Skip to main content

Cytochrome P450 in the Central Nervous System

  • Chapter
Neurosteroids

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

  • 108 Accesses

Abstract

The brain is a major target for the action of steroids. These molecules regulate many aspects of brain function, including imprinting of sexual behavior (1), learning and memory (2), and mood and sleep/wakefulness (3). They are also thought to modulate neurodegenerative processes (4,5). The brain is, of course, also the target of many pharmaceutical agents, fatty acid metabolites, and organic solvents. Synthesis and degradation of steroid hormones, as well as the activation and inactivation of therapeutic agents and fatty acids involve several members of the cytochrome P450 super gene family (6,7). P450s are abundant in the adrenals, gonads, and liver, however, when measurable, most P450s are expressed at very low levels in the brain (8). The capacity of the brain to metabolize pharmaceuticals is so low that it is most unlikely that P450 in the brain plays any role in the overall clearance of pharmaceuticals from the body. However, those P450s that are selectively localized at high concentrations in limited numbers of brain cells, can play important roles in the physiology, pharmacology, and toxicology of those cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science 1981; 211: 1294–302.

    Article  PubMed  CAS  Google Scholar 

  2. McEwen BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol 1995; 5: 205–216.

    Article  PubMed  CAS  Google Scholar 

  3. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232: 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  4. Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  PubMed  CAS  Google Scholar 

  5. McEwen BS., Gould E., Orchinik M., Weil, NG, Woolley CS. Oestrogens and the structural and functional plasticity of neurons: implications for memory, ageing and neurodegenerative processes. Ciba Foundation Symp 1995; 191: 52–66.

    CAS  Google Scholar 

  6. Gonzalez, FJ. Human Cytochromes P450 problems and prospects. TIPS 1992; 131: 346–352.

    Google Scholar 

  7. Wolf CR. Cytochrome P450s: polymorphic gene families involved in carcinogen activation. TIG 1986; 2: 209–214.

    Article  CAS  Google Scholar 

  8. Warner M, Wyss A, Yoshida S, Gustafsson J-Â. Cytochromes P450 in the brain. Methods Neurosci 1994; 22: 51–66.

    CAS  Google Scholar 

  9. Mok WM, Herschkowitz S, Krieger NR. In vivo studies identify 5a-pregnan-3a-ol-20-one as an active anesthetic agent. J Neurochem 1991; 57: 1296–1301.

    Article  PubMed  CAS  Google Scholar 

  10. Bitran D, Purdy RH, Kellogg CK. Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABAA receptor function. Pharmacol Biochem Behav 1993; 45: 423–428.

    Article  PubMed  CAS  Google Scholar 

  11. Park-Chung M, Wu F-S, Farb DH. 3a-hydroxy-5 (3-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neurons. Mol Pharmacol 1994; 46: 146–150.

    PubMed  CAS  Google Scholar 

  12. Corpechot C, Robel P, Axelson M, Sjövall J, Baulieu E-E. Characterization and measurement of dehydroepiandrosterone sulfate in the rat brain. Proc Natl Acad Sci USA 1981; 78: 4704–4707.

    Article  PubMed  CAS  Google Scholar 

  13. Le Gascogne C, Robel P, Gouezow M, Snanes N, Baulieu E-E, Waterman M. Neurosteroids: Cytochrome P450scc in the rat brain. Science 1987; 237: 1212–1214.

    Article  Google Scholar 

  14. Strömstedt M, Waterman MR. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Mol Brain Res 1995; 34: 75–88.

    Article  PubMed  Google Scholar 

  15. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629: 283–292.

    Article  PubMed  CAS  Google Scholar 

  16. Iwahashi K, Kawai Y, Suwaki H, Hosokawa K, Ichikawa Y. A localization study of the cytochrome P-450(21)-linked monooxygenase system in adult rat brain. J Steroid Biochem Mol Biol 1993; 44: 163–169.

    Article  PubMed  CAS  Google Scholar 

  17. Ozaki HS, Iwahashi K, Tsubaki M, Fukui Y, Ichikawa Y, Takeuchi Y. Cytochrome P-45011 beta in rat brain. J Neurosci Res 1991; 28: 518–24.

    Article  PubMed  CAS  Google Scholar 

  18. Warner M, Strömstedt M, Möller L, Gustafsson J-A. Distribution and regulation of 5a-androstane3(3,17(3-diol hydroxylase in the rat central nervous system. Endocrinology 1989; 124: 2699–2706.

    Article  PubMed  CAS  Google Scholar 

  19. Stapleton G, Steel M, Richardson M, Mason JO, Rose KA, Morris RGM, Lathe R. A Novel cytochrome P450 expressed primarily in brain J Biol Chem 1993; 270: 29739–29745.

    Google Scholar 

  20. Schilter B, Omiecinski CJ. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 1993; 44: 990–996.

    PubMed  CAS  Google Scholar 

  21. Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993; 40: 317–335.

    Article  PubMed  CAS  Google Scholar 

  22. Hodgson AV, White TB, White JW, Strobel HW. Expression analysis of the mixed function oxidase system in rat brain by the polymerase chain reaction. Mol Cell Biochem 1993; 120: 171–179.

    Article  PubMed  CAS  Google Scholar 

  23. Strömstedt M, Warner M, Gustafsson, J-A. Cytochrome P450 of the 4A subfamily in the brain. J Neurochem 1994; 63: 671–67.

    Article  PubMed  Google Scholar 

  24. Amruthesh SC, FLack JR, Ellis EF. Brain synthesis and cerebrovascular action of epoxygenase metabolites of arachidonic acid. J Neurochem 992; 58: 503–510.

    Google Scholar 

  25. Junier M-P, Dray F, Blair I, Capdevilla J, Dishman E, Flack J.R, Ojeda SR. Epoxygenase products of arachidonic acid are endogenous constituents of the hypothalamus involved in D2 receptor-mediated dopamine-induced release of somatostatin. Endocrinology 1990; 126: 1534–1540.

    Article  PubMed  CAS  Google Scholar 

  26. Capdevilla J, Chacos N, Flack JR, Manna S, Negro-Vilar A, Ojeda SR. Novel hypothalamic arachidonate products stimulate somatostatin release from the median eminence. Endocrinology 1983; 113: 421–423.

    Article  Google Scholar 

  27. Anandatheerthavarada, HK, ShankarSK, Ravindranath V. Rat brain cytochromes P450:catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 1990; 536: 339–343.

    Article  PubMed  CAS  Google Scholar 

  28. Hansson T, Tindberg N, Ingelman-Sundberg M, Köhler C. Regional distribution of ethanol-inducible cytochrome P450 2E1 in the rat central nervous system. Neuroscience 1990; 34: 451–463.

    Article  PubMed  CAS  Google Scholar 

  29. Cammer W, Downing M, Clarke W Schenkman, J B. Immunocytochemical staining of the RLM6 form of cytochrome P450 in oligodendrocytes and myelin of rat brain. J Histochem Cytochem 1991; 39: 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  30. Kapitulnik J, Gelboin HV, Guengerich FP, Jacobowitz, D.M. Immunohistochemical localization of cytochrome P450 in the rat brain. Neuroscience 1987; 20: 829–833.

    Article  PubMed  CAS  Google Scholar 

  31. Köhler C, Eriksson LG. Hansson T, Warner M, Gustafsson J-A Immunohistochemical localization of cytochrome P450 in the rat brain. Neurosci Lett 1988; 20: 829–832.

    Google Scholar 

  32. Hagihara K, Shiosaka S, Lee Y, Kato J, Hatano O, Takakusu A, Emi Y, Omura T, Toyama M. Presence of sex difference of cytochrome P450 in the rat preoptic area and hypothalamus with reference to coexistence with oxytocin. Brain Res 1990; 515: 69–78.

    Article  PubMed  CAS  Google Scholar 

  33. Lin L-P, Lee Y, Tohyama M, Shiosaka S. A sex-specific cytochrome P450(F-1) colocalized with various neuropeptides in the paraventricular and supraoptic nuclei of female rats. Neuroendocrinology 1991; 54: 127–135.

    Article  PubMed  CAS  Google Scholar 

  34. Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, et al. The P450 gene superfamily: recommended nomenclature. DNA 1987; 6: 1–11.

    Article  PubMed  CAS  Google Scholar 

  35. Nelson DR, Tetsuya K, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon, MJ Gunsalus IC, Gotoh O, Okuda K, Nebert DW. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51.

    Article  PubMed  CAS  Google Scholar 

  36. Zaphiropoulos PG, Wood T. Identification of the major cytochromes P450 of the 2C subfamily that are expressed in brain of female and in olfactory lobes of ethanol treated male rats. Biochem Biophys Res Commun 1993; 193: 1006–1013.

    Article  PubMed  CAS  Google Scholar 

  37. Wyss A, Gustafsson J-A, Warner M. Cytochromes P450 of the 2D subfamily in rat brain. Mol Pharmacol 1995; 47: 1148–1155.

    PubMed  CAS  Google Scholar 

  38. Kawashima H, Strobel HW. cDNA cloning of three new forms of rat brain cytochrome P450 belonging to the CYP4F subfamily. Biochem Biophys Res Commun 1995; 217: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  39. Hedlund E, Yoshida S, Gustafsson JA, Warner, M. Identification of cytochromes P450 2C22, 2E1 and 4A3 as toluene-induced P450s in the rat brain. Unpublished data

    Google Scholar 

  40. Hedlund E, Wyss A, Kainu T, Backlund M, Köhler C, Pelto-Huikko M, Gustafsson JA, Warner M. Cytochrome P450 2D4 in the brain: specific neuronal regulation by clozapine and toluene. Mol Pharmacol 1996; 50: 342–350.

    PubMed  CAS  Google Scholar 

  41. Warner M, Gustafsson, J-A. Induction of Cytochrome P450 in the rat brain by ethanol. PNAS 1994; 91: 1019–102.

    Article  PubMed  CAS  Google Scholar 

  42. Foidart A, Harada N, Balthazart J. Aromatase-immunoreactive cells are present in mouse brain areas that are known to express high levels of aromatase activity. Cell Tissue Res 1995; 280: 561–74.

    Article  PubMed  CAS  Google Scholar 

  43. Lauber ME., Lichtensteiger W. Pre-and postnatal ontogeny of aromatase cytochrome P450 messenger ribonucleic acid expression in the male rat brain studied by in situ hybridization. Endocrinology 1994; 135: 1661–1668.

    Article  PubMed  CAS  Google Scholar 

  44. Roselli CE, Horton LE, Resko JA. Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 1985; 117: 2471–2477.

    Article  PubMed  CAS  Google Scholar 

  45. Harada N, Yamada K. Ontogeny of aromatase messenger ribonucleic acid in mouse brain: fluorometrical quantitation by polymerase chain reaction. Endocrinology 1992; 131: 2306–12.

    Article  PubMed  CAS  Google Scholar 

  46. Sanghera MK, Simpson ER, McPhaul MJ, Kozlowski G, Conley Ai, Lephart ED Immunocytochemical distribution of aromatase cytochrome P450 in the rat brain using peptide-generated polyclonal antibodies. Endocrinology 1991; 129: 2834–2844.

    Article  PubMed  CAS  Google Scholar 

  47. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem 1964; 239: 2370–2378.

    PubMed  CAS  Google Scholar 

  48. Sundin M, Warner M, Haaparanta T, Gustafsson J-tA. Isolation and catalytic activity of cytochrome P450 from ventral prostate of control rats. J Biol Chem 1987; 262: 12293–12297.

    PubMed  Google Scholar 

  49. Guiraud, Morfin R, Ducouret B, Samperez S, Jouan P. Pituitary metabolism of 5alpha-androstane3beta-17beta-diol: intense and rapid conversion into 5alpha-androstane-3beta,6alpha,l7beta-triol and 5alpha-androstane-3beta,7alpha, 17beta-triol. Steroids 1979; 34: 241–248.

    Article  Google Scholar 

  50. Strömstedt M, Warner M, Banner C, Gustafsson J-A. Role of brain P450 in regulation of the level of anaesthetic steroids in the brain. Mol Pharmacol 1993; 44: 1077–1083.

    PubMed  Google Scholar 

  51. Birkle DL, Bazan NG. Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraenoic acids in rat brain subcellular fractions. J Neurochem 1987; 48: 1768–78.

    Article  PubMed  CAS  Google Scholar 

  52. Wolfe LS. Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 1982; 38: 1–14.

    Article  PubMed  CAS  Google Scholar 

  53. Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996; 271: 3460–3468.

    Article  PubMed  CAS  Google Scholar 

  54. Laethem RM, Koop DR. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases. Mol Pharmacol 1992; 42: 958–963.

    PubMed  CAS  Google Scholar 

  55. Imaoka S, Wedlund Pi, Ogawa H, Kimura S, Gonzalez FJ, Kim HY. Identification of CYP2C23 expressed in rat kidney as an arachidonic acid epoxygenase. J Pharmacol Exp Therapeut 1993; 267: 1012–1016.

    CAS  Google Scholar 

  56. Warner M, Gustafsson J-A. Cytochrome P450 in the brain: neuroendocrine functions. Front Neuroendocrinol 1995; 16: 224–236.

    Article  PubMed  CAS  Google Scholar 

  57. Korneyev A, Pan BS, Polo A, Romer E, Guidotti A, Costa E. Stimulation of brain pregnenolone synthesis by mitochondrial diazepam binding inhibitor receptor ligands in vivo. J Neurochem 1993; 61: 1515–11524.

    Article  PubMed  CAS  Google Scholar 

  58. Hu ZY, Bourreau, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 1987; 84: 8215–19.

    Article  PubMed  CAS  Google Scholar 

  59. Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 1995; 136: 2689–2696.

    Article  PubMed  CAS  Google Scholar 

  60. Purdy RH, Morrow AL, Moore PH, Paul SM. Stress-induced elevations of y-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88: 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  61. Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 1995: 136: 5212–23.

    Article  PubMed  CAS  Google Scholar 

  62. Jayyosi Z, Cooper KO, Thomas PE. Brain cytochrome P450 and testosterone metabolism by rat brain subcellular fractions: presence of cytochrome P450 3A immunoreactive protein in rat brain mitochondria. Arch Biochem Biophys 1992; 298: 265–70.

    Article  PubMed  CAS  Google Scholar 

  63. Walther B, Ghersi-Egea J-F, Jayyosi Z, Minn A, Seist G. Ethoxyresorufin 0-deethylase activity in rat brain subcellular fractions. Neurosci Lett 1987; 76: 58–62.

    Article  PubMed  CAS  Google Scholar 

  64. Suchar LA, Chang RL, Thomas PE, Rosen RT, Lech J, Conney AH. Effects of phenobarbital, dexamethasone, and 3-methylcholanthrene administration on the metabolism of 17 beta-estradiol by liver microsomes from female rats. Endocrinology 1996; 137: 663–676.

    Article  PubMed  CAS  Google Scholar 

  65. Arlotto MP, Trant JM, Estabrook RW. Measurement of steroid hydroxylation reactions by high-performance liquid chromatography as indicator of P450 identity and function. Methods Enzymol 1991; 206: 45462.

    Google Scholar 

  66. Funae Y, Imaoka S. Cytochrome P450 in rodents. Handbook Exp Pharmacol 1992; 105: 221–237.

    Article  Google Scholar 

  67. Tyndale RF, Sunahara R, Inaba T, Kalow W, Gonzalez FJ, Niznik HB. Neuronal cytochrome P450IID 1 (debrisoquine/sparteine-type): potent inhibition of activity by cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 1991; 40: 63–68.

    PubMed  CAS  Google Scholar 

  68. Roberts B.J, Shoaf SE, Jeong K-S, Song BL. Induction of CYP 2E1 in liver, kidney, brain and intestine during chronic ethanol administration and withdrawal: evidence that CYP 2E1 possesses a rapid phase half-life of 6 hours or less. Biochem Biophys Res Commun 1994; 205: 1064–1070.

    Article  PubMed  CAS  Google Scholar 

  69. Roman LJ, Palmer CN, Clark JE, Muerhoff AS, Griffin KJ, Johnson EF, Masters BS. Expression of rabbit cytochromes P4504A which catalyze the omega-hydroxylation of arachidonic acid, fatty acids, and prostaglandins. Arch Biochem Biophys 1993; 307; 57–65.

    Article  PubMed  CAS  Google Scholar 

  70. Volk B, Amelizad Z, Anagnostopoulos J, Knoth R, Oesch F. First evidence of cytochrome P-450 induction in the mouse brain by phenytoin. Neurosci Lett 1988; 84; 219–24.

    Article  PubMed  CAS  Google Scholar 

  71. Sequeira DJ, Strobel HW. High-performance liquid chromatographic method for the analysis of imipramine metabolism in vitro by liver and brain microsomes. J Chromatogr B: Biomed Appli 1995; 673; 251–258.

    Article  CAS  Google Scholar 

  72. Anandatheerthavarada HK, Williams JF, Wecker L. Differential effect of chronic nicotine administration on brain cytochrome P4501A1/2 and P4502E1 Biochem Biophys Res Comm 1993; 194: 312–318.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warner, M., Gustafsson, JÅ. (1999). Cytochrome P450 in the Central Nervous System. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics