Skip to main content

Aspects of Hormonal Steroid Metabolism in the Nervous System

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

It is known that hormonal steroids intervene in the control of a large number of brain functions both during the fetal and neonatal period, in which they act as “organizers,” as well as during adulthood, when they act as “activators” or “inhibitors” of several physiological functions. Hormonal steroids may also participate in the process of aging of the central nervous system (CNS), especially in some specific structures (e.g., the hippocampus).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McEwen BS. Steroid homones are multifactorial messengers to the brain. Trends Endocrinol Metab 1991; 2: 62–67.

    Article  PubMed  CAS  Google Scholar 

  2. McEwen BS. Steroid hormone action in the brain: when is the genome involved? Horm Behav 1994; 28: 396–405.

    Article  PubMed  CAS  Google Scholar 

  3. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925–5930.

    Article  PubMed  CAS  Google Scholar 

  4. Mosselman S, Polman J, Dijkema R. ER(3: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53.

    Article  PubMed  CAS  Google Scholar 

  5. Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguère V. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor P. Mol Endocrinol 1997; 11: 353–365.

    Article  PubMed  CAS  Google Scholar 

  6. Shivers BD, Harlan RE, Morrel JI, Pfaff DW. Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurons. Nature 1983; 304: 345–347.

    Article  PubMed  CAS  Google Scholar 

  7. Herbison AE, Theodosis DT. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neurosci 1992; 50: 283–298.

    Article  CAS  Google Scholar 

  8. Watson RE, Langub MC, Landis JW. Further evidence that most luteinizing hormone-releasing hormone neurons are not directly estrogen-responsive: simultaneous localisation of luteinizing hormone-releasing hormone and estrogen receptor immunoreactivity in the guinea-pig brain. J Neuroendocrinol 1992; 4: 311–318.

    Article  PubMed  CAS  Google Scholar 

  9. Ahina RS, Harlan RE. Glucocorticoid receptors in LHRH neurons. Neuroendocrinol 1992; 56: 845–850.

    Article  Google Scholar 

  10. Huang X, Harlan RE. Absence of androgen receptors in LHRH immunoreactive neurons. Brain Res 1993; 624: 309–311.

    Article  PubMed  CAS  Google Scholar 

  11. Herbison AE, Robinson JE, Skinner DC. Distribution of Estrogen receptor-immunoreactive cells in the preoptic area of the ewe: co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinol 1993; 57: 751–759.

    Article  CAS  Google Scholar 

  12. Lemhan MN, Karsch FJ. Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and (3-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the suffolk ewe. Endocrinology 1993; 133: 887–895.

    Article  Google Scholar 

  13. Poletti A, Melcangi CR, Negri-Cesi P, Maggi R, Martini L. Steroid binding and metabolism in the luteinizing hormone-releasing hormone-producing neuronal cell line GT1–1. Endocrinology 1994; 135: 2623–2628.

    Article  PubMed  CAS  Google Scholar 

  14. Chandran UR, Attardi B, Friedman R, Dong K-W, Roberts JL, DeFranco DB. Glucocorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalamic cell lines. Endocrinology 1994; 134: 1467–1474.

    Article  PubMed  CAS  Google Scholar 

  15. Vielkind U, Walencewicz A, Levine JM, Bohn MC. Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 1990; 27: 360–373.

    Article  PubMed  CAS  Google Scholar 

  16. Jung-Testas I, Renoir M, Bugnard H, Greene GL, Baulieu EE. Demonstration of steroid hormone receptors and steroid action in primary cultures of rat glial cells. J Steroid Biochem Mol Biol 1992; 41: 621–31.

    Article  PubMed  CAS  Google Scholar 

  17. Langub MC, Watson RE Jr. Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy. Endocrinology 1992; 130: 364–372.

    Article  PubMed  CAS  Google Scholar 

  18. Wolff JE, Laterra J, Goldstein GW. Steroid inhibition of neural microvessel morphogenesis in vitro: receptor mediation and astroglial dependence. J Neurochem 1992; 58: 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  19. Jung-Testas I, Schumacher M, Robel P, Baulieu EE. Actions of steroid hormones and growth factors on glial cells of the central and peripheral nervous system. J Steroid Biochem Mol Biol 1994; 48: 145–154.

    Article  PubMed  CAS  Google Scholar 

  20. Ramirez VD, Zheng J. Membrane sex-steroid receptors in the brain. Frontiers Neuroendocrinol 1996; 17: 402–439.

    Article  CAS  Google Scholar 

  21. Maggi R, Pimpinelli F, Casulari LA, Piva F, Martini L. Antiprogestins inhibit the binding of opioids to receptors in nervous membrane preparations Eur J Pharmacol 1996; 301: 169–177.

    CAS  Google Scholar 

  22. Su TP, London ED, Jaffe JH. Steroid binding at c receptors suggests a link between endocrine, nervous and immune system. Science 1988; 240: 219–221.

    Article  PubMed  CAS  Google Scholar 

  23. Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6: 2311–2322.

    CAS  Google Scholar 

  24. Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987; 64: 51–58.

    Article  PubMed  CAS  Google Scholar 

  25. Parson B, Rainbow T, McEwen BS. Organizational effects of testosterone via aromatization on feminine reproductive behavior and neural progestin receptors in rat brain. Endocrinology 1984; 115: 1412–1417.

    Article  Google Scholar 

  26. Roselli CE, Resko JA. Aromatase activity in the rat brain: hormonal regulation and sex differences. J Steroid Biochem Mol Biol 1993; 44: 499–508.

    Article  PubMed  CAS  Google Scholar 

  27. Vagell ME, McGinnis MW. The role of aromatization in the restoration of male rat reproductive behvior. J Neuroendocrinol 1997; 9: 415–421.

    Article  PubMed  CAS  Google Scholar 

  28. Celotti F, Melcangi RC, Martini L. The 5a-reductase in the brain: molecular aspects and relation to brain function. Frontiers Neuroendocrinol 1992; 13: 163–215.

    CAS  Google Scholar 

  29. Sanghera MK, Simpson ER, McPhaul MJ, Kozlowski G, Conley AJ, Lephard ED. Immunocytochemical distribution of aromatase cytochrome P450 in the rat brain using peptide-generated polyclonal antibodies. Endocrnology 1991; 129: 2834–2844.

    Article  CAS  Google Scholar 

  30. Balthazart J, Foidart A, Surlemont C, Harada N Distribution of aromatase immunoreactive cells in the mouse forebrain. Cell Tissue Res 1991; 263: 71–79.

    Article  PubMed  CAS  Google Scholar 

  31. Lephart ED, Simpson ER, McPhaul MJ, Kilgore MW, Wilson JD, Ojeda SR. Brain aromatase cytochrome P-450 messenger RNA levels and enzyme activity during prenatal and perinatal development in the rat. Mol Brain Res 1992; 16: 187–192.

    Article  PubMed  CAS  Google Scholar 

  32. Wozniak A, Hutchison RE, Hutchison JB. Localisation of aromatase activity in androgen target areas of the mouse brain. Neurosci Lett 1992; 146: 191–194.

    Article  PubMed  CAS  Google Scholar 

  33. Harada N, Yamada K. Ontogeny of aromatase messenger ribonucleic acid in mouse brain: fluorimetrical quantitation by polymerase chain reaction. Endocrinology 1992; 131: 2306–2312.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto A, Arai Y. Effect of estrogens on early postnatal development of synaptic formation in the hypothalamic arcuate nucleus of female rats. Neurosci Lett 1976; 2: 76–83.

    Article  Google Scholar 

  35. Toran-Allerand CD. Gonadal hormones and brain development: implications for the genesis of sexual differentiation. Ann NY Acad Sci 1985; 435: 97–111.

    Google Scholar 

  36. Cole A, Robinson CH. Conversion of 19-oxo[2(3 3H]androgens into oestrogens by human placental aromatase. Biochem J 1990; 268: 553–561.

    PubMed  CAS  Google Scholar 

  37. Thompson EA Jr, Siiteri PK. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem 1974; 249: 5364–5372.

    PubMed  CAS  Google Scholar 

  38. Fishman J, Raju MS. Mechanism of estrogen biosynthesis. J Biol Chem 1981; 256: 4472–4477.

    PubMed  CAS  Google Scholar 

  39. Negri-Cesi P, Celotti F, Martini L. Androgen metabolism in the male hamster: 2. Aromatization of androstenedione in the hypothalamus and in the cerebral cortex: kinetic parameters and effect of exposure to different photoperiods. J Steroid Biochem 1989; 32: 65–70.

    Article  PubMed  CAS  Google Scholar 

  40. Negri-Cesi P, Melcangi RC, Celotti F, Martini L. Aromatase activity in cultured brain cells: difference between neurons and glia. Brain Res 1992; 589: 327–332.

    Article  PubMed  CAS  Google Scholar 

  41. Simpson ER, Merrill JC, Hollub AJ, Graham-Lorence S, Mendelson CR. Regulation of estrogen biosynthesis by human adipose cells. Endocrine Rev 1989; 10: 136–148.

    Article  CAS  Google Scholar 

  42. Graham-Lorence S, Khalil MW, Lorence MC, Mendelson CR, Simpson ER. Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis. J Biol Chem 1991; 266: 11939–11946.

    PubMed  CAS  Google Scholar 

  43. Simmons DL, Lalley PA, Kasper CB Chromosomal assignments of genes coding for components of mixed function oxidase system in mice. J Biol Chem 1985; 260: 515–521.

    PubMed  CAS  Google Scholar 

  44. Amarneh B, Corbin CJ, Peterson JA, Simpson ER, Graham-Lorence S. Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis. Mol Endocrinol 1993; 7: 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  45. Corbin JC, Graham-Lorence S, McPhaul M, Mason JI, Mendelson CR, Simpson ER. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells. Proc Natl Acad Sci USA 1988; 85: 8948–8952.

    Article  PubMed  CAS  Google Scholar 

  46. Hickey GJ, Krasnow JS, Beattie WG, Richards JA. Aromatase cytochrome P450 in rat ovarian granulosa cells before and after luteinization: adenosine 3’, 5’-monophosphate-dependent and independent regulation. Cloning and sequencing of rat aromatase cDNA and 5’ genomic DNA. Mol Endocrinol 1990; 4: 3–12.

    Article  PubMed  CAS  Google Scholar 

  47. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Dodson MM, Mendelson CR, Bulun SE. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Rev 1994; 15: 342–355.

    CAS  Google Scholar 

  48. Corbin CJ, Khalil MW, Conley AJ. Functional ovarian and placental isoforms of porcine aromatase. Mol Cell Endocrinol 1995; 113: 29–37.

    Article  PubMed  CAS  Google Scholar 

  49. Lephart ED, Peterson KG, Noble JF, George FW, McPhaul MJ. The structure of cDNA clones encoding the aromatase P-450 isolated from a rat Leydig cell tumor line demonstrates differential processing of aromatase mRNA in rat ovary and a neoplastic cell line. Mol Cell Endocrinol 1990; 70: 31–40.

    Article  PubMed  CAS  Google Scholar 

  50. Honda S, Harada N, Takagi Y. Novel exon 1 of the aromatase gene specific for aromatase transcripts in human brain. Biochem. Biophys Res Commun 1994; 198: 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  51. Yamada-Mouri N, Hirata S, Hayashi M, Kato J. Analysis of the expression and the first exon of aromatase mRNA in monkey brain. J Steroid Biochem Mol Biol 1995; 55: 17–23.

    Article  PubMed  CAS  Google Scholar 

  52. Yamada-Mouri N, Hirata S, Kato J. Existence and expression of the untranslated first exon of aromatase mRNA in the rat brain. J Steroid Biochem. Mol Biol 1996; 58: 163–166.

    CAS  Google Scholar 

  53. Shinoda K. Brain aromatization and its associated structures. Endocrine J 1994; 41: 115–138.

    Article  CAS  Google Scholar 

  54. Lauber ME, Lichtensteiger W. Pre-and postnatal ontogeny of aromatase cytochrome P450 messenger ribonucleic acid expression in the male rat brain studied by in situ hybridization. Endocrinology 1994; 135: 1661–1668.

    Article  PubMed  CAS  Google Scholar 

  55. Jakab RL, Horvath TL, Leranth C, Harada N, Naftolin F. Aromatase immunoreactivity in the rat brain: gonadectomy-sensitive hypothalamic neurons and an unresponsive “limbic ring” of the lateral septum-bed nucleus-amygdala complex. J Steroid Biochem Molec Biol 1993; 44: 481–498.

    Article  PubMed  CAS  Google Scholar 

  56. Tsuruo Y, Ishimura K, Fujita H, Osawa Y Immunocytochemical localization of aromatase-containing neurons in the rat brain during pre-and postnatal development. Cell Tiss Res 1994; 278: 29–39.

    Article  CAS  Google Scholar 

  57. Jakab RL, Harada N, Naftolin F. Aromatase-(estrogen synthetase) immunoreactive neurons in the rat septal area. A light and electron microscopic study. Brain Res 1994; 664: 85–93.

    Article  PubMed  CAS  Google Scholar 

  58. Balthazart J, Foidart A, Surlemont C, Vockel A, Harada N. Distribution of aromatase in the brain of the Japanese quail, ring dove and zebra finch: an immunocytochemical study. J Comp Neurol 1990; 301: 276–288.

    Article  PubMed  CAS  Google Scholar 

  59. Balthazart J, Foidart A, Harada N. Immunocytochemical localization of aromatase in the brain. Brain Res 1990; 514: 327–333.

    Article  PubMed  CAS  Google Scholar 

  60. Beyer C, Green SJ, Barker PJ, Huskisson NS, Hutchison JB. Aromatase-immunoreactivity is localised specifically in neurones in the developing mouse hypothalamus and cortex. Brain Res 1994; 638: 203–210.

    Article  PubMed  CAS  Google Scholar 

  61. Roselli CE. Subcellular localization and kinetic properties of aromatase activity in rat brain. J Steroid Biochem Molec Biol 1995; 52: 469–477.

    Article  PubMed  CAS  Google Scholar 

  62. Abe-Dohmae S, Tanaka R, Harada N. Cell-type and region-specific expression of aromatase mRNA in cultured brain cell. Mol Brain Res 1994; 24 153–158.

    Article  PubMed  CAS  Google Scholar 

  63. Poletti A, Negri-Cesi P, Melcangi RC, Colciago A, Martini L, Celotti F. Expression of androgen activating enzymes in cultured cells of developing rat brain. J Neurochem 1997;68:1298–1303.

    Google Scholar 

  64. Santagati S, Melcangi RC, Celotti F, Martini L, Maggi A. Estrogen receptor is expressed in different types of glial cells in culture. J Neurochem 1994; 63: 2058–2064.

    Article  PubMed  CAS  Google Scholar 

  65. Schlinger BA, Amur-Umarjee S, Shen P, Campagnoni T, Arnold AP. Neuronal and non-neuronal aromatase in primary cultures of developing zebra finch telencephalon. J Neurosci 1994; 14: 7541–7552.

    PubMed  CAS  Google Scholar 

  66. Balthazart J, Foidart A, Absil P, Harada N. Effects of testosterone and its metabolites on aromataseimmunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior. J Steroid Biochem Mol Biol 1996; 56: 185–200.

    Article  PubMed  CAS  Google Scholar 

  67. Tsuruo Y, Ishimura K, Osawa Y. Presence of estrogen receptors in aromatase-immunoreactive neurons in the mouse brain. Neurosci Lett 1995; 195: 49–52.

    Article  PubMed  CAS  Google Scholar 

  68. Dellovade TL, Rissman EF, Thompson N, Harada N, Ottinger MA. Co-localization of aromatase enzyme and estrogen receptor immunoreactivity in the preoptic area during reproductive aging. Brain Res 1995; 674: 181–187.

    Article  PubMed  CAS  Google Scholar 

  69. Paden CM, Roselli CE. Modulation of aromatase activity by testosterone in transplants of fetal rat hypothalamus-preoptic area. Dev Brain Res 1987; 33: 127–133.

    Article  CAS  Google Scholar 

  70. Sholl SA, Kim KL. Aromatase, 5a-reductase, and androgen receptor levels in the fetal monkey brain during early development. Neuroendocrinology 1994; 52: 94–98.

    Article  Google Scholar 

  71. George FW, Ojeda SR. Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology 1982; 111: 522–529.

    Article  PubMed  CAS  Google Scholar 

  72. Lephart ED, Ojeda SR. Hypothalamic aromatase activity in male and female during juvenile-prepubertal development. Neuroendocrinology 1990; 51: 385–393.

    Article  PubMed  CAS  Google Scholar 

  73. Negri-Cesi P, Colciago A, Celotti F. The role of aromatase in the brain. In: Gennazzani AR, Petraglia F, Purdy RH, eds. The brain: source and target for sex steroid hormones. Parthenon, London, UK, 1996, pp. 135–149.

    Google Scholar 

  74. Lephart ED, Simpson ER, Ojeda SR. Effect of cyclic AMP and androgens on “in vitro” brain aromatase enzyme activity during development in the rat. J Neuroendocrinol 1992; 4: 29–36.

    Article  PubMed  CAS  Google Scholar 

  75. Beyer C, Green SJ, Hutchison JB. Androgen influence sexual differentiation of embrionic mouse hypothalamic aromatase neurons “in vitro”. Endocrinology 1994; 135: 1220–1226.

    Article  PubMed  CAS  Google Scholar 

  76. Raum WJ, Marcano M, Swerdloff RS. Nuclear accumulation of estradiol derived from the aromatization of testosterone is inhibited by hypothalamic beta-receptor stimulation in neonatal female rat. Biol Reprod 1984; 30: 388–396.

    Article  PubMed  CAS  Google Scholar 

  77. Callard GV. Aromatization is cyclic AMP-dependent in cultured brain cells. Brain Res 1981; 204: 461–464.

    Article  PubMed  CAS  Google Scholar 

  78. Beyer C, Hutchison JB. Androgens stimulate the morphological maturation of embryonic hypothalamic aromatase immuno-reactive neurons in the mouse. Develop Brain Res 1997; 98: 74–81.

    Article  CAS  Google Scholar 

  79. Resko JA, Connolly PB, Roselli CE, Abdelgadir SE, Choate JV. Selective activation of androgen receptors in the subcortical brain of male cynomolgus macaques by physiological hormone levels and its relationship to androgen-dependent aromatase activity. J Clin Endocrinol Metab 1993; 76: 1588–1593.

    Article  PubMed  CAS  Google Scholar 

  80. Fadem BH, Walters M, MacLusky NJ. Neuronal aromatase activity in a marsupial, the gray-tailed opossum (Monodelphis domestica): ontogeny during postnatal development and androgen regulation in adulthood. Dev Brain Res 1993; 74: 199–205.

    Article  CAS  Google Scholar 

  81. Harada N, Yamada K, Foidart A, Balthazart J. Regulation of aromatase cytochrome P-450 (estrogen synthetase) transcripts in the quail brain by testosterone. Mol Brain Res 1992; 15: 19–26.

    Article  PubMed  CAS  Google Scholar 

  82. Abdelgadir SE, Resko JA, Ojeda SR, Lephart ED, McPhaul MJ, Roselli CE. Androgens regulate aromatase cytochrome P450 messenger ribonucleic acid in rat brain. Endocrinology 1994; 135: 395–401.

    Article  PubMed  CAS  Google Scholar 

  83. Harada NH, Abe-Dohmae S, Loeffen R, Foidart A, Balthazart J. Synergism between androgens and estrogens in the induction of aromatase and its messenger RNA in the brain. Brain Res 1993; 622: 243–256.

    Article  PubMed  CAS  Google Scholar 

  84. Roselli CE. Synergistic induction of aromatase activity in the rat brain by estradiol and 5adihydrotestosterone. Neuroendocrinology 1991; 53: 79–84.

    Article  PubMed  CAS  Google Scholar 

  85. Roselli CE, Fasasi TE. Estradiol increases the duration of nuclear androgen receptor occupation in the preoptic area of the male rat treated with dihydrotestosterone. J Steroid Biochem Molec Biol 1992; 42: 161–168.

    Article  PubMed  CAS  Google Scholar 

  86. Yamada K, Harada N, Tamaru M, Takagi Y. Effects of changes in gonadal hormones on the amount of aromatase messenger RNA in mouse brain diencephalon. Biochem Biophys Res Commun 1993; 195: 462–468.

    Article  PubMed  CAS  Google Scholar 

  87. Poletti A, Martini L. Androgen-activating enzymes in the central nervous system. J Steroid Biochem Mol Biol 1999, in press.

    Google Scholar 

  88. Trapman J, Klaassen P, Kuiper GGJM, van der Korput JAGM, Faber PW, van Rooij HCJ, Van Kessel AG, Voorhorst MM, Mulder E, Brinkmann AO. Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Comm 1988; 153: 241–248.

    Article  PubMed  CAS  Google Scholar 

  89. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 1988; 240: 327–330.

    Article  PubMed  CAS  Google Scholar 

  90. Kovacs WJ, Griffin JE, Weaver DD, Carlson BR, Wilson, JD. A mutation that causes lability of the androgen receptor under conditions that normally promote transformation to the DNA binding state. J Clin Invest 1984; 73: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  91. Grino PB, Griffin JE, Wilson JD. Testosterone at high concentration interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 1990; 126: 1165–1172.

    Article  PubMed  CAS  Google Scholar 

  92. Abul-Hajj YJ. Stereospecificity of hydrogen transfer from NADPH by delta4–5a and delta4–5 ß reductase. Steroid 1972; 20: 215–222.

    Article  CAS  Google Scholar 

  93. Levy MA, Brandt M, Greway AT. Mechanistic studies with solublized rat liver steroid 5a-reductase. Biochemistry 1990; 29: 2808–2815.

    Article  PubMed  CAS  Google Scholar 

  94. Brawer JR, Naftolin F, Martin J, Sonnenschein C. Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 1978; 103: 501–512.

    Article  PubMed  CAS  Google Scholar 

  95. Brawer JR, S chipper H, Naftolin F. Ovary-dependent degeneration in the hypothalamic arcuate nucleus. Endocrinology 1980; 107: 274–279.

    Article  PubMed  CAS  Google Scholar 

  96. Naftolin F, Garcia-Segura LM, Keefe D, Leranth C, MacLusky NJ, Brawer JR. Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus. Biol Reprod 1990; 42: 21–28.

    Article  PubMed  CAS  Google Scholar 

  97. Mahendroo MS, Cala KM, Russell DW 5a-reduced androgens play a key role in murine parturition. Mol Endocrinol 1996; 10: 380–392.

    Article  PubMed  CAS  Google Scholar 

  98. Mahendroo MS, Cala KM, Landrum CP, Russell DW. Fetal death in mice lacking 5a-reductase type 1 caused by estrogen excess. Mol Endocrinol 1997; 11: 917–927.

    Article  PubMed  CAS  Google Scholar 

  99. Motta M, Zoppi S, Brodie AM, Martini L. Effect of 1,4,6-androstatriene-3,17-dione (ATD),4-hydroxy4-androstene-3,17-dione (4-OH-A) and 4-acetoxy-4-androstene-3,17-dione (4-Ac-A) on the 5a-reduction of androgens in the rat prostate. J Steroid Biochem 1986; 25: 593–600.

    Article  PubMed  CAS  Google Scholar 

  100. Zoppi S, Lechuga M, Motta M. Selective inhibition of the 5a-reductase of the rat epididymis. J Steroid Biochem Mol Biol 1992; 42: 509–514.

    Article  PubMed  CAS  Google Scholar 

  101. Andersson S, Bishop RW, Russell DW. Expression and regulation of steroid 5a-reductase, an enzyme essential for male sexual differentiation. J Biol Chem 1989; 264: 16249–16255.

    PubMed  CAS  Google Scholar 

  102. Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of steroid 5a-reductase 2 gene in male pseudohermaphroditism. Nature 1991; 354: 159–161.

    Article  PubMed  CAS  Google Scholar 

  103. Labrie F, Sugimoto Y, Luu-The V, Simard J, Lachance Y, Bachvarov D, Leblanc G, Durocher F, Paquet N. Structure of human type 2 5a-reductase gene. Endocrinology 1992; 131: 1571–1573.

    Article  PubMed  CAS  Google Scholar 

  104. Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5a-reductase isozymes: evidence for distinct physiological functions. J Biol Chem 1992; 267: 19548–19554.

    PubMed  CAS  Google Scholar 

  105. Russell DW, Wilson JD. Steroid 5a-reductase: two genes/two enzymes. Ann Rev Biochem 1994; 63: 25–61.

    Article  PubMed  CAS  Google Scholar 

  106. Levy MA, Brandt M, Sheedy KM, Holt DA, Heaslip JI, Trill JJ, Ryan PJ, Morris RA, Garrison LM, Bergsma DJ. Cloning, expression and functional characterization of type 1 and type 2 steroid 5areductases from Cynomolgus monkey: comparison with human and rat isoenzymes. J Steroid Biochem Mol Biol 1995; 52: 307–319.

    Article  PubMed  CAS  Google Scholar 

  107. Lopez-Solache I, Luu-The V, Séralini G-E, Labrie F. Heterogeneity of rat type I 5a-reductase cDNA: cloning, expression and regulation by pituitary implants and dihydrotestosterone. Biochim Biophys Acta 1996; 1305: 139–144.

    Article  PubMed  Google Scholar 

  108. Thigpen AE, Russell DW. Four-amino acid segment in steroid 5a-reductase 1 confers sensitivity to finasteride, a competitive inhibitor. J Biol Chem 1992; 267: 8577–8583.

    PubMed  CAS  Google Scholar 

  109. Poletti A, Rabuffetti M, Martini L. Effect of suramin on the biological activity of the two isoforms of the rat 5a-reductase. Steroids 1996; 61: 504–505.

    Article  PubMed  CAS  Google Scholar 

  110. Negri-Cesi P, Poletti A, Colciago A, Magni P, Martini P, Motta M. Presence of androgen-activating enzyme in the human prostatic cancer cell line LNCaP and in benign prostatic hyperplasia. The Prostate 1998; 34: 283–291.

    Article  PubMed  CAS  Google Scholar 

  111. Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5a-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974; 186: 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  112. Katz MD, Cai L, Zhu Y, Herrera C, DeFillo-Ricart M, Shackleton CHL, Imperato-McGinley J. The biochemical and phenotypic characterization of females homozygous for 5a-reductase-2 deficiency. J Clin Endocrinol Metab 1995; 80: 3160–3167.

    Article  PubMed  CAS  Google Scholar 

  113. Poletti A, Celotti F, Motta M, Martini L. Characterization and subcellular localization of rat 5areductases type 1 and type 2 expressed in yeast Saccharomyces cerevisiae. Biochem J 1996; 314: 1047–1052.

    PubMed  CAS  Google Scholar 

  114. Campell JS, Karavolas HJ. The kinetic mechanism of the hypothalamic progesterone 5a-reductase. J Steroid Biochem 1989; 32: 283–289.

    Article  Google Scholar 

  115. Poletti A, Celotti F, Melcangi RC, Ballabio M, Martini L. Kinetics properties of the 5alpha-reductase of testosterone in the purified myelin, in the sub-cortical white matter, and in the cerebral cortex of the male rat brain. J Steroid Biochem 1990; 35: 97–101.

    Article  PubMed  CAS  Google Scholar 

  116. Poletti A, Rabuffetti M, Celotti F. The 5a-reductase in the rat brain. In: Gennazzani AR, Petraglia F, Purdy RH, eds. The brain: source and target for sex steroid hormones. Parthenon, London, UK, 1996, pp. 123–133.

    Google Scholar 

  117. Poletti A, Celotti F, Rumio C, Rabuffetti M, Martini L. Identification of type 1 5a-reductase in myelin membranes of male and female rat brain. Mol Cell Endocrinol 1997; 129: 181–190.

    Article  PubMed  CAS  Google Scholar 

  118. Snipes CA, Shore LS. Metabolism of testosterone in vitro by hypothalamus and other areas of rat brain. Andrologia 1982; 14: 81–85.

    Article  PubMed  CAS  Google Scholar 

  119. Krieger NR, Scott RG, Jurman ME. Testosterone 5a-reductase in rat brain. J Neurochem 1983; 40: 1460–1464.

    Article  PubMed  CAS  Google Scholar 

  120. MacLusky NJ, Clark CR, Shanabrough M, Naftolin F. Metabolism and binding of androgen in the spinal cord of the rat. Brain Res 1987; 422: 83–91.

    Article  PubMed  CAS  Google Scholar 

  121. Sholl SA, Goy RW, Kim KL. 5a-reductase, aromatase, and androgen receptor levels in the monkey brain during fetal development. Endocrinology 1989; 124: 627–634.

    Article  PubMed  CAS  Google Scholar 

  122. Celotti F, Negri-Cesi P, Poletti A. Testosterone metabolism in the mammalian brain. Brain Res Bull 1997; 44: 365–375.

    Article  PubMed  CAS  Google Scholar 

  123. Melcangi RC, Celotti F, Ballabio M, Castano P, Poletti A, Milani S, Martini L. Ontogenetic development of the 5a-reductase in the rat brain: cerebral cortex, hypothalamus, purified myelin and isolated oligodendrocytes. Dev Brain Res 1988; 44: 181–188.

    Article  CAS  Google Scholar 

  124. Massa R, Justo S, Martini L. Conversion of testosterone into 5a-reduced metabolites in the anterior pituitary and in the brain of maturing rats. J. Steroid Biochem 1975; 6: 567–571.

    Article  PubMed  CAS  Google Scholar 

  125. Degtiar VG, Loseva B, Isatchenkov P. In vitro metabolism of androgens in hypothalamus and pituitary from infantile and adolescent rats of both sexes. Endocrinologia Experimentalis 1981; 15: 181–190.

    PubMed  CAS  Google Scholar 

  126. Norton WT, Poduslo SE. Myelination in the rat brain: changes in myelin composition during brain maturation. J Neurochem 1973; 21: 759–773.

    Article  PubMed  CAS  Google Scholar 

  127. Melcangi CR, Celotti F, Ballabio M, Castano P, Massarelli R, Poletti A, Martini L. 5a-reductase activity in isolated and cultured neuronal and glial cells of the rat. Brain Res 1990; 516: 229–236.

    Article  PubMed  CAS  Google Scholar 

  128. Melcangi RC, Celotti F, Martini L. Progesterone 5a-reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodentrocytes. Brain Res 1994; 639: 202–206.

    Article  PubMed  CAS  Google Scholar 

  129. Melcangi RC, Froelichsthal P, Martini L, Vescovi L. Steroid metabolizing enzymes in pluripotential progenitor central nervous system cells: effect of differentiation and maturation. Neurosci 1996; 2: 467–475.

    Article  Google Scholar 

  130. Lephart ED. Brain 5a-reductase: cellular, enzymatic, and molecular perspectives and implications for biological function. Mol Cell Neurosci 1993; 4: 473–484.

    Article  PubMed  CAS  Google Scholar 

  131. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnel JD, Russell DW. Tissue distribution and ontogenity of steroid 5a-reductase isozyme expression. J Clin Invest 1993; 92: 903–910.

    Article  PubMed  CAS  Google Scholar 

  132. Eicheler W, Tuohimaa P, Vilja P, Adermann, K, Forssmann, WG, Aumüller G Immunocytochemical localization of human 5a-reductase 2 with polyclonal antibodies in androgen target and non-target human tissues. J Histochem Cytochem 1994; 42: 664–675.

    Article  Google Scholar 

  133. Poletti A, Negri-Cesi P, Rabuffetti M, Colciago A, Celotti F, Martini L. Transient expression of the type 2 5alpha-reductase isozyme in the brain of the late fetal and early post-natal life. Endocrinology 1998; 139: 2171–2178.

    Article  PubMed  CAS  Google Scholar 

  134. Poletti A, Coscarella A, Negri-Cesi P, Colciago A, Celotti F, Martini L. The 5alpha-reductase isozymes in the Central Central Nervous System. Steroids 1998; 63: 246–251.

    Article  PubMed  CAS  Google Scholar 

  135. Valencia A, Collado P, Cales JM, Segovia S, Perez Laso C, Rodriguez Zafra M, Guillamon A. Postnatal administration of dihydrotestosterone to the male rat abolishes sexual dimorphism in the accessory olfactory bulb: a volumetric study. Brain Res 1992; 68: 132–135.

    Article  CAS  Google Scholar 

  136. Jurman ME, Erulkar SD, Krieger NR Testosterone 5a-reductase in spinal cord of Xenopus laevis. J Neurochem 1982; 38: 657–661.

    Article  PubMed  CAS  Google Scholar 

  137. Hauser KF, McLusky NJ, Toran-Allerand CD. Androgen action in fetal spinal cultures: metabolic and morphologic aspects. Brain Res 1987; 406: 62–72.

    Article  PubMed  CAS  Google Scholar 

  138. Matsumoto A, Micevych PE, Arnold P. Androgen regulates synaptic input to motoneurones of the adult rat spinal cord. J Neurosci 1988; 8: 4168–4176.

    PubMed  CAS  Google Scholar 

  139. Goldstain LA, Sengelaub DR. Timing and duration of dihydrotestosterone treatment affect the development of motoneuron number and morphology in a sexually dimorphic rat spinal nucleus. J Compar Neurol 1992; 326: 147–157.

    Article  Google Scholar 

  140. Boyd SK, Tyler CJ, DeVries GJ. Sexual dimorphism in the vasotocin system of the bullfrog (Rana catesbeiana). J Compar Neurol 1992; 325: 313–325.

    Article  CAS  Google Scholar 

  141. Weisz J, Ward IL. Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses and neonatal offspring. Endocrinology 1980; 106: 306–316.

    Article  PubMed  CAS  Google Scholar 

  142. Meaney MJ, Aitken DH, Jensen LK, McGinnis MY, McEwen BS. Nuclear and cytosolic androgen receptor levels in the limbic brain of neonatal male and female rats. Dev Brain Res 1985; 23: 179–185.

    Article  CAS  Google Scholar 

  143. Takani K, Kawashima S. Culture of rat brain preoptic area neurons: effects of sex steroids Int J Dev Neurosci 1993; 11: 63–70.

    Google Scholar 

  144. Roselli CE, Stadelman H, Horton LE, Resko JA. Regulation of androgen metabolism and luteinizing hormone-releasing hormone content in discrete hypothalamic and limbic areas of male rhesus macaques. Endocrinology 1987; 120: 97–106.

    Article  PubMed  CAS  Google Scholar 

  145. Celotti F, Negri-Cesi P, Limonta P, Melcangi C. Is the 5a-reductase of the hypothalamus and of the anterior pituitary neurally regulated? Effects of hypothalamic deafferentations and of centrally acting drugs. J Steroid Biochem 1983; 19: 229–234.

    Article  PubMed  CAS  Google Scholar 

  146. Cheng KC, White PC, Quin KN. Molecular cloning and expression of rat liver 3a-hydroxysteroid dehydrogenase. Mol Endocrinol 1991; 5: 823–828.

    Article  PubMed  CAS  Google Scholar 

  147. Pawlovski JE, Huizinga M, Penning TM. Cloning and sequencing of the cDNA for rat liver 3ahydroxysteroid/dihydrodiol dehydrogenase. J Biol Chem 1991; 266: 8820–8825.

    Google Scholar 

  148. Cheng KC, Lee J, Khanna M, Quin KN. Distribution and ontogeny of 3a-hydroxysteroid dehydrogenase in the rat brain. J Steroid Biochem Molec Biol 1994; 50: 85–89.

    Article  PubMed  CAS  Google Scholar 

  149. Bennett MJ, Schlegel BP, Lez JM, Penning TM, Lewis M. Structure of 3a-hydroxysteroid/ dihydrodiol dehydrogenase complexed with NADP+. Biochemistry 1996; 33: 10702–10711.

    Article  Google Scholar 

  150. Penning TM. 3a-hydroxysteroid dehydrogenase: three dimensional structure and gene regulation. J Endocrinol 1996;150:175–187.

    Google Scholar 

  151. Penning TM, Bennett ML, Smith-Hoog S, Schlegel BP, Jez JM, Lewis M. Structure and function of 3a-hydroxysteroid dehydrogenase Steroids 1997; 62: 101–111.

    CAS  Google Scholar 

  152. Cheng KC. Molecular cloning of rat liver 3a-hydroxysteroid dehydrogenase and identification of structure related proteins from rat lung and kidney. J Steroid Biochem Molec Biol 1992; 43: 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  153. Penning T, Pawlowski JE, Schlegel BP, Jez JM, Lin H-K, Hoog SS, Bennett MJ, Lewis M. Mammalian 3a-hydroxysteroid dehydrogenases. Steroids 1996; 61: 508–523.

    Article  PubMed  CAS  Google Scholar 

  154. Krieger NR, Scott RG. 3a-hydroxysteroid dehydrogenase in rat brain. J Neurochem 1984; 42: 887–890.

    Article  PubMed  CAS  Google Scholar 

  155. Karavolas HJ, Hodges D Neuroendocrine metabolism of progesterone and related progestins. In: Chadwick D., Widdows K., eds. Steroids and Neuronal Activity. Ciba Foundation Symposium, vol 153. Wiley, Chichester, 1990, pp. 22–55.

    Google Scholar 

  156. Penning T, Sharp RB, Krieger NR. Purification properties of 3a-hydroxysteroid dehydrogenase from rat brain cytosol: inhibition by nonsteroidal anti-inflammatory drugs and progestins. J Biol Chem 1985; 260: 15266–15272.

    PubMed  CAS  Google Scholar 

  157. Selye H. Anaesthetic effect of steroid hormones. Proc Soc Exp Biol Med 1941, 46: 116–121.

    CAS  Google Scholar 

  158. Selye H. Correlation between the chemical structure and the pharmacological actions of the steroids. Endocrinology 1942; 30: 437–453.

    Article  CAS  Google Scholar 

  159. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232: 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  160. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Therap 1987; 241: 346–353.

    CAS  Google Scholar 

  161. Mendelson WB, Martin JV, Perlis M, Wagner R, Majewska MD, Paul SM. Sleep induction by an adrenal steroid in the rat. Psychopharmacol 1987; 93: 226–229.

    CAS  Google Scholar 

  162. Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by neurosteroid allopregnanolone at brain GABAA receptors. J Neurochem 1995; 7: 171–177.

    CAS  Google Scholar 

  163. Pelletier G, Luu-The V, Labrie F Immunocytochemical localization of type 1 17(3-HSD in the rat brain. Brain Res 1995; 704: 233–239.

    Article  PubMed  CAS  Google Scholar 

  164. Krozowski Z, Obeyesekere V, Smith R, Mercer W Tissue-specific expression of an 11(3-hydroxysteroid dehydrogenase with a truncated N-terminal domain. A potential mechanism for differential intracellular localization within mineralocorticoid target cells. J Biol Chem 1992; 267: 2569–2574.

    PubMed  CAS  Google Scholar 

  165. White PC, Mune T, Rogerson F, Kayes KM, Agarwal AK. Molecular analysis of 11[3- hydroxysteroid dehydrogenase and its role in the syndrome of apparent mineralocorticoid excess. Steroids 1997; 62: 83–88.

    Article  PubMed  CAS  Google Scholar 

  166. Seckl JR. 1113-Hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action? Frontiers Neuroendocrinol 1997;18:49–99.

    Google Scholar 

  167. Moisan M-P, Seckl JR, Edwards CRW. 11(3-hydroxysteroid dehydrogenase bioactivity and messenger RNAexpression in rat forebrain: localization in hypothalamus, hippocampus, and cortex. Endocrinology 1990; 127: 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  168. Low SC, Moisan MP, Noble JM, Edwards CR, Seckl JR. Glucocorticoids regulate hippocampal 1113hydroxysteroi dehydrogenase activity and gene expression in vivo in the rat. J Neuroendocrinol 1994; 6: 285–290.

    Article  PubMed  CAS  Google Scholar 

  169. Low SC, Chapman KE, Edwards CR, Seckl JR. `Liver-type’ 113-hydroxysteroid dehydrogenase cDNA encodes reductase but not dehydrogenase activity in intact mammalian COS-7 cells. J Mol Endocrinol 1994; 13: 167–174.

    Article  PubMed  CAS  Google Scholar 

  170. Zhou MY, Gomez-Sanchez EP, Cox DL, Cosby D, Gomez-Sanchez CE. Cloning, expression, and tissue distribution of the rat nicotinamide adenine dinucleotide-dependent 110-hydroxysteroid dehydrogenase. Endocrinology 1995; 136: 3729–3734.

    Article  PubMed  CAS  Google Scholar 

  171. Stewart PM, Murry BA, Mason JI. Type 2 110-hydroxysteroid dehydrogenase in human fetal tissues. J Clin Endocrinol Metab 1994; 78: 1529–1532.

    Article  PubMed  CAS  Google Scholar 

  172. Sapolsky RM. Why stress is bad for your brain. Science 1996; 273: 749–750.

    Article  PubMed  CAS  Google Scholar 

  173. Yehuda R. Stress and glucocorticoid. Science 1997; 275: 1662–1663.

    Article  PubMed  CAS  Google Scholar 

  174. Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 1985; 229: 1397–1400.

    Article  PubMed  CAS  Google Scholar 

  175. Sapolsky RM, Packan DR, Vale WW. Glucocorticoid toxicity in the hippocampus: in vitro demonstration. Brain Res 1988; 453: 369–371.

    Article  Google Scholar 

  176. Hatzinger M, Z’Brun A, Hemmeter U, Seifritz E, Baumann F, Holsboer-Trachsler E, Heuser U. Hypothalamic-pituitary-adrenal (HAP) system function in patients with Alzheimer’s disease. Neurobiol Aging 1995; 16: 205–209.

    Article  PubMed  CAS  Google Scholar 

  177. Behl C, Widmann M, Trapp T, Holsboer F. 17b-estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 1995; 216: 473–482.

    Article  PubMed  CAS  Google Scholar 

  178. Behl C, Lezoualc’h F, Trapp T, Widmann M, Skutella T, Holsboer F. Glucocorticoids enhance oxidative Strees-Induced cell death in hippocampal neurons In Vitro, Endocrinology 1997; 138: 101–106.

    Article  PubMed  CAS  Google Scholar 

  179. Strott CA. Steroid sulfotransferases.Endocrine Rev 1996; 17: 670–697.

    CAS  Google Scholar 

  180. Luu-The V, Bernier F, Dufort I. Steroid sulfotransferases. J Endocrinol 1996; 150: 87–97.

    Google Scholar 

  181. Bernier F, Leblanc G, Labrie F, Luu-The V. Structure of human estrogen and aryl sulfotransferase gene. Two mRNA species issued from a single gene. J Biol Chem 1994; 269: 28200–28205.

    PubMed  CAS  Google Scholar 

  182. Rajkowski KM, Robel P, Baulieu EE. Hydroxysteroid sulfotransferase activity in the rat brain and liver as a function of age and sex. Steroids 1997; 62: 427–436.

    Article  PubMed  CAS  Google Scholar 

  183. Mortaud S, Donsez-Darcel E, Roubertoux PL, Degrelle H. Murine steroid sulfatase gene expression in the brain during postnatal development and adulthood. Neurosci Lett 1996; 215: 145–148.

    Article  PubMed  CAS  Google Scholar 

  184. Li PK, Rhodes ME, Burke AM, Johnson DA. Memory enhancement mediated by the steroid sulfatase inhibitor(p-O-sulfamoyl)-N-tetradecanoyl tyramine. Life Sci 1997; 60: 45–51.

    Article  Google Scholar 

  185. Bui QD, Weisz J, Wrighton SA. Hepatic catecholestrogen synthesis: differential effect of sex, inducers of cytochrome P-450 and of antibody to the glucocorticoid inducible cytochrome P-450 on NADPHdependent estrogen-2-hydroxylase and on organic hydroperoxide dependent estrogen-2/4-hydroxylase activity of rat hepatic microsomes. J Steroid Biochem 1990; 37: 285–293.

    Article  CAS  Google Scholar 

  186. Nicoletti F, Speciale C, Sortino MA, Panetta MS, Di Giorgio RM, Canonico PL. Estrogen effects on nigral glutammic acid decarboxylase activity: a possible role for catecholestrogens. Eur J Pharm 1985; 115: 297–300.

    Article  CAS  Google Scholar 

  187. Komura S, Ohishi N, Yagi K. Catecholestrogen as a natural antioxidant. Ann NY Acad Sci USA 1996; 786: 419–429.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poletti, A., Celotti, F., Maggi, R., Melcangi, R.C., Martini, L., Negri-Cesi, P. (1999). Aspects of Hormonal Steroid Metabolism in the Nervous System. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics