL, Lange GD, Owen, DG. Potentiation of y-aminobutyric-acid-activated chloride conductance by a steroid anaesthetic in cultured rat spinal neurones. J Physiol 1987; 386: 485–501.

    PubMed  CAS  Google Scholar 

  10. Cottrell GA, Lambert JJ, Peters, JA. 1987 Modulation of GABAAreceptor activity by alphaxalone. Br J Pharmacol 1987; 90: 491–500.

    Article  Google Scholar 

  11. Lambert JJ, Belelli D, Hill-Yenning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 1995; 16: 295–303.

    Article  PubMed  CAS  Google Scholar 

  12. Woodward RM, Polenzani L, Miledi R. Effects of steroids on y-aminobutyric acid receptors expressed in Xenopus oocytes by poly (A)+RNA from mammalian brain and retina. Mol Pharmacol 1992; 41: 89–103.

    PubMed  CAS  Google Scholar 

  13. Robel P, Baulieu E-E. Neurosteroids: biosynthesis and function. In: de Kloet R, Sutanto W, eds. Neurobiology of Steroids. Methods in Neurosciences, vol 22. Academic, San Diego, CA, 1994, pp. 36–50.

    Google Scholar 

  14. Callachan H, Cottrell GA, Hather NY, Nooney JM, Peters JA. Modulation of the GABAA receptor by progesterone metabolites. Proc Royal Soc Lond 1987; B231: 359–369.

    Article  CAS  Google Scholar 

  15. Lambert JJ, Peters JA, Cottrell GA. Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol Sci 1987; 8: 224–227.

    Article  CAS  Google Scholar 

  16. Hill-Yenning C, Belelli D, Peters JA, Lambert JJ. Electrophysiological studies of the neurosteroid modulation of the GABAA receptor. In: de Kloet, E.R. and Sutanto, W, eds. Neurobiology of Steroids, Methods in Neurosciences, vol 22. Academic, San Diego, CA, 1994, pp. 446–467.

    Google Scholar 

  17. MacDonald RL, Rogers CJ, Twyman RE. Barbiturate modulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. J Physiol 1989; 417: 483–500.

    PubMed  CAS  Google Scholar 

  18. MacDonald RL, Olsen RW. GABAA receptor channels. Ann Rev Neurosci 1994; 17: 569–602.

    Article  PubMed  CAS  Google Scholar 

  19. Twyman RE, MacDonald RL. Neurosteroid regulation of GABAA receptor single channel kinetic properties of mouse spinal cord neurones in culture. J Physiol 1992; 456: 215–24.

    PubMed  CAS  Google Scholar 

  20. Robertson B. Actions of anaesthetics and avermectin on GABAA chloride channels in mammalian dorsal root ganglion neurones. Br J Pharmacol 1989; 98: 167–176.

    Article  PubMed  CAS  Google Scholar 

  21. Belelli D, Callachan H, Hill Yenning C, Peters JA, Lambert JJ. Interaction of positive allosteric modulators with human and Drosophila recombinant GABA receptors expressed in Xenopus laevis oocytes. Br J Pharmacol 1996; 118: 563–576.

    Article  PubMed  CAS  Google Scholar 

  22. Hill-Yenning C, Peters JA, Callachan H, Lambert JJ, Gemmell DK, Anderson A, Byford A, Hamilton N, Hill DR, Marshall RJ, Campbell AC. The anaesthetic action and modulation of GABAA receptor activity by the novel water soluble aminosteroid Org 20599. Neuropharmacology 1996; 35: 1209–1222.

    Article  Google Scholar 

  23. Lambert JJ, Peters JA, Sturgess, NC, Hales TG. Steroid modulation of the GABAA receptor complex: electrophysiological studies. In: Chadwick D, Widdows K, eds. Steroids and Neuronal Activity, CIBA Foundation Symposium, vol 153. Wiley, Chichester, 1990, pp. 56–82.

    Google Scholar 

  24. Zhu WJ, Vicini S. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states. J Neurosci 1997; 17: 4032–4036.

    Google Scholar 

  25. Jones MV, Westbrook GL. The impact of receptor desensitization on fast synaptic transmission Trends Neurosci 1996; 19: 96–101.

    CAS  Google Scholar 

  26. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure activity relationships for steroid interaction with the 7-amino-butyric acidA receptor complex. J Pharmacol Exp Ther 1987; 241: 346–353.

    PubMed  CAS  Google Scholar 

  27. Harrison NL, Vicini S, Barker JL. A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurosci 1987; 7: 604–609.

    PubMed  CAS  Google Scholar 

  28. Cooper EJ, Johnston, GAR, Edwards FA. Developmental differences in synaptic GABA-ergic currents in hippocampal and cerebellar cells of male rats. Soc Neurosci Abs 1996; 22: 810.

    Google Scholar 

  29. Poisbeau P, Feltz P, Schlichter R. Modulation of GABAA receptor-mediated IPSCs by neuroactive steroids in a rat hypothalamo-hypophyseal co-culture model. J Physiol 1997;500. 2: 475–485.

    Google Scholar 

  30. Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS. Steroid regulation of the chloride ionophore in rat brain: structure activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 1988; 241: 346–353.

    Google Scholar 

  31. Prince RJ, Simmonds MA. Differential antagonism by epipregnanolone of alphaxalone and pregnanolone potentiation of [3H1 flunitrazepam binding suggests more than one class of binding site for steroids at GABAA receptors. Neuropharmacology 1993; 32: 59–63.

    Article  PubMed  CAS  Google Scholar 

  32. Olsen RW, Sapp DW. Neuroactive Steroid Modulation of GABAA receptors. In: Biggio G, Sanna E, Serra M, Costa E, eds. GABAA Receptors and Anxiety: From Neurobiology to Treatment. Advances in Biochemical Psychopharmacology, vol 48. Raven, New York, NY, 1995, pp. 57–74.

    Google Scholar 

  33. Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E. Neurosteroids act on recombinant human GABAA receptors. Neuron 1990; 4: 759–765.

    Article  PubMed  CAS  Google Scholar 

  34. Wingrove PB, Wafford KA, Bain C, Whiting PJ. The modulatory action of loreclezole at the 7-aminobutyric acid type A receptor is determined by a single amino acid in the 132 and R3 subunit. Proc Natl Acad Sci USA 1994; 91: 4569–4573.

    Article  PubMed  CAS  Google Scholar 

  35. Belelli D, Lambert JJ, Peters JA, Wafford KA, Whiting PJ. The interaction of the general anesthetic etomidate with the y-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 1997;94:11, 031–11, 036.

    Google Scholar 

  36. Hill-Yenning C, Belelli D, Peters JA Lambert JJ. Subunit dependent interaction of the general anaesthetic etomidate with the y-aminobutyric acid type A receptor. Br J Pharmacol 1997; 120: 749–756.

    Article  Google Scholar 

  37. Sanna E, Murgia A, Casula A, Biggio G. Differential subunit dependence of the actions of the general anesthetics alphaxalone and etomidate at y-aminobutyric acid type A receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 1997; 51: 484–490.

    PubMed  CAS  Google Scholar 

  38. Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp J.A, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM, Ragan CI, Whiting PJ. Role of the 3 subunit in determining the pharmacology of human y-aminobutyric acid type A receptors. Mol Pharmacol 1993; 44: 1211–1218.

    PubMed  CAS  Google Scholar 

  39. Lüddens H, Korpi ER, Seeburg PH. GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 1995; 34: 245–254.

    Article  PubMed  Google Scholar 

  40. Puia G, Ducic I, Vicini S, Costa E. Does neurosteroid modulatory efficacy depend on GABAA receptor subunit composition? Receptors-Channels 1993; 1: 135–142.

    PubMed  CAS  Google Scholar 

  41. Belelli D, Lambert JJ, Peters JA, Gee KW, Lan, NC. Modulation of human GABAA receptor by pregnanediols. Neuropharmacology 1996; 35: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  42. Carter RB, Wood PL, Weiland S, Hawkinson JE, Belelli D, Lambert JJ, White HS, Wolf HF, Mirsadeghi S, Tahir SH, Bolger MB, Lan NC, Gee KW. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042;3a-hydroxy-3(3-methyl-5a-pregnan-20-one), a selective, high-affinity, steroid modulator of the y-aminobutyric acidA receptor. J Pharmacol Exp Ther 1997; 280: 1284–1295.

    PubMed  CAS  Google Scholar 

  43. Shingai R, Sutherland ML, Barnard EA. Effects of subunit types of cloned GABAA receptor on the response to a neurosteroid. Eur J Pharmacol 1991; 206: 77–80.

    Article  PubMed  CAS  Google Scholar 

  44. Korpi ER, Lüddens H. Regional y-aminobutyric acid sensitivity of t-butylbicyclophosphoro[35S]thionate binding depends upon y-aminobutyric acidA receptor a subunit. Mol Pharmacol 1993; 44: 87–92.

    PubMed  CAS  Google Scholar 

  45. Chvâtal A, Kettenman H. Effects of steroids on y-aminobutyrate-induced currents in cultured rat astrocytes. Pflügers Arch 1991; 419: 263–266.

    Article  PubMed  Google Scholar 

  46. Melcangi RC, Celotti F, Martini L. Progesterone 5-a reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodendrocytes. Brain Res 1994; 639: 202–206.

    Article  PubMed  CAS  Google Scholar 

  47. McKernan RM, Whiting PJ. Which GABAA receptor subunits really occur in the brain? Trends Neurosci 1996; 19: 139–143.

    Article  PubMed  CAS  Google Scholar 

  48. Davies PA, Hannah MC, Hales TG, Kirkness EF. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 1997; 385: 820–823.

    Article  PubMed  CAS  Google Scholar 

  49. Whiting PJ, McAllister G, Vasilatis D, Bonnert TP, Heavens RP, Smith DW, Hewson L, O’Donnell R, Rigby MR, Sirinathsinghji DJS, Marshall G, Thompson SA, Wafford KA. Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J Neurosci 1997; 17: 5027–5037.

    PubMed  CAS  Google Scholar 

  50. Zhu WJ, Wang JF, Krueger KE, Vicini S. 8 Subunit inhibits neurosteroid modulators of GABAA receptors. J Neurosci 1996; 16: 6648–6656.

    PubMed  CAS  Google Scholar 

  51. Majewska MD, Harrison NL, Schwartz RD, Barker, JL, Paul SM. Steroid hormones are barbiturate-like modulators of the GABA receptor. Science 1986; 323: 1004–1007.

    Article  Google Scholar 

  52. Peters JA, Kirkness EF, Callachan H, Lambert JJ, Turner AJ. Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br J Pharmacol 1988; 94: 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  53. Hawkinson JE, Kimbrough CL, Belelli D, Lambert JJ, Purdy RH, Lan NC. Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding and y-aminobutyric acidA receptor function. Mol Pharmacol 1994; 46: 977–985.

    PubMed  CAS  Google Scholar 

  54. Rodgers-Neame NT, Covey DF, Hu Y, Isenberg KE, Zorumski CF. Effects of a benz[e]indene on GABA-gated chloride currents in cultured post-natal rat hippocampal neurons. Mol Pharmacol 1992; 42: 952–957.

    PubMed  CAS  Google Scholar 

  55. Kokate G, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with y-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther 1994; 270: 1223–1229.

    PubMed  CAS  Google Scholar 

  56. Purdy RH, Morrow AL, Blinn JR, Paul SM. Synthesis, metabolism and pharmacological activity of 3ahydroxy steroids which potentiate GABA-receptor mediated chloride ion uptake in rat cerebral cortical synaptosomes. J Med Chem 1990; 33: 1572–1581.

    Article  PubMed  CAS  Google Scholar 

  57. Upasani RB, Yang KC, Acosta-Burruel M, Konkoy CS, McLellan JA, Woodward RM, Lan NC, Carter RB, Hawkinson JE. 3a-hydroxy-3(3-(phenylethynyl)-5(3-pregnan-20-ones: synthesis and pharmacological activity of neuroactive steroids with high affinty for GABAA receptors. J Med Chem 1997; 40: 73–84.

    Article  PubMed  CAS  Google Scholar 

  58. Hogenkamp DJ, Tahir SH, Hawkinson JE, Upasani RB, Alauddin M, Kimbrough CL, Acosta-Burreul M, Whittemore ER, Woodward RM, Lan NC, Gee KW, Bolger MB. Synthesis and in vitro activity of 3(3-substituted-3a-hydroxypregnan-20-ones: allosteric modulators of the GABAA receptor. J Med Chem 1997; 40: 61–72

    Article  PubMed  CAS  Google Scholar 

  59. Hawkinson JE, Drew JA, Kimbrough CL, Chen J-S, Hogenkamp DJ, Lan NC, Gee KW, Shen K-Z, Whittemore ER, Woodward RM. 3a-hydroxy-313-trifluoromethyl-5a-pregnan-20-one (Co 2–1970): a partial agonist at the neuroactive steroid site of the y-aminobutyric acidA receptor. Mol Pharmacol 1996; 49: 897–906.

    PubMed  CAS  Google Scholar 

  60. McCauley LD, Liu V, Chen J.-S, Hawkinson JE, Lan NC, Gee KW. Selective actions of certain neuro-active pregnanediols at the y-aminobutyric acid type A receptor complex in rat brain. Mol Pharmacol 1995; 47: 354–362.

    PubMed  CAS  Google Scholar 

  61. Anderson A, Boyd AC, Byford A, Campbell AC, Gemmell DK, Hamilton NM, Hill DR, Hill-Yenning C, Lambert JJ, Maidment MS, May V, Marshall RJ, Peters JA, Rees DC, Stevenson D, Sundaram H. Anaesthetic activity of novel water-soluble 213-morpholinyl steroids and their modulatory effects at GABAA receptors. J Med Chem 1997; 40: 1668–1681.

    Article  PubMed  CAS  Google Scholar 

  62. Phillips GH, Ayres BE, Bailey EJ, Ewan GB, Looker BE, May PJ. Water-soluble steroidal anaesthetics. J. Steroid Biochem 1979; 11: 79–86.

    Article  PubMed  CAS  Google Scholar 

  63. Lambert JJ, Hill-Venning C, Peters JA, Sturgess NC, Hales TG. The actions of anesthetic steroids on inhibitory and excitatory amino acid receptors. In: Barnard EA, Costa E, eds. Transmitter Amino Acid Receptors: Structure: Transduction and Models for Drug Development. Fidia Research Foundation Symposium Series, vol 6. Thieme, New York, 1991, pp. 219–236.

    Google Scholar 

  64. Shepherd SE, Peters JA, Lambert JJ. The interaction of intravenous anaesthetics with rat inhibitory and excitatory amino acid receptors expressed in Xenopus laevis oocytes. Br J Pharmacol 1996; 119: 364 P.

    Article  CAS  Google Scholar 

  65. Wittmer LL, Hu Y, Kalkbrenner M, Evers AS, Zorumski CF, Covey DF. Enantioselectivity of steroid-induced y-aminobutyric acidA receptor modulation and anesthesia. Mol Pharmacol 1996; 50: 1581–1586.

    PubMed  CAS  Google Scholar 

  66. Zorumski CF, Wittmer LL, Isenberg KE, Hu Y, Covey DF. Effects of neurosteroid and benz[e]indene enantiomers on GABAA receptors in cultured hippocampal neurones and transfected HEK-293 cells. Neuropharmacology 1996; 35: 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  67. Ortells MO, Lunt GG. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 1995; 18: 121–127.

    Article  PubMed  CAS  Google Scholar 

  68. Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 1991; 90: 2401–2409.

    Google Scholar 

  69. Kuhse J, Betz H, Kirsch J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a post-synaptic ion-channel complex. Curr Opin Neurobiol 1995; 5: 318–323.

    Article  PubMed  CAS  Google Scholar 

  70. Wu FS, Gibbs TT, Farb DH. Inverse modulation of gamma-aminobutyric acid-and glycine-induced currents by progesterone. Mol Pharmacol 1990; 37: 597–602.

    PubMed  CAS  Google Scholar 

  71. Pistis M, Belelli D, Peters JA, Lambert JJ. Positive allosteric modulation of recombinant glycine and GABAA receptors by general anaesthetics: a comparative study. Br J Pharmacol 1996; 119: 362 P.

    CAS  Google Scholar 

  72. Lambert JJ, Belelli D, Shepherd S, Muntoni A-L, Pistis M, Peters JA. The GABAA receptor: an important locus for intravenous anaesthetic action. In: Gases in Medicine: Anaesthesia (Smith EB, Daniels S, eds.). 8th BOC Priestley Conference. Royal Society of Chemistry, London, 1998, pp. 121–137.

    Chapter  Google Scholar 

  73. Prince RJ, Simmonds MA. Steroid modulation of the strychnine-sensitive glycine receptor. Neuropharmacology 1992; 31: 201–205.

    Article  PubMed  CAS  Google Scholar 

  74. Bettler B, Mulle C. Neurotransmitter receptors. 2. AMPA and Kainate receptors. Neuropharmacology 1995; 34: 123–138.

    Article  PubMed  CAS  Google Scholar 

  75. Wo ZG, Oswald RE. Unravelling the modular design of glutamate-gated ion channels Trends Neurosci 1995; 18: 161–167.

    CAS  Google Scholar 

  76. Sucher NJ, Awobuluyi M, Choi Y-B, Lipton SA. NMDA receptors: from genes to channels. Trends Pharmacol Sci 1996; 17: 348–355.

    PubMed  CAS  Google Scholar 

  77. Wu FS, Gibbs TT, Farb DH. Pregnenolone sulphate: a positive allosteric modulator at the N-methy-Daspartate receptor. Mol Pharmacol 1991; 40: 333–336.

    PubMed  CAS  Google Scholar 

  78. Albuquerque EX, Alkondon M, Pereira EFR, Castro NG, Schrattenholz, A, Barbosa CTF, BonfanteCabarcas R, Aracava, Y, Eisenberg HM, Maelicke A. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 1997; 280: 1117–1136.

    PubMed  CAS  Google Scholar 

  79. McGee DS, Heath MJS, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692–1696.

    Article  Google Scholar 

  80. Gray R, Rajan AS, Radcliffe K, Yakehiro M, Dani J. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996; 383: 713–716.

    Article  PubMed  CAS  Google Scholar 

  81. Evers AS, Steinbach JH. Super sensitive sites in the central nervous sytsem: anesthetics block brain nicotinic receptors Anesthesiology 1997; 86: 760–762.

    CAS  Google Scholar 

  82. Gillo B, Lass Y. The mechanism of steroid anaesthetic (alphaxalone) block of acetylcholine-induced ionic currents. Br J Pharmacol 1984; 82: 783–789.

    Article  PubMed  CAS  Google Scholar 

  83. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1992; 89: 9949–9953.

    Article  PubMed  CAS  Google Scholar 

  84. Peters JA, Malone HM, Lambert JJ. Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci 1992; 13: 391–397.

    Article  PubMed  CAS  Google Scholar 

  85. Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ, Blackburn TP. Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor (5-HT3R—As) subunit. Mol Pharmacol 1995; 48: 1054–1062.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambert, J.J., Belelli, D., Shepherd, S.E., Pistis, M., Peters, J.A. (1999). The Selective Interaction of Neurosteroids with the GABAA Receptor. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics