Skip to main content

Variable Susceptibility to Neurotoxicity of Systemic 3-Nitropropionic Acid

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Between 1972 and 1989 nearly 900 people in China accidentally contracted food poisoning from the consumption of mildewed sugarcane (1,2). As a consequence, 88 people died and many of the survivors developed encephalopathy and dystonia. The victims were mainly children and it is unclear whether children show an increased susceptibility to the poisoning or whether they simply consumed larger amounts of the sweet sugarcane as compared to the adults. Most victims developed an acute illness characterized by nausea, abdominal pain, seizures, convulsions, and temporary coma (up to 20 d). Some of the patients fully recovered with no permanent damage. Others developed neurological damage in the basal ganglia and a dystonic movement disorder. The dystonia included symptoms such as spasms, jerklike movements, facial grimacing, and speech disturbances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludolph AC, He F, Spencer PS, et al. 3-Nitropropionic acid—exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 1991; 18: 492–498.

    PubMed  CAS  Google Scholar 

  2. He F, Shoulin Z, Qian F, et al.. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 1995; 45: 2178–2183.

    Article  PubMed  CAS  Google Scholar 

  3. Hu W. The isolation and structure identification of a toxic substance, 3-nitropropionic acid, produced by Arthrinium from mildewed sugar cane. Clin J Prey Med 1986; 20: 321–323.

    CAS  Google Scholar 

  4. Liu X. Studies on the mycology and mycotoxins in an outbreak of deteriorated sugar cane poisoning. Clin J Prey Med 1989; 23: 345–348.

    Google Scholar 

  5. Alston TA, Mela L, Bright HJ. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 1977; 74: 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  6. Greene J G, Greenamyre. JT. Bioenergetics and excitotoxicity: the weak excitotoxic hypothesis. In: Olanow CW, Jenner P, Youdim M, eds. Neurodegeneration and Neuroprotection in Parkinson’s Disease. Academic Press, London, 1996, pp. 125–142.

    Chapter  Google Scholar 

  7. Dawson R Jr, Beal MF, Bondy SC, et al.. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol Applied Pharmacol 1995; 134: 1–17.

    Article  CAS  Google Scholar 

  8. Brouillet E, Hantraye P. Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates. Curr Opin Neurol 1995; 8: 469–473.

    Article  PubMed  CAS  Google Scholar 

  9. Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 1997; 21: 289–293.

    Article  PubMed  CAS  Google Scholar 

  10. Borlongan CV, Nishino H, Sanberg PR. Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the neuropathology of Huntington’s disease: a speculative explanation. Neurosci Res 1997; 28: 185–189.

    Article  PubMed  CAS  Google Scholar 

  11. Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995; 92: 7105–7109.

    Article  PubMed  CAS  Google Scholar 

  12. Palfi S, Ferrante RJ, Brouillet E, et al. Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 1996; 16: 3019–3025.

    PubMed  CAS  Google Scholar 

  13. Alexi T, Hughes PE, Faull RLM, et al. 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. NeuroReport 1998; 9: R57 - R64.

    CAS  Google Scholar 

  14. Guyot M.-C, Hantraye P, Dolan R, et al. Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience 1997; 79: 45–56.

    Article  PubMed  CAS  Google Scholar 

  15. Nishino H, Kumazaki M, Fukuda A, et al. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci Res 1997; 27: 343–355.

    Article  PubMed  CAS  Google Scholar 

  16. Alexi T, Hughes PE, Knusel B, et al. Metabolic compromise with systemic 3-nitropropionic acid produces striatal apoptosis in Sprague Dawley rats but not BALB/c ByJ mice. Exp Neurol 1998; 153: 74–93.

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda A, Deshpande SB, Shimano Y, et al. Astrocytes are more vulnerable than neurons to cellular Ca’ overload induced by a mitochondrial toxin, 3-nitropropionic acid. Neuroscience 1998; 87: 497–507.

    Article  PubMed  CAS  Google Scholar 

  18. Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993; 13: 4181–4192.

    PubMed  CAS  Google Scholar 

  19. Bossi SR, Simpson JR, Isacson O. Age dependence of striatal neuronal death caused by mitochondrial dysfunction. NeuroReport 1993; 4: 73–76.

    CAS  Google Scholar 

  20. Brouillet, E, Jenkins BG, Hyman BT, et al. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 1993; 60: 356–359.

    Article  PubMed  CAS  Google Scholar 

  21. Borlongan CV, Koutouzis TK, Freeman TB, et al. Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res 1995; 697: 254–257.

    Article  PubMed  CAS  Google Scholar 

  22. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  PubMed  CAS  Google Scholar 

  23. Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport 1995; 7: 61–64.

    CAS  Google Scholar 

  24. Hughes PE, Alexi T, Schreiber SS. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. NeuroReport 1997;8:v-xii.

    Google Scholar 

  25. Dragunow M, Faull RLM, Lawlor P, et al. In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. NeuroReport 1995; 6: 1053–1057.

    CAS  Google Scholar 

  26. Nishino H, Shimano Y, Kumazaki M, et al. Chronically administered 3-nitropropionic acid induces striatal lesions attributed to dysfunction of the blood—brain barrier. Neurosci Letts 1995; 186: 161–164.

    Article  CAS  Google Scholar 

  27. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38: 357–366.

    Article  PubMed  CAS  Google Scholar 

  28. Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 1997; 94: 4103–4108.

    Article  PubMed  CAS  Google Scholar 

  29. Schulz J B, Matthews RT, Jenkins BG, et al. Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J Neurosci 1995; 15: 8419–8429.

    PubMed  CAS  Google Scholar 

  30. Deshpande SB, Fukuda A, Nishino H. 3-Nitropropionic acid increases the intracellular Cat+ in cultured astrocytes by reverse operation of the Na+-Ca2+ exchanger. Exp Neurol 1997; 145: 38–45.

    Article  PubMed  CAS  Google Scholar 

  31. Riepe M, Hori N, Ludolph AC, et al. Inhibition of energy metabolism by 3-nitropropionic acid activates ATP-sensitive potassium channels. Brain Res 1992; 586: 61–66.

    Article  PubMed  CAS  Google Scholar 

  32. Hassel B, Sonnewald U. Selective inhibition of the tricarboxylic acid cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J Neurochem 1995; 65: 1184–1191.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Alexi, T., Faull, R.L.M., Hughes, P.E. (2000). Variable Susceptibility to Neurotoxicity of Systemic 3-Nitropropionic Acid. In: Sanberg, P.R., Nishino, H., Borlongan, C.V. (eds) Mitochondrial Inhibitors and Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-692-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-692-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9821-9

  • Online ISBN: 978-1-59259-692-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics