Skip to main content

Neuroprotective Strategies in Parkinson’s Disease and Huntington’s Chorea

MPTP- and 3-NPA-Induced Neurodegeneration as Models

  • Chapter
Mitochondrial Inhibitors and Neurodegenerative Disorders

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Parkinson’s disease is a neurodegenerative disorder involving the progressive degeneration of dopamine neurons arising in the substantia nigra compacta area and terminating in the striatum. Dopamine replacement therapy by administration of l-dopa has been developed based on a specific loss of pigmented substantia nigra compacta (A9 nigral) neurons and striatal dopamine. However, dopamine replacement therapy has failed to stop the progression of the disease. The major objective is to develop a better therapeutic approach to the treatment and prevention of the disease. In the past few years much has been discovered about the chemical pathology of Parkinson’ s disease. This new information gives hope not only for finding the cause of the disease, but also for developing new preventive drugs that may either halt the progressive degeneration of the A9 nigral neurons or, perhaps, provide means to rescue these dopamine neurons. The current hypothesis concerning the pathogenesis of Parkinson’s disease holds that there is an ongoing selective oxidative stress that cannot be thoroughly investigated using brain tissues obtained during autopsy. Much of what we have learned about oxidative neurodegeneration have come from studies with 6-hydroxydopamine (1,2) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—a neurotoxin that produces animal model for investigating oxidative stress and Parkinsonian syndrome (3,4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen G, Heikkila RE. The generation of hydrogen peroxide superoxide radical and hydroxyl radical by 6-hydroxydopamine dialuric acid and related cytotoxic agents. J Biochem 1974; 249: 2447–2452.

    CAS  Google Scholar 

  2. Glinka Y, Tipton KF, Youdim MBH. Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J Neurochem 1996; 66: 2004–2010.

    Article  PubMed  CAS  Google Scholar 

  3. Burns RS, Chiueh CC Markey SP, Ebert MH, Jacobowitz D, Kopin IJ. A primate model of Parkinson’s disease: selective destruction of substantia nigra pars compacta dopaminergic neurons by N-methyl-4-phenyl-1,2,3,6tetrahydropyridine. Proc Natl Acad Sci USA 1983; 80: 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  4. Chiueh CC. Dopamine in the extrapyramidal motor function: a study based upon the MPTP-induced primate model of parkinsonism. Ann NY Acad Sci 1988; 515: 226–238.

    Article  PubMed  CAS  Google Scholar 

  5. Chiueh CC, Miyake H, Peng MT. Role of dopamine autoxidation hydroxyl radical generation and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol 1993; 60: 251–258.

    PubMed  CAS  Google Scholar 

  6. Davis G, Williams A, Markey S, Ebert M, Caine E, Beichert C, Kopin IJ. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Pschiatry Res 1979; 1: 249–254.

    Article  CAS  Google Scholar 

  7. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 4587: 979–980.

    Article  Google Scholar 

  8. Chiueh CC, Johannessen IN, Sun JL, Bacon JP, Markey SP. Reversible neuro-toxicity of MPTP in the nigrostriatal dopaminergic system of mice. In: MPTPParkinsonian Syndrome Producing Neurotoxin. Markey SP, Trevor AJ, Castagnoli N, Kopin IJ, eds. Academic Press, New York, 1986, pp. 473–480.

    Google Scholar 

  9. Chiba K, Trevor A, Castagnoli N Jr. Metabolism of the neurotoxic tertiary amine MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120: 574–578.

    Article  PubMed  CAS  Google Scholar 

  10. Markey SP, Johannessen IN, Chiueh CC, Burns RS, and Herkenham MA. Intraneuronal accumulation of a pyridinium metabolite may induce drug-induced parkinsonian syndrome in monkey. Nature (London) 1984; 311: 464–467.

    Article  CAS  Google Scholar 

  11. Sun CJ, Johannessen JN, Gessner W, Namura I, Singhaniyom W, Brossi A, Chiueh CC. Neurotoxic damage to the nigrostriatal system in rats following intranigral administration of MPDP+ and MPP+. J Neural Transm 1988; 74: 75–86.

    Article  PubMed  CAS  Google Scholar 

  12. Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang S-J, and Murphy DL. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autoxidation in the caudate nucleus: effects of MPP+. Free Radical Biol Med 1992a; 13: 581–583.

    Article  CAS  Google Scholar 

  13. Chiueh CC, Huang S-J, Murphy DL. Enhanced hydroxyl radical generation by 2’-methyl analog of MPTP: reversal by clorgyline and deprenyl. Synapse 1992b; 11: 346–348.

    Article  PubMed  CAS  Google Scholar 

  14. Obata T, Chiueh CC. In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+ and MPP+. J Neural Transm [Gen Sect] 1992; 89: 139–145.

    Google Scholar 

  15. Chiueh CC, Rauhala P. Free Radicals and MPTP-induced selective destruction of substantia nigra compacta neurons. Adv Pharmacol 1997; 42: 796–800.

    Article  Google Scholar 

  16. Thakar JH, Hassan MN. Effects of 1-methyl-4-phenyl-1,2,3,6: tetrahydropyridine (MPTP) cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum cortex and liver. Life Sci 1988; 43: 143–9.

    Article  PubMed  CAS  Google Scholar 

  17. Mizuno Y, Suzuki K, Sone N, Saitoh T. Inhibition of mitochondrial respiration by MPTP in mouse brain. Neurosci Lett 1988; 3, 349–353.

    Article  Google Scholar 

  18. Chiueh CC, Murphy DL, Miyake H, Lang K, Tulsi PK, Huang SJ. Hydroxyl free radicals. (•OH) formation reflected by salicylate hydroxylation and neuromelanin: in vivo markers for oxidant injury of nigral neurons. Ann NY Acad Sci 1993; 679, 370–75.

    Article  PubMed  CAS  Google Scholar 

  19. Linert W, Herrlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH. Dopamine 6-hydroxydopamine iron and dioxygen: their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1996; 1316: 160–168.

    Article  PubMed  Google Scholar 

  20. Chiueh CC, Markey SP, Burns SP, Johanneseen JN, Kopin IJ. Neurochemical and behaviorial effects of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in rat guinea pig and monkey. Psychopharmacol Bull 1984; 20: 548–553.

    PubMed  CAS  Google Scholar 

  21. Chiueh CC, Johannessen TN, Sun JL, Bacon JP, Markey SP. Reversible neuro-toxicity of MPTP in the nigrostriatal dopaminergic system of mice. In: MPTPParkinsonian Syndrome Producing Neurotoxin. Markey SP, Trevor AJ, Castagnoli N, Kopin II, eds. Academic Press, New York, 1986, pp. 473–480.

    Google Scholar 

  22. Riederer P, Sofic E, Rauch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH. Transition metals ferritin glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 1989; 52: 512–520.

    Article  Google Scholar 

  23. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 1992; 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  24. Chiueh CC. Dopamine in the extrapyramidal motor function: a study based upon the MPTP-induced primate model of parkinsonism. Ann NY Acad Sci 1988; 515: 226–238.

    Article  PubMed  CAS  Google Scholar 

  25. Hu WJ. Isolation and structure determination of Arthrinium toxin causing sugarcane poisoning. Chung Hua Yu Fang Hsueh Tsa Chih. 1986; 20: 321–323.

    CAS  Google Scholar 

  26. He FS. Extrapyrimidal lesions caused by mildewed cane poisoning (with a report of 3 cases). Chung Hua I Hsueh Tsa Chih. 1987; 67: 395–396.

    PubMed  CAS  Google Scholar 

  27. Liu X, Luo X, Hu W. Studies on the epidemiology and etiology of moldy sugarcane poisoning in China. Biomed Environ Sci 1992; 5: 161–177.

    PubMed  CAS  Google Scholar 

  28. He FS, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin. 3-nitropropionic acid). Neurology 1995; 45: 2178–2183.

    Article  PubMed  CAS  Google Scholar 

  29. Fu YT, He FS, Zhang S, Jiao X. Consistent striatal damage in rats induced by 3-nitropropionic acid and cultures of arthrinium fungus. Neurotoxicol Teratol 1995; 17: 413–418.

    Article  PubMed  CAS  Google Scholar 

  30. Gould DH, Wilson MP, Hamar DW. Brain enzyme and clinical alterations induced in rats and mice by nitroalipathic toxicants. Toxicol Lett 1985; 27: 83–89.

    Article  PubMed  CAS  Google Scholar 

  31. Hamilton BF, Gould DH. Nature and distribution of brain lesions in rats intoxicated with 3-nitopropionic acid: a type of hypoxic. energy deficient;brain damage. Acta Neuropathol (Berl) 1987; 72: 286–297.

    Article  CAS  Google Scholar 

  32. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 1991; 18: 492–498.

    PubMed  CAS  Google Scholar 

  33. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995; 92: 7105–7109.

    Article  PubMed  CAS  Google Scholar 

  34. Palfi S, Ferrante RJ, Brouillet E, Beal MF, Dolan R, Guyot MC, Peschanski M, Hantraye P. 1996; Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 16: 3019–3025.

    PubMed  CAS  Google Scholar 

  35. Przedborski S, KosticV, Jacksonlewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL. Transgenic mice with increased Cu/Znsuperoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6tetrahydropyridine-induced neurotoxicity. J Neurosci 1992; 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  36. Beal MF, Ferrante RJ, Henshaw R, Matthews RT, Chan PH, Kowall NW, Epstein CT, and Schulz JB. 3-Nitropropionic acid neurotoxicity is attenuated in copper/zinc superoxide dismutase transgenic mice. J Neurochem 1995; 65: 919–922.

    Article  PubMed  CAS  Google Scholar 

  37. Fleckenstein AE, Wilkins DG, Gibb JW, Hanson GR. Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration. J Pharmocol Exp Ther 1997; 283: 2681–285.

    Google Scholar 

  38. Youdim MBH, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson’s disease. Move Disord 1993; 8: 1–12.

    Article  CAS  Google Scholar 

  39. Johannessen.TN, Chiueh CC, Bacon JP, Garrick NA, Burns RS, Weise VK, Kopin IT, Parisi JE, Markey SP. Effects of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine in the dog: effect of pargyline pretreatment. J Neurochem 1989; 53: 582–589.

    Article  Google Scholar 

  40. Sinha BK, Singh Y, and Krishna G. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion. MPP+); reductive activation by NADPH cytochrome P-450 reductase. Biochem Biophys Res Commun 1986; 135: 583–588.

    Article  PubMed  CAS  Google Scholar 

  41. Adams JD, Klaidman LK, Leung AC. MPP+ and MPDP+ induced oxygen radical formtion with mitochondrial-enzymes. Free Radical Biol Med 1993; 15: 181–186.

    Article  CAS  Google Scholar 

  42. Temlett JA, Landsberg JP, Watt F, Grime GW. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian african green monkey: evidence from proton microprobe element microanalysis. J Neurochem 1994; 62: 134–146.

    Article  PubMed  CAS  Google Scholar 

  43. Mochizuki H, Imai. H, Endo K, Yokomizo K, Murata Y, Hattori N, Mizuno Y. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-l,2,3,6tetrahydropyridine. MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 1994; 168: 251–253.

    Article  PubMed  CAS  Google Scholar 

  44. Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ Arendash GW. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 1994; 660: 8–18.

    Article  PubMed  CAS  Google Scholar 

  45. Mohanakumar KP, de Bartolomeis A, Wu R-M, Yeh KJ, Sternberger LM, Peng S-Y, Murphy DL, Chiueh CC. Ferrous-citrate complex and nigral injury: evidence for free-radical formation and lipid peroxidation. Ann NY Acad Sci 1994; 738: 392–399.

    Article  PubMed  CAS  Google Scholar 

  46. Sziraki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh JJ, Chiueh CC. Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 1998; 85: 1101–1011.

    Article  PubMed  CAS  Google Scholar 

  47. Ben-Shachar D, Eshei U, Finberg JPM, Youdim MBH. The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal neurons. J Neurochem 1991; 56: 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  48. Sengstock GJ, Olanow CW, Dunn AJ, Barone S Jr Arendash GW. Progressive changes in striatal dopaminergic markers nigral volume and rotational behavior following iron infusion into the rat substantia nigra. Exp Neurol 1994; 130: 82–94.

    Article  PubMed  CAS  Google Scholar 

  49. Rauhala P, Khaldi A, Mohanakumar KP, Chiueh CC. Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside. Free Radical Biol Med 1998; 24: 1065–1073.

    Article  CAS  Google Scholar 

  50. Rauhala P, Lin A M-Y, Chiueh CC. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J 1998; 12: 165–173.

    PubMed  CAS  Google Scholar 

  51. Chiueh CC, Wu RM, Mohanakumar KP, Sternberger L, Krishna G, Obata T, Murphy DL. In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxictiy in the basal ganglia. Ann NY Acad Sci 1994; 738: 25–36.

    Article  PubMed  CAS  Google Scholar 

  52. Youdim MBH, Riederer P. Understanding Parkinson’s disease. Sci Am 1997; 257: 52–59.

    Article  Google Scholar 

  53. Singer TP, Castagnoli N Jr Ramsay RR, Treor AT. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 1987; 49: 1–8.

    CAS  Google Scholar 

  54. Seaton TA, Cooper JM, Schapira AHV. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 1997; 777: 110–118.

    Article  PubMed  CAS  Google Scholar 

  55. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  56. Rauhala P, Sziraki I, Chiueh CC. Peroxidation of brain lipids in vitro: nitric oxide versus hydroxyl radicals. Free Radical Biol Med 1996; 21: 391–394.

    Article  CAS  Google Scholar 

  57. Berlett BS, Levine RL, Stadtman E,R. Carbon dioxide stimulates peroxynitritemediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylation. Proc Natl Acad Sci USA 1998; 95: 2784–2789.

    Article  PubMed  CAS  Google Scholar 

  58. Rauhala P,Mohanakumar KP, Sziraki I, Lin AMY, Chiueh CC. S-nitrosothiols and nitric oxide but not sodium prusside protect nigrotstriatal dopamine nuerons against iron-induced oxidative stress in vivo. Synapse 1996; 23: 59–60.

    Google Scholar 

  59. Liang S-M, Liang C-M, Chiueh CC. 1989; Visualization of interleukin-2-like molecules in MPP+-lesioned rat brain. Biochem Biophys Res Commun 165: 1312–1318.

    Article  PubMed  CAS  Google Scholar 

  60. Jellinger K, Paulus W, and Grundke-Iqbal I, Riederer P, Youdim MBH. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm [PD Sect] 1990; 2: 327–340.

    Article  CAS  Google Scholar 

  61. Colton C, Gilbert D. Production of superoxide anions by a CNS macrophage the microglia. FEBS Lett 1987; 223, 284–288.

    Article  PubMed  CAS  Google Scholar 

  62. Hynes MA, Poulsen K Armanini M, Berkemeier L, Phillips H, Rosenthal A. Neutrophin-4/5 is a survival factor for embryonic midbrain dopaminergicnuerons in enriched cultures. J Neurosci Res 1994; 37: 144–154.

    Article  PubMed  CAS  Google Scholar 

  63. Sautter J, Meyer M, Spenger C, Seiler RW, Widmer HR. Effects of combined BDNF and GDNF treatment on cultured dopaminergic midrain neurons. NeuroReport 1998; 9: 1093–1096.

    Article  PubMed  CAS  Google Scholar 

  64. Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Matthews RT, Rosen BR, Beal MF. NGF BDNF and NT-5 but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res 1996; 713: 178–185.

    Article  PubMed  CAS  Google Scholar 

  65. Nishino H, Kumazaki M, Fukuda A, Fujimoto I, Shimano Y, Hida H, Sakurai T, Deshpande SB, Shimizu H, Morikawa S, Inubushi T. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dys-function of the blood brain barrier: involvement of dopamine toxicity. Neurosci Res 1997; 27: 343–355.

    Article  PubMed  CAS  Google Scholar 

  66. McLaughlin BA, Nelson D, Erecinska M, Chesselt M. Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem 1998; 70: 2406–2415.

    Article  PubMed  CAS  Google Scholar 

  67. Tsai MJ, Goh CC, Wan YL, Chang, C. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization. Neuroscience 1997; 3: 819–826.

    Article  Google Scholar 

  68. Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP. Increased sensitivity to mitochondria toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998; 18: 4439–4450.

    PubMed  CAS  Google Scholar 

  69. Gainetdinov RR, Fumagalli F, Wang YM, Jones SR, Levey AI, Miller GW, Caron MG. Increased MPTP neurotoxcity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem 1998; 70: 73–78.

    Google Scholar 

  70. Cassarino DS, Fall CP, Smith TS, Bennet JP. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the Parkinsonian neurotoxin methylpyridinium ion. J Neurochem 1998; 71: 295–301.

    Article  PubMed  CAS  Google Scholar 

  71. Iacovitti L, Stull ND, Johnston K. Melatonin rescues dopamine neurons from cell death in tissue culture models of oxidative stress. Brain Research 1997; 768, 317–326.

    Article  PubMed  CAS  Google Scholar 

  72. Mytilineou C, Cohen G. Deprenyl protects dopamine neurons from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion. J Neurochem 1985; 6: 1951–1953.

    Article  Google Scholar 

  73. Wu R-M, Chiueh CC, Murphy DL. Apparent antioxidant effect of 1-deprenyl. (selegiline) on suppression of hydroxyl radical formation and rescue of nigral injury elicited by 1-methyl-4-phenylpyridinium ion in vivo. Eur J Pharmacol 1993; 243: 241–247.

    Article  PubMed  CAS  Google Scholar 

  74. Tatton WG. Selegline can mediate neuronal rescue rather than neuronal protection. Movement Disorders 1993; 8 (Suppl 1): S20 — S30.

    Article  PubMed  Google Scholar 

  75. Wu RM, Murphy DL, Chiueh CC. Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm 1995; 100: 53–61.

    Article  CAS  Google Scholar 

  76. Schulz JB, Matthews RT, Muqit MMK, et al. Inhibition of neuronal ntiric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 1995; 64: 936–939.

    Article  PubMed  CAS  Google Scholar 

  77. Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT, Beal MF. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Med. 1996; 2: 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  78. Castagnoli K, Palmer S Anderson A, Bueters T, Castagnoli N Jr. The neuronal nitric oxide synthase inhibitor 7-nitroindazole also inhibits the monoamine oxidase-B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Chem Res Toxicol 1997; 10: 364–368.

    Article  PubMed  CAS  Google Scholar 

  79. Nanri K, Montecot C, Springhetti V Seylaz J, Pinard E. The selective inhibitor of neuronal nitric oxide synthase 7-nitroindazole reduces the delayed neuronal damage due to forebrain ischemia in rats. Stroke 1998; 29: 1248–1253.

    Article  PubMed  CAS  Google Scholar 

  80. Lahtinen H, Kostinaho J, Kauppinen R, Haapalinna J, Keinanen R, Sivenius J. Selegiline treatment after transient global ischemia in gerbils enhances the survival of CAl pyramidal cells in the hippocampus. Brain Res 1997; 757: 260–267.

    Article  PubMed  CAS  Google Scholar 

  81. Pang Z, Geddes J W. Mechanisms of cell death induced by the mitochondria] toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 1997; 17, 3064–3073.

    PubMed  CAS  Google Scholar 

  82. Wang S, Yang Q, Moller CJ, Sharp FR, Haglid KG. Elirpodil prevents expression of the 70Kda heat shock protein in MK801-injured neurons. Pharmacol Toxicol 1996; 79: 166–168.

    Article  PubMed  CAS  Google Scholar 

  83. Matthews RT, Yang LC, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 1998; 18: 156–163.

    PubMed  CAS  Google Scholar 

  84. Schulz JB, Henshaw DR, MacGarvey U, Beal MF. Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity. Neurochem Int 1996; 29: 167–171.

    Article  PubMed  CAS  Google Scholar 

  85. Fredriksson A, Erikksson P Archer T. MPTP-induced deficits in motor activity: neuroprotective effects of spintrapping agent alpha-phenyl-tert-butylnitrone (PBN). J Neural Transm 1997; 104: 579–592.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Youdim, M.B.H., Krishna, G., Chiueh, C.C. (2000). Neuroprotective Strategies in Parkinson’s Disease and Huntington’s Chorea. In: Sanberg, P.R., Nishino, H., Borlongan, C.V. (eds) Mitochondrial Inhibitors and Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-692-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-692-8_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9821-9

  • Online ISBN: 978-1-59259-692-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics