Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 205 Accesses

Abstract

Cellular hypoxia is a crucial event in the pathophysiologic cascade of several acute (e.g., cerebral ischemia, CO intoxication) and chronic (e.g., Parkinsons’s disease, Huntington’s disease, Alzheimer’s disease) diseases of the central nervous system (CNS) (1,2). Cellular hypoxia results from insufficient oxygen or substrate supply as in ischemia or hypoglycemia. In addition, it may be caused by impairment of mitochondrial energy metabolism with chemical inhibitors of oxidative phosphorylation and/or glycolysis such as cyanide, malonate, 3-nitropropionate, iodoacetate, and a manifold of other substances. Owing to their specificity, application of these substances provides a tool to understand the role of individual mitochondrial complexes or glycolytic enzymes in cellular hypoxia. Furthermore, several substances used in clinical practice have a partially inhibiting effect on mitochondrial energy metabolism, e.g., haloperidol on mitochondrial complex I (3) and acetylsalicylic acid on coupling of oxidation and respiration (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal MF. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992; 31: 119 - 130.

    Article  PubMed  CAS  Google Scholar 

  2. Ludolph AC, Riepe M, Ullrich K. Excitotoxicity, energy metabolism and neurodegeneration. J Inher Metab Dis 1993; 16: 1 - 8.

    Article  Google Scholar 

  3. Burkhardt C, Kelly JP, Lim YH, et al. Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 1993; 33: 512 - 517.

    Article  PubMed  CAS  Google Scholar 

  4. Whitehouse MW, Haslam JM. Ability of some antirheumatic drugs to uncouple oxidative phosphorylation. Nature 1962; 196: 1323 - 1324.

    Article  PubMed  CAS  Google Scholar 

  5. Erecinska M, Nelson D. Amino acid neurotransmitters in the CNS. FEBS Lett 1987; 213: 61 - 66.

    Article  PubMed  CAS  Google Scholar 

  6. Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987; 28: 197 - 276.

    Article  PubMed  CAS  Google Scholar 

  7. Simon RP, Swan JH, Griffiths T, et al. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984; 226: 850 - 852.

    Article  PubMed  CAS  Google Scholar 

  8. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann Neurol 1986; 19: 105 - 111.

    Article  PubMed  CAS  Google Scholar 

  9. Davis SM, Albers GW, Diener HC, et al. Termination of acute stroke studies involving selfotel treatment. ASSIST Steering Committee Lancet 1997; 349: 32.

    CAS  Google Scholar 

  10. Muir KW, Lees KR. Clinical experience with excitatory amino acid antagonist drugs. Stroke 1995; 26: 503 - 513.

    Article  PubMed  CAS  Google Scholar 

  11. Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993; 13: 4181 - 4192.

    PubMed  CAS  Google Scholar 

  12. Couratier P, Hugon J, Sindou P, et al. Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis bein linked to glutamate AMPA/ kainate receptors. Lancet 1993; 341: 265 - 268.

    Article  PubMed  CAS  Google Scholar 

  13. Turski L, Bressler K, Rettig K, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991; 349: 414 - 418.

    Article  PubMed  CAS  Google Scholar 

  14. ALS CNTF Treatment Study Group. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 1996; 46: 1244 - 1249.

    Article  Google Scholar 

  15. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mgt+ of NMDA responses in spinal cord neurones. Nature 1984; 309: 261 - 263.

    Article  PubMed  CAS  Google Scholar 

  16. Hansen AJ. Effects of anoxia on ion distribution in the brain. Physiol Rev 1985; 65: 101 - 148.

    PubMed  CAS  Google Scholar 

  17. Fujiwara N, Higashi H, Shimoji K, et al. Effects of hypoxia on hippocampal neurons in vitro. J Physiol 1987; 384: 131 - 151.

    PubMed  CAS  Google Scholar 

  18. Riepe M, Hari N, Ludolph AC, et al. Inhibition of energy metabolism by 3-nitropropionic acid activates ATP-sensitive potassium channels. Brain Res 1992; 586: 61 - 66.

    Article  PubMed  CAS  Google Scholar 

  19. Politi DM, Rogawski MA. Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by cromakalim and energy depleting conditions. J Pharmacol Exp Ther 1991; 40: 308 - 315.

    CAS  Google Scholar 

  20. Ashcroft FM. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci 1988; 11: 97 - 118.

    Article  PubMed  CAS  Google Scholar 

  21. Findlay I. The effects of magnesium upon adenosine triphosphate-sensitive potassium channels in a rat insulin-secreting cell line. J Physiol 1987; 391: 611 - 629.

    PubMed  CAS  Google Scholar 

  22. Findlay I. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther 1992; 262: 71 - 79.

    PubMed  CAS  Google Scholar 

  23. Aguilar-Bryan L, Clement JP, Gonzalez G, et al. Toward understanding the assembly and structure of KATP channels. Physiol Rev 1998; 78: 227 - 245.

    PubMed  CAS  Google Scholar 

  24. Novelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451: 205 - 212.

    Article  PubMed  CAS  Google Scholar 

  25. Henneberry RC, Novelli A, Cox JA, et al. Neurotoxicity at the N-methyl-Daspartate receptor in energy compromised neurons. An hypothesis for cell ceath in aging and disease. Ann NY Acad Sci 1989; 568: 225 - 233.

    Article  PubMed  CAS  Google Scholar 

  26. MacDonald JF, Mody I, Salter MW. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurons in culture. J Physiol 1989;414 :17-34.

    Google Scholar 

  27. Mody I, Salter MW, MacDonald JF. Requirement of the NMDA receptor/ channel for intracellular high-energy phosphates and the extent of intra-neuronal calcium buffering in cultured mouse hippocampal neruons. Neurosci Lett 1988; 93: 73 - 78.

    Article  PubMed  CAS  Google Scholar 

  28. Ozawa S, Iino M, Tsusuki K. Suppression by extracellular K+ of N-methyl-Daspartate responses in cultured rat hippocampal neurons. J Neurophysiol 1990; 64: 1361 - 1367.

    PubMed  CAS  Google Scholar 

  29. Yoneda Y, Ogita K. Inhibitory modulation by sodium ions of the N-methylD-aspartate recognition site in brain synpatic membranes. J Neurochem 1991; 57: 2036 - 2046.

    Article  PubMed  CAS  Google Scholar 

  30. Riepe MW, Hori N, Ludolph AC, et al. Failure of neuronal ion exchange, not potentiated excitation, causes excitotoxicity after inhibition of oxidative phosphorylation. Neuroscience 1995; 64: 91 - 97.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson SM, Prince DA. Activation of the electrogenic sodium pump in hippocampal CAI neurons following glutamate-induced depolarization. J Neurophysiol 1986; 56: 507 - 522.

    PubMed  CAS  Google Scholar 

  32. Lipton P, Lobner D. Mechanisms of intracellular calcium accumulation in the CA1 region of rat hippocampus during anoxia in vitro. Stroke 1990;21:I1160-III64.

    Google Scholar 

  33. Barcenas-Ruiz L, Beuckelmann DJ, Wier WG. Sodium-calcium exchange in heart: membrane currents and changes in Cat+i. Science 1987; 238: 1720 - 1722.

    Article  PubMed  CAS  Google Scholar 

  34. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke 1998; 29: 705 - 718.

    Article  PubMed  CAS  Google Scholar 

  35. Chen J, Nagayama T, Jin K, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18: 4914 - 4928.

    PubMed  CAS  Google Scholar 

  36. Kampfl A, Posmantur RM, Zhao X, et al. Mechanisms of calpain proteolysis following traumatic brain injury: a review and update. J Neurotrauma 1997; 14: 121 - 134.

    Article  PubMed  CAS  Google Scholar 

  37. Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc. Brain Metab. Rev. 1989; 1: 165 - 211.

    CAS  Google Scholar 

  38. Tong L, Toliver KT, Taglialatela G, et al. Signal transduction in neuronal death. J Neurochem 1998; 71: 447 - 459.

    Article  PubMed  CAS  Google Scholar 

  39. Furukawa K, Mattson MP. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainateinduced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 1998; 70: 1876 - 1886.

    Article  PubMed  CAS  Google Scholar 

  40. Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993; 268: 18532 - 18541.

    PubMed  CAS  Google Scholar 

  41. Dietrich WD. Morphological manifestations of reperfusion injury in brain. Ann NY Acad Sci 1994; 723: 15 - 24.

    Article  PubMed  CAS  Google Scholar 

  42. Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996; 27: 1124 - 1129.

    Article  PubMed  CAS  Google Scholar 

  43. McGeer EG, Zhu SG. Lamotrigine protects against kainate but not ibotenate lesions in rat striatum. Neurosci Lett 1990; 112: 348 - 351.

    Article  PubMed  CAS  Google Scholar 

  44. Jones-Humble SA, Morgan PF, Cooper BR. The novel anticonvulsant lamotrigine prevents dopamine depletion in C57 black mice in the MPTP animal model of Parkinson's disease. Life Sci 1994; 54: 245 - 252.

    Article  PubMed  CAS  Google Scholar 

  45. Kawaguchi K, Graham SH. Neuroprotective effects of the glutamate release inhibitor 619C89 in temporary middle cerebral artery occlusion. Brain Res 1997; 749: 131 - 134.

    Article  PubMed  CAS  Google Scholar 

  46. Gurney ME, Fleck TJ, Himes CS, et al. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 1998; 50: 62 - 66.

    Article  PubMed  CAS  Google Scholar 

  47. Lacomblez L, Bensimon G, Leigh PN, et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996; 347: 1425 - 1431.

    PubMed  CAS  Google Scholar 

  48. Villa RF, Gorini A. Pharmacology of lazaroids and brain energy metabolism: a review. Pharmacol Rev 1997; 49: 99 - 136.

    PubMed  CAS  Google Scholar 

  49. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, et al. Superior neuro-protective efficacy of a novel antioxidant (U-101033E) with improved blood-brain barrier permeability in focal cerebral ischemia. Stroke 1997; 28: 2018 - 2024.

    Article  PubMed  CAS  Google Scholar 

  50. Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998; 18: 687 - 697.

    PubMed  CAS  Google Scholar 

  51. van der Worp HB, Bar PR, Kappelle LJ, et al. Dietary vitamin E levels affect outcome of permanent focal cerebral ischemia in rats. Stroke 1998; 29: 1002 - 1005.

    CAS  Google Scholar 

  52. Hefti F. Pharmacology of neurotrophic factors. Annu Rev Pharmacol Toxicol 1997; 37: 239 - 267.

    Article  PubMed  CAS  Google Scholar 

  53. Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 1991; 7: 1031 - 1041.

    Article  PubMed  CAS  Google Scholar 

  54. Miyazawa T, Matsumoto K, Ohmichi H, et al. Protection of hippocampal neurons from ischemia-induced delayed neuronal death by hepatocyte growth factor: a novel neurotrophic factor. J Cereb Blood Flow Metab 1998; 18: 345 - 348.

    Article  PubMed  CAS  Google Scholar 

  55. Kitagawa H, Hayashi T, Mitsumoto Y, et al. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 1998; 29: 1417 - 1422.

    Article  PubMed  CAS  Google Scholar 

  56. Siesjo BK. Cell damage in the brain: a speculative synthesis. Acta Psychiatr Scand Suppl 1984; 313: 57 - 91.

    Article  PubMed  CAS  Google Scholar 

  57. Mohamed AA, Gotoh O, Graham DI, et al. Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 1985; 18: 705 - 711.

    Article  PubMed  CAS  Google Scholar 

  58. Pringle AK, Benham CD, Sim L, et al. Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures. Stroke 1996; 27: 2124 - 2130.

    Article  PubMed  CAS  Google Scholar 

  59. Markgraf CG, Velayo NL, Johnson MP, et al. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 1998; 29: 152 - 158.

    Article  PubMed  CAS  Google Scholar 

  60. Endres M, Namura S, Shimizu SM, et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 1998; 18: 238 - 247.

    Article  PubMed  CAS  Google Scholar 

  61. Miller LP, Hsu C. Therapeutic potential for adenosine receptor activation in ischemic brain injury. J Neurotrauma 1992; 9 (Suppl 2): 563 - 577.

    Google Scholar 

  62. Li H, Henry JL. Adenosine-induced hyperpolarization is depressed by glibenclamide in rat CA1 neurones. NeuroReport 1992; 3: 1113 - 1116.

    Article  PubMed  CAS  Google Scholar 

  63. Abele AE, Miller RJ. Potassium channel activators abolish excitotoxicity in cultured hippocampal pyramidal neurons. Neurosci Lett 1990; 115: 195 - 200.

    Article  PubMed  CAS  Google Scholar 

  64. Wind T, Prehn JH, Peruche B, et al. Activation of ATP-sensitive potassium channels decreases neuronal injury caused by chemical hypoxia. Brain Res 1997; 751: 295 - 299.

    Article  PubMed  CAS  Google Scholar 

  65. Heurteaux C, Bertaina V, Widmann C, et al. K+ channel openers prevent global ischemia-induced expression of c fos, c jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci USA 1993; 90: 9431 - 9435.

    Article  PubMed  CAS  Google Scholar 

  66. Simpson JR, Isacson O. Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum. Exp Neurol 1993; 121: 57 - 64.

    Article  PubMed  CAS  Google Scholar 

  67. Brouillet E, Jenkins BG, Hyman BT, et al. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 1993; 60: 356 - 359.

    Article  PubMed  CAS  Google Scholar 

  68. Borlongan CV, Koutouzis TK, Freeman TB, et al. Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Res 1995; 697: 254 - 257.

    Article  PubMed  CAS  Google Scholar 

  69. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124 - 1136.

    Article  PubMed  CAS  Google Scholar 

  70. Kitagawa K, Matsumoto M, Tagaya M, et al. Ischemic tolerance' phenomenon found in the brain. Brain Res 1990; 528: 21 - 24.

    Article  PubMed  CAS  Google Scholar 

  71. Murry CE, Richard VJ, Reimer KA, et al. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 1990; 66: 913 - 931.

    Article  PubMed  CAS  Google Scholar 

  72. Aoki M, Abe K, Kawagoe J, et al. The preconditioned hippocampus accelerates HSP70 heat shock gene expression following transient ischemia in the gerbil. Neurosci Lett 1993; 155: 7 - 10.

    Article  PubMed  CAS  Google Scholar 

  73. Schurr A, Reid KH, Tseng MT, et al. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 1986; 374: 244 - 248.

    Article  PubMed  CAS  Google Scholar 

  74. Lutz PL. Mechanisms for anoxic survival in the vertebrate brain. Annu Rev Physiol 1992; 54: 601 - 618.

    Article  PubMed  CAS  Google Scholar 

  75. Kato H, Kogure K, Nakano S. Neuronal damage following repeated brief ischemia in the gerbil. Brain Res 1988; 479: 366 - 370.

    Article  Google Scholar 

  76. Kato H, Liu Y, Araki T, et al. Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 1991; 553: 238 - 242.

    Article  PubMed  CAS  Google Scholar 

  77. Kato H, Araki T, Kogure K. Role of the excitotoxic mechanism in the development of neuronal damage following repeated brief cerebral ischemia in the gerbil: protective effects of MK-801 and pentobarbital. Brain Res 1990; 516: 175 - 179.

    Article  PubMed  CAS  Google Scholar 

  78. Tomida S, Nowak TSJ, Vass K, et al. Experimental model for repetitive ischemic attacks in the gerbil: the cumulative effect of repeated ischemic insults. J Cerebr Blood Flow Metab 1987; 7: 773 - 782.

    Article  CAS  Google Scholar 

  79. Li Y, Kloner RAJ. Cardioprotective effects of ischemic preconditioning can be recaptured after they are lost. J Am Coll Cardiol 1994; 23: 470 - 474.

    Article  PubMed  CAS  Google Scholar 

  80. Alston TA, Mela N, Bright HJ. 3-nitropropionate, the toxic substance of indigofera, is a suicide inhibitor of succinate dehydrogenase. Proc Natl Acad Sci USA 1977; 74: 3767 - 3771.

    Article  PubMed  CAS  Google Scholar 

  81. Ludolph AC, Seelig M, Ludolph A, et al. 3-Nitropropionic acid decreases cellular energy levels and causes neuronal degeneration in cortical explants. Neurodegeneration 1992; 1: 155 - 161.

    Google Scholar 

  82. Riepe MW, Esclaire F, Kasischke K, et al. Increased hypoxic and ischemic tolerance by chemical inhibition of oxidative phosphorylation-`chemical preconditioning.' J Cerebr Blood Flow Metab 1997; 17: 257 - 264.

    CAS  Google Scholar 

  83. Chen J, Simon R. Ischemic tolerance in the brain. Neurology 1997; 48: 306 - 311.

    Article  PubMed  CAS  Google Scholar 

  84. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine Al receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 1995; 92: 4666 - 4670.

    Article  PubMed  CAS  Google Scholar 

  85. Riepe MW, Kasischke K, Gericke CA, et al. Increase of hypoxic tolerance in rat hippocampal slices following 3-nitropropionic acid is not mediated by endogenous nerve growth factor. Neurosci Lett 1996; 211: 9 - 12.

    Article  PubMed  CAS  Google Scholar 

  86. Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa R. Effect of intermittent mild hypoxia and drug treatment on synaptosomal nonmitochondrial ATPase activities. J Neurosci Res 1993; 34: 654 - 663.

    Article  PubMed  CAS  Google Scholar 

  87. Dagani F, Marzatico F, Curti D, et al. Effect of prolonged and intermittent hypoxia on some cerebral enzymatic activities related to energy transduction. J Cereb Blood Flow Metab 1984; 4: 615 - 624.

    Article  PubMed  CAS  Google Scholar 

  88. Kirino T, Tsujita Y, Tamura A. Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 1991; 11: 299 - 307.

    Article  PubMed  CAS  Google Scholar 

  89. Liu Y, Kato H, Nakata N, et al. Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 1993; 56: 921 - 927.

    Article  PubMed  CAS  Google Scholar 

  90. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992; 70: 223 - 233.

    Article  PubMed  CAS  Google Scholar 

  91. Riepe M, Niemi WN, Megow D, et al. Mitochondrial oxidation in rat hippocampus can be preconditioned by selective chemical inhibition of succinic dehydrogenase. Exp Neurol 1996; 138: 15 - 21.

    Article  PubMed  CAS  Google Scholar 

  92. Kida M, Fujiwara H, Ishida M, et al. Ischemic preconditioning preserves creatine phosphate and intracellular pH. Circulation 1991; 84: 2495 - 2503.

    Article  PubMed  CAS  Google Scholar 

  93. Van Winkle DM, Chien GL, Wolff RA, et al. Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. Am J Physiol 1994; 266: H829 - H839.

    PubMed  CAS  Google Scholar 

  94. Kato H, Araki T, Murase K, et al. Induction of tolerance to ischemia: alterations in second-messenger systems in the gerbil hippocampus. Brain Res Bull 1992; 29: 559 - 565.

    Article  PubMed  CAS  Google Scholar 

  95. Liu Y, Kato H, Nakata N, et al.. Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res 1992; 586: 121 - 124.

    Article  PubMed  CAS  Google Scholar 

  96. Yoneda Y, Kuramoto N, Azuma Y, et al. Possible involvement of activator protein-1 DNA binding in mechanisms underlying ischemic tolerance in the CAl subfield of gerbil hippocampus. Neuroscience 1998; 86: 79 - 97.

    Article  PubMed  CAS  Google Scholar 

  97. Deutsch N, Weiss JN. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes. J Physiol 1993; 465: 163 - 179.

    PubMed  CAS  Google Scholar 

  98. Mourre C, Smith M, Siesjo B, et al. Brain ischemia alters the density of binding sites for glibenclamide, a specific blocker of ATP-sensitive-channels. Brain Res 1990; 526: 147 - 152.

    Article  PubMed  CAS  Google Scholar 

  99. Riepe MW, Schmalzigaug K, Fink F, et al. NADH in the pyramidal cell layer of hippocampal regions CA1 and CA3 upon selective inhibition and uncoupling of oxidative phosphorylation. Brain Res 1996; 710: 21 - 27.

    Article  PubMed  CAS  Google Scholar 

  100. Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 1998; 273:12, 753-12, 757.

    Google Scholar 

  101. Kasischke K, Ludolph AC, Riepe MW. NMDA-antagonists reverse increased hypoxic tolerance by preceding chemical hypoxia. Neurosci Lett 1996; 214: 175 - 178.

    Article  PubMed  CAS  Google Scholar 

  102. Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994; 90: 700 - 705.

    Article  PubMed  CAS  Google Scholar 

  103. Schmid-Antomarchi H, De Weille J, Fosset M, et al. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 1987; 262: 15840 - 15844.

    PubMed  CAS  Google Scholar 

  104. Ottani F, Galvani M, Ferrini D, et al. Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 1995; 91: 291 - 297.

    Article  PubMed  CAS  Google Scholar 

  105. Lutwak-Mann C. The effect of salicylate and cinchophen on enzymes and metabolic processes. Biochem J 1942; 36: 706 - 728.

    PubMed  CAS  Google Scholar 

  106. Adams SS, Cobb R. A possible basis for the anti-inflammatory activity of salicylates and other non-hormonal anti-rheumatic drugs. Nature 1958; 181: 773 - 774.

    Article  PubMed  CAS  Google Scholar 

  107. Martens ME, Lee CP. Reye's syndrome: salicylates and mitochondrial functions. Biochem Pharmacol 1984; 33: 2869 - 2876.

    Article  PubMed  CAS  Google Scholar 

  108. Chen T, Kato H, Liu XH, et al. Ischemic tolerance can be induced repeatedly in the gerbil hippocampal neurons. Neurosci Lett 1994; 177: 159 - 161.

    Article  PubMed  CAS  Google Scholar 

  109. Riepe MW, Kasischke K, Raupach A. Acetylsalicylate increases tolerance against hypoxic and chemical hypoxia. Stroke 1997; 28: 2006 - 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this chapter

Cite this chapter

Riepe, M.W. (2000). Neuroprotective Strategies Against Cellular Hypoxia. In: Sanberg, P.R., Nishino, H., Borlongan, C.V. (eds) Mitochondrial Inhibitors and Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-692-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-692-8_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9821-9

  • Online ISBN: 978-1-59259-692-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics