Skip to main content

Novel Mechanisms of Estrogen Action in the Developing Brain

Role of Steroid/Neurotrophin Interactions

  • Chapter
Book cover Neurosteroids

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

Sex-specific and temporally restricted, differential exposure of the developing male and female central nervous system (CNS) to gonadal steroid hormones such as the estrogens and the androgens has been implicated in the organization of neural circuits controlling a broad spectrum of sexually differentiated neuroendocrine, behavioral, and cognitive functions in the mammalian adult (1–4). Paradoxically, many actions of testosterone in the developing brain depend on its initial intraneuronal conversion, through aromatiza­tion, to estradiol. Metabolic conversion results in the subsequent binding of estradiol to high-affinity intranuclear estrogen receptors (ERs) (3), that are located within neurons of brain regions such as the hypothalamus, preoptic area, cerebral cortex, hippocampus and amygdala. These are all regions that are rich in aromatase activity, particularly during development (5). Increasing evidence, however, suggests that this widely held view of estrogen action in the developing brain is too restrictive and should be expanded beyond the strict confines of sexual differentiation. Thus estrogens, and estradiol in particular, have important consequences for neuronal development, survival, regeneration, plasticity, and even aging of the mammalian CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toran-Allerand CD. On the genesis of sexual differentiation of the central nervous system: morpho-genetic consequences of steroidal exposure and possible role of a-fetoprotein. Prog Brain Res 1984; 61: 63–98.

    PubMed  CAS  Google Scholar 

  2. Toran-Allerand CD, Gerlach J, McEwen B. Autoradiographic localization of 3H-estradiol related to steroid responsiveness in cultures of the newborn mouse hypothalamus and preoptic area. Brain Res 1980; 184: 517–522.

    PubMed  CAS  Google Scholar 

  3. Kawata M. Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Res 1995; 24: 1–46.

    PubMed  CAS  Google Scholar 

  4. MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science 1981; 211: 1294–1303.

    PubMed  CAS  Google Scholar 

  5. MacLusky NJ, Walters MJ, Clark AS, Toran-Allerand CD. Aromatase in the cerebral cortex, hippocampus and mid-brain: ontogeny and developmental implications. Mol Cell Neurosci 1994; 5: 691–698.

    PubMed  CAS  Google Scholar 

  6. Toran-Allerand CD. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res 106; 1976: 407–412.

    PubMed  CAS  Google Scholar 

  7. Toran-Allerand CD. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: II. Morphological correlates and hormonal specificity. Brain Res 1980; 189: 413–427.

    PubMed  CAS  Google Scholar 

  8. Toran-Allerand CD, Hashimoto K, Greenough WT, Saltarelli M. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: III. Effects of estrogen on dendritic differentiation. Dev Brain Res 1983; 7: 97–101.

    CAS  Google Scholar 

  9. Matsumoto A, Arai Y. Neuronal plasticity in the deafferented hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J Comp Neurol 1981; 197: 197–206.

    PubMed  CAS  Google Scholar 

  10. Gould E, Woolley CS, Frankfurt M, McEwen, BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10: 1286–1291.

    PubMed  CAS  Google Scholar 

  11. Toran-Allerand CD, Miranda RC, Bentham W, Sohrabji F, Brown TJ, Hochberg RB, MacLusky NJ. Estrogen receptors co-localize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 1992; 89: 4668–4972.

    PubMed  CAS  Google Scholar 

  12. Miranda RC, Sohrabji F, Toran-Allerand CD. Neuronal co-localization of the mRNAs for the neurotrophins and their receptors in the developing CNS suggests the potential for autocrine interactions. Proc Natl Acad Sci USA 1993; 90: 6439–6443.

    PubMed  CAS  Google Scholar 

  13. Miranda RC, Sohrabji F, Toran-Allerand CD. Estrogen target neurons co-localize the mRNAs for the neurotrophins and their receptors during development: a basis for the interactions of estrogen and the neurotrophins. Mol Cell Neurosci 1993; 4: 510–525.

    PubMed  CAS  Google Scholar 

  14. Toran-Allerand CD. Mechanisms of estrogen action during neural development: Mediation by interactions with the neurotrophins and their receptors ? J Steroid Biochem Mol Biol 1995; 56: 169–178.

    Google Scholar 

  15. Toran-Allerand CD. The estrogen/neurotrophin connection during neural development: is co-localization of estrogen receptors with the neurotrophins and their receptors biologically relevant? Dev Neurosci 1996; 18: 36–48.

    PubMed  CAS  Google Scholar 

  16. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925–5930.

    PubMed  CAS  Google Scholar 

  17. Mosselman S, Polman J, Dijkema R. estrogen receptor beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53.

    PubMed  CAS  Google Scholar 

  18. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138: 863–870.

    PubMed  CAS  Google Scholar 

  19. Shughrue PJ, Komm B, Merchenthaler I. The distribution of estrogen receptor-beta mRNA in the rat hypothalamus. Steroids 1996; 61: 678–681.

    PubMed  CAS  Google Scholar 

  20. Gerlach J, McEwen B, Toran-Allerand CD, Friedman W. Perinatal development of estrogen receptors in mouse brain assessed by radioautography, nuclear isolation and receptor assay. Brain Res 1983; 11: 7–18.

    CAS  Google Scholar 

  21. Shughrue PJ, Stumpf WE, MacLusky NJ, Zielinski JE, Hochberg RB. Developmental changes of estrogen receptors in mouse cerebral cortex between birth and post-weaning: studied by autoradiography with 11(3-methoxy-16a-125I iodoestradiol. Endocrinology 1990; 126: 1112–1124.

    PubMed  CAS  Google Scholar 

  22. Miranda RC, Toran-Allerand CD. Developmental expression and regulation of estrogen receptor mRNA in the rat cerebral cortex: a non-isotopic in situ hybridization histochemistry study. Cereb Cortex 1992; 2: 1–15.

    PubMed  CAS  Google Scholar 

  23. Sohrabji F, Greene LA, Miranda RC, Toran-Allerand CD. Reciprocal regulation of estrogen and nerve growth factor receptors by their ligands in PC12 cells. J Neurobiol 1994; 22: 974–988.

    Google Scholar 

  24. Sohrabji F, Miranda RC, Toran-Allerand CD Ovarian hormones differentially regulate estrogen and nerve growth factor mRNAs in adult sensory neurons. J Neurosci 1994; 14: 459–471.

    PubMed  CAS  Google Scholar 

  25. Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Res 1987; 15: 2499–2513.

    PubMed  CAS  Google Scholar 

  26. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–896.

    PubMed  CAS  Google Scholar 

  27. Landers JP, Spelsberg TC. New concepts in steroid hormone action: transcription factors, protooncogenes and the cascade model for steroid regulation of gene expression. Crit Rev Eukaryotic Gene Expression 1992; 2: 19–63.

    CAS  Google Scholar 

  28. Segnitz B, Gehring U. Subunit structure of the nonactivated human estrogen receptor. Proc Natl Acad Sci USA 1995; 92: 2179–2183.

    PubMed  CAS  Google Scholar 

  29. Orti E, Bodwell JE, Munck A. Phosphorylation of steroid hormone receptors. Endocrine Rev 1992; 13: 105–127.

    CAS  Google Scholar 

  30. Newton CJ, Buric R, Trapp T, Brockmeir S, Pagotto U, Stalla G. The unliganded estrogen receptor (ER) transduces growth factor signals. J Biol Chem 1994; 48: 481–486.

    CAS  Google Scholar 

  31. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270: 1491–1494.

    PubMed  CAS  Google Scholar 

  32. Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. Dopaminergic and ligand-independent activation of steroid receptors. Science 1991; 254: 1636–1639.

    PubMed  CAS  Google Scholar 

  33. O’Malley BW, Schrader WT, Mani S, Smith C, Weigel NL, Conneely OM, Clark JH. An alternative ligand-independent pathway for activation of steroid receptors. Rec Prog Horm Res 1995; 50: 333–347.

    PubMed  Google Scholar 

  34. Auricchio F. Phosphorylation of steroid receptors. J Steroid Biochem 1989; 32: 613–622.

    PubMed  CAS  Google Scholar 

  35. Auricchio F, Migliaccio A, Castoria G, Di Domenico M, Pagano M. Phosphorylation of uterus estradiol receptor on tyrosine. Prog Clin Biol Res 1990; 322: 133–155.

    PubMed  CAS  Google Scholar 

  36. Aronica SM, Katzenellenbogen BS. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate and insulin-like growth factor-I. Mol Endocrinol 1993; 7: 743–752.

    PubMed  CAS  Google Scholar 

  37. LeGoff P, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. J Biol Chem 1994; 269: 4458–4466.

    CAS  Google Scholar 

  38. Arnold SF, Obourn JD, Yudt MR, Carter TH, Notides AC. In vivo and in vitro phosphorylation of the human estrogen receptor. J Steroid Biochem Molec Biol 1995; 52: 159–171.

    PubMed  CAS  Google Scholar 

  39. Kuiper GGJM, Brinkmann AO. Steroid hormone receptor phosphorylation: is there a physiological role? Mol Cell Endol 1994; 100: 103–107.

    CAS  Google Scholar 

  40. Arnold SF, Osourne JD, Jaffe H, Notides AC. Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol Endocrinol 1995; 9: 24–33.

    PubMed  CAS  Google Scholar 

  41. Arnold SF, Vorojeikina DP, Notides AC. Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J Biol Chem 1996; 270: 30205–30212.

    Google Scholar 

  42. Weis KE, Ekena K, Thomas JA, Lazennec G, Kateznellenbogen BS. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 1996; 10: 1388–1398.

    PubMed  CAS  Google Scholar 

  43. Arnold SF, Notides AC. An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proc Natl Acad Sci U S A 1995; 92: 7475–7479.

    PubMed  CAS  Google Scholar 

  44. Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S. Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol Endocrinol 1997; 11: 48–53.

    PubMed  CAS  Google Scholar 

  45. Arnold SF, Obourn JD, Jaffe H, Notides AC. Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol 1994; 8: 1208–1214.

    PubMed  CAS  Google Scholar 

  46. Arnold SF, Obourne, Jaffe H, Notides AC. Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequences on DNA binding. J Steroid Biochem Mol Biol 1995; 55: 163–172.

    PubMed  CAS  Google Scholar 

  47. Bunone G, Briand P-A, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996; 15: 2174–2183.

    CAS  Google Scholar 

  48. Toran-Allerand CD, Mauri E, Leung C, Warren M, Singh M. Activation of MAP kinases (ERKs) by estradiol in cerebral cortical explants: Cross-coupling of the estrogen and neurotrophin signalling pathways. Soc Neurosci Abstr 1996; 22: 555.

    Google Scholar 

  49. Singh M, Sétâló Jr G, Guan X-P, Warren M, Toran-Allerand CD. Estrogen activation of MAP Kinase (ERK) in cerebral cortical explants: cross-coupling of estrogen and neurotrophin signaling pathways. J Neurosci 1999; 19: 1179–1188.

    PubMed  CAS  Google Scholar 

  50. Anuradha P, Khan SM, Karthikeyan N, Thampan RV. The nonactivated estrogen receptor (naER) of the goat uterus is a tyrosine kinase. Arch Biochem Biophys 1994; 309: 195–204.

    PubMed  CAS  Google Scholar 

  51. Karthikeyan N, Thampan RV. Plasma membrane is the primary site of localization of the nonactivated estrogen receptor in the goat uterus: hormone binding causes receptor internalization. Arch Biochem Biophys 1996; 325: 47–57.

    PubMed  CAS  Google Scholar 

  52. Dauvois S, White R, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 1993; 106: 1377–1388.

    PubMed  CAS  Google Scholar 

  53. King WJ, Greene GL. Monoclonal antibodies localize estrogen receptor in the nuclei of target cells. Nature 1984; 307: 745–747.

    PubMed  CAS  Google Scholar 

  54. Welshons WV, Lieberman ME, Gorski J. Nuclear localization of unoccupied estrogen receptors. Nature 1984; 307: 747–749.

    PubMed  CAS  Google Scholar 

  55. Blaustein JD. Cytoplasmic estrogen receptors in rat brain immunocytochemical evidence using three antibodies with distinct epitopes. Endocrinology 1992; 131: 1336–1342.

    PubMed  CAS  Google Scholar 

  56. Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 1977; 265: 69–72.

    PubMed  CAS  Google Scholar 

  57. Zheng J, Ramirez VD. Purification and identification of estrogen-binding proteins from neuronal membranes of female rat brain. Soc Neurosci Abstr 1994; 20: 95.

    Google Scholar 

  58. Muldoon TG, Watson GH, Evans Jr AG, Steinsapir J. Microsomal receptor for steroid hormones: functional implications for nuclear activity. J Steroid Biochem 1988; 30: 23–31.

    PubMed  CAS  Google Scholar 

  59. Watson CS, Pappas TC, Gametchy B. The other estrogen receptor in the plasma membrane: implications for the actions of environmental estrogens. Env Health Perspect 1995; 103 (Suppl 7): 41–50.

    CAS  Google Scholar 

  60. Pappas TC, Gametchu B, Watson CS. Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J 1995; 9: 404–410.

    CAS  Google Scholar 

  61. Berthois Y, Pourreau-Schneider, Gandilhon P, Mittre H, Tubiana N, Martin PM. Estrogen membrane binding sites on human breast cancer cell lines: use of a fluorescent estradiol conjugate to demonstrate plasma membrane binding systems. J Steroid Biochem 1986; 25: 963–972.

    PubMed  CAS  Google Scholar 

  62. Pappas TC, Gametchu B, Watson CS. Membrane estrogen receptor-enriched GH3/B6 cells have an enhanced non-genomic response to estrogen. Endocrine 1995; 3: 743–749.

    PubMed  CAS  Google Scholar 

  63. Migliaccio A, Pagano M, Auricchio F Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells. Oncogene 1993; 8: 2183–2191.

    PubMed  CAS  Google Scholar 

  64. Reddy KB, Mangold GL, Tandon AK, Yoneda T, Mundy GR, Zilberstein A, Osborne K. Inhibition of breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res 1992; 52: 3636–3641.

    PubMed  CAS  Google Scholar 

  65. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F. Tyrosine kinase/p2lraV/MAP kinase pathway activation by estrogen-receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–1300.

    CAS  Google Scholar 

  66. Katzenellenbogen BS. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol Reprod 1996; 54: 287–293.

    PubMed  CAS  Google Scholar 

  67. Schule R, and Evans RM. Cross-coupling of signal transduction pathways. Trends Genet 1991; 7: 377–381.

    PubMed  CAS  Google Scholar 

  68. Ignar-Trowbridge DM, Nelson KG, Biwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signaling pathways: epidermal growth factor actions involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89: 4658–4662.

    PubMed  CAS  Google Scholar 

  69. Patrone C, Ma ZQ, Pollio G, Agrati P, Parker MG, Maggi A. Cross-coupling between insulin and estrogen receptor in human neuroblastoma cells. Mol Endocrinol 1996; 10: 499–507.

    PubMed  CAS  Google Scholar 

  70. Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA. Cross talk between peptide growth factor and estrogen receptor signaling systems. Env Health Perspect 1995; 103 (Suppl7): 35–38.

    CAS  Google Scholar 

  71. Barde Y-A. Trophic factors and neuronal survival. Neuron 1989; 2: 1525–1534.

    PubMed  CAS  Google Scholar 

  72. Chao MV. Neurotrophin receptors: a window into neuronal differentiation. Neuron 1992; 9: 583–593.

    PubMed  CAS  Google Scholar 

  73. Raffioni S, Bradshaw RA, Buxer SE. The receptors for nerve growth factor and other neurotrophins. Annu Rev Biochem 1993; 62: 823–850.

    PubMed  CAS  Google Scholar 

  74. Chao MV, Hempstead BL. p75 and Trk: a two receptor system. Trends Neurosci 1995; 18: 321–326.

    PubMed  CAS  Google Scholar 

  75. Martin-Zanca D, Barbacid M, Parada LF. Expression of the trk proto-oncogene is restricted to sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev 1990; 4: 683–694.

    PubMed  CAS  Google Scholar 

  76. Vasquez ME, Ebendal T. Messenger RNAs for trk and the low-affinity NGF receptor in rat basal forebrain. NeuroReport 1991; 2: 593–596.

    Google Scholar 

  77. Holtzman DM, Li Y, Parada LF, Kinsman S, Chen C-K, Valetta J, Zhou J, Long JB, Mobley WC. p 140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 1992; 9: 465–478.

    PubMed  CAS  Google Scholar 

  78. Koh JY, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 1995; 268: 573–575.

    PubMed  CAS  Google Scholar 

  79. Miranda RC, Sohrabji F, Singh M, Toran-Allerand CD. Nerve growth factor (NGF) regulation of estrogen receptors in the developing nervous system. J Neurobiol 1996; 31: 77–87.

    PubMed  CAS  Google Scholar 

  80. Bothwell M. p75NTR: a receptor after all. Science 1996;272:506–507.

    Google Scholar 

  81. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA. Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 1996; 272: 542–545.

    PubMed  CAS  Google Scholar 

  82. Rao P, Hsu KC, Chao MV. Upregulation of NF-kappa B-dependent gene expression mediated by the p75 tumor necrosis factor receptor. J Interferon Cytokine Res 1996; 15: 71–177.

    Google Scholar 

  83. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron 1992; 9: 383–391.

    PubMed  CAS  Google Scholar 

  84. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995; 80 199–211.

    PubMed  CAS  Google Scholar 

  85. Hershman HR. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 1991; 60: 281–319.

    Google Scholar 

  86. Egan SE, Weinberg RA. The pathway to signal achievement. Nature 1993; 365: 781–783.

    PubMed  CAS  Google Scholar 

  87. Szeberenyi J, Erhardt P. Cellular components of nerve growth factor signaling. Biochem Biophy Acta 1994; 1222: 187–202.

    CAS  Google Scholar 

  88. Greene LA, Tischler AS. PC12 pheochromocytoma cultures in neurobiological research. Adv Cell Neurobiol 1982; 3: 373–414.

    CAS  Google Scholar 

  89. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk proto-oncogene product: signal transducing receptor for nerve growth factor. Science 1991; 252: 554–557.

    PubMed  CAS  Google Scholar 

  90. Kaplan DR, Martin-Zanca D, Parada LP.Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 1991; 350: 158–160.

    PubMed  CAS  Google Scholar 

  91. Chao MV. Growth factor signaling: where is the specificity? Cell 1992; 68: 995–997.

    PubMed  CAS  Google Scholar 

  92. Greene LA, Kaplan DR. Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 1995; 5: 579–587.

    PubMed  CAS  Google Scholar 

  93. Borasio GD, Markus A, Wittinghofer A, Barde YA, Heumann R. Involvement of Ras p21 in neurotrophin-induced response of sensory, but not sympathetic neurons. J Cell Biol 1993; 121: 665–672.

    PubMed  CAS  Google Scholar 

  94. Chao TS, Foster DA, Rapp UR, Rosner MR. Differential Raf requirement for activation of mitogen-activated protein kinase by growth factors, phorbol esters, and calcium. J Biol Chem 1994; 269: 7337–7341.

    PubMed  CAS  Google Scholar 

  95. Blenis J. Signal transduction via the MAP kinases: Proceed at your own RSK. Proc Natl Acad Sci USA 1993; 90: 5889–5892.

    CAS  Google Scholar 

  96. Rabin SJ, Clehon V, Kaplan DR. SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol 1993; 13: 2203–2213.

    PubMed  CAS  Google Scholar 

  97. Marshall CJ. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    PubMed  CAS  Google Scholar 

  98. Traverse S, Gomez N, Paterson H, Marshall C, Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J 1992; 288: 351–355.

    PubMed  CAS  Google Scholar 

  99. Pang L, Sawada T, Decker SJ, Saltiel AR. Inhibition of MAP kinase kinase blocks the differentiation of PC12 cells induced by nerve growth factor. J Biol Chem 1995; 270: 13585–13588.

    PubMed  CAS  Google Scholar 

  100. Toran-Allerand CD, Pfenninger K, Ellis L. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Dev Brain Res 1988; 41: 87–100.

    Google Scholar 

  101. Sohrabji F, Miranda RC, Toran-Allerand CD. Identification of a potential estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 11110–11114.

    PubMed  CAS  Google Scholar 

  102. Shughrue PJ, Refsdal CD, Dorsa DM. estrogen receptor messenger ribonucleic acid in female rat brain during the estrus cycle: a comparison with ovariectomized females and intact males. Endocrinology 1992; 131: 381–388.

    PubMed  CAS  Google Scholar 

  103. Shupnik MA, Gordon MS, Chin WW. Tissue specific regulation of rat estrogen receptor mRNAs. Mol Endocrinol 1991; 3: 660–665.

    Google Scholar 

  104. Knusel B, Rabin SJ, Hefti F, Kaplan DR. Regulated neurotrophin receptor responsiveness during neuronal migration and early differentiation. J Neurosci 1994; 14: 1542–1554.

    PubMed  CAS  Google Scholar 

  105. Segal RA, Takahashi H, McKay RDG. Changes in neurotrophin responsiveness during the development of cerebellar granule cells. Neuron 1992; 9: 1041–1052.

    PubMed  CAS  Google Scholar 

  106. Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci 1993; 16: 353–359.

    PubMed  CAS  Google Scholar 

  107. Higgins GA, Koh S, Chen KS, Gage FH. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 1989; 3: 247–256.

    PubMed  CAS  Google Scholar 

  108. Gage FH, Batchelor P, Chen KS, Chin D, Higgins GA, Koh S, Deputy S, Rosenberg MB, Fisher W, Björklund A. NGF receptor re-expression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 1989; 2: 177–184.

    Google Scholar 

  109. Merlio JP, Ernfors P. Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjo BK, Hunter T, Lindvall O. Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 1993; 10: 151–164.

    PubMed  CAS  Google Scholar 

  110. Migliaccio A, Di Domenico M, Green S, de Falco A, Kajtaniak E, Blasi F, Chambon P, Auricchio F. Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol Endocrinol 1989; 3: 1061–1069.

    PubMed  CAS  Google Scholar 

  111. Brann DW, Hendry LB, Mahesh VB. Emerging diversities in the mechanism of action of steroid hormones. J Steroid Biochem Mol Biol 1995; 52: 113–133.

    PubMed  CAS  Google Scholar 

  112. Jaiswal RK, Moodie SA, Wolfman A, Landreth GE. The mitogen activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21Ras Mol Cell Biol 1994; 14: 6944–6953.

    CAS  Google Scholar 

  113. Jaiswal RK, Weissinger E, Kolch W, Landreth G. Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and hsp90. J Biol Chem 1996; 271: 23626–23629.

    PubMed  CAS  Google Scholar 

  114. Pratt WB. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 1997; 37: 297–326.

    PubMed  CAS  Google Scholar 

  115. Singh M, Warren MF, Sétaló Jr G, Toran-Allerand CD. The estrogen receptor exists in a multimeric complex consisting of at least B-raf, MEK and hsp90 in explants of the cerebral cortex. Soc Neurosci Abstr 1997; 23: 1709.

    Google Scholar 

  116. Wu YY, Bradshaw RA. PC12–E2 cells: a stable variant with altered responses to growth factor stimulation. J Cell Physiol 1995; 164: 522–532.

    PubMed  CAS  Google Scholar 

  117. Sétâló Jr G, Singh M, Warren MF, Toran-Allerand CD. Direct association of heat shock protein hsp90 and the extracellular signal regulated kinases, ERK1/2. A possible link between estrogen and neurotrophin signaling. Soc Neurosci Abstr 1997; 23: 1709.

    Google Scholar 

  118. Aronica SM, Kraus WI, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway: Stimulation of adenylate cyclase and c-AMP-regulated gene transcription. Proc Natl Acad Sci USA 1994; 91: 8517–8521.

    PubMed  CAS  Google Scholar 

  119. Morley P, Whitfield JF, Vanderhyden BC, Tsang BK, Schwartz J. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 1992; 131: 1305–1312.

    PubMed  CAS  Google Scholar 

  120. Finkbeiner S, Greenberg ME. Cat+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 1996; 16: 233–236.

    PubMed  CAS  Google Scholar 

  121. Frodin M, Peraldi P, Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 1994; 269: 6207–6214.

    PubMed  CAS  Google Scholar 

  122. Singh M, Meyer EM, Huang FS, Millard WJ, Simpkins JW. Ovariectomy reduces ChAT activity and NGF mRNA levels in the frontal cortex and hippocampus of the female Sprague Dawley rat. Soc Neurosci Abstr 1993; 19: 1254.

    Google Scholar 

  123. Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1995; 136: 2320–2324.

    PubMed  CAS  Google Scholar 

  124. Singh M, Meyer EM, Millard WJ, Simpkins JW. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague Dawley rats. Brain Res 1994; 644: 305–312.

    PubMed  CAS  Google Scholar 

  125. Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985; 89: 484–490.

    PubMed  CAS  Google Scholar 

  126. Lustig RH, Sudol M, Pfaff DW, Federoff HJ. Estrogen regulation of sex dimorphism in growth-associated protein 43 Kda (GAP-43) mRNA in the rat. Mol Brain Res 1991; 11: 125–132.

    PubMed  CAS  Google Scholar 

  127. Stanley HF, Borthwick NM, Fink G. Brain protein changes during development and sexual differentiation in the rat. Brain Res 1986; 370: 215–222.

    PubMed  CAS  Google Scholar 

  128. Ferreira A, Caceres A. Estrogen-enhanced neurite growth: evidence for a selective induction of tau and stable microtubules. J Neurosci 1991; 11: 293–400.

    Google Scholar 

  129. Weisz A, Cicatiello L, Persico E, Scalona M, Bresciani F. Estrogen stimulates transcription of the c-jun protooncogene. Mol Endocrinol 1990; 4: 1041–1050.

    PubMed  CAS  Google Scholar 

  130. Sheng M, Greenberg ME. The regulation and function of Fos and other immediate early genes in the nervous system. Neuron 1990; 4: 477–485.

    PubMed  CAS  Google Scholar 

  131. Wu BY, Fodor EJ, Edwards RH, Rutter WJ. Nerve growth factor induces the proto-oncogene c-jun in PC12 cells. J Biol Chem 1989; 264: 9000–9003.

    PubMed  CAS  Google Scholar 

  132. Drubin DG, Feinstein SC, Shooter EM, Kirschner MW. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and alpha assembly promoting factors. J Cell Biol 1985; 101: 1799–1807.

    PubMed  CAS  Google Scholar 

  133. Federoff HJ, Grabczyk E, Fishman MC. Dual regulation of GAP-43 gene expression by NGF and glucocorticoids. J Biol Chem 1988; 263: 19290–19295.

    PubMed  CAS  Google Scholar 

  134. Hanemaaijer R, Ginzburg I. Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells. J Neurosci Res 1991; 30: 163–171.

    PubMed  CAS  Google Scholar 

  135. Mani SK, Allen JM, Clark JH, Blaustein JD, O’Malley BW. Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 1994; 265: 1246–1249.

    PubMed  CAS  Google Scholar 

  136. Ignar-Trowbridge DM, Nelson KG, Biwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signaling pathways: epidermal growth factor actions involves the estrogen receptor. Proc Natl Acad Sci USA 1992; 89: 4658–4662.

    PubMed  CAS  Google Scholar 

  137. Nelson KG, Takahashi T, Bossert NL, Walmer DK, McLachlan JA. Epidermal growth factor replaces estrogen in the stimulation of female genital tract growth and differentiation. Proc Natl Acad Sci USA 1991; 88: 21–25.

    PubMed  CAS  Google Scholar 

  138. Cho H, Katzenellenbogen BS. Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol 1993; 7: 441–452.

    PubMed  CAS  Google Scholar 

  139. Batistatou A, Volonte C, Greene LA. Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells. Mol Biol Cell 1992; 3: 363–371.

    PubMed  CAS  Google Scholar 

  140. Stephens RM, Loeb DM, Copeland TD. Pawson T, Greene LA, Kaplan DR. Trk receptors use redundant signal transduction pathways involving SHC and PLC-71 to mediate NGF responses. Neuron 1994; 12: 691–705.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toran-Allerand, C.D. (1999). Novel Mechanisms of Estrogen Action in the Developing Brain. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics