Skip to main content

Effects of Brain Mitochondrial Metabolism, Aging, and Caloric Restriction on Membrane Lipids and Proteins

An Electron Paramagnetic Resonance Investigation

  • Chapter
Mitochondrial Inhibitors and Neurodegenerative Disorders

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 214 Accesses

Abstract

Recent evidence has shown that an inevitable consequence of living in an aerobic environment is the continuous production of oxygen free radicals. The major organelle responsible for this generation of endogenous free radicals is the mitochondrion. Apart from its nurturing role including ATP synthesis in a cell, the mitochondrion is accountable for the most oxidants produced by cells during normal aerobic respiration. This makes intuitive sense considering that mitochondria consume greater than 80% of the available oxygen in the cellular milieu. The free radical theory of aging, as proposed by Harman (1), postulates that oxygen-derived free radicals result in a cumulative damage to critical cellular components, eventually leading to many age-related disorders. An increase in the metabolic rate could lead to a substantial production of endogenous oxidants, such as superoxide (O2 −·), hydrogen peroxide (H2O2), hydroxyl radical (OH·), as by-products of normal oxygen metabolism in the mitochondria. Studies corroborating this suggestion have demonstrated that consequent damage in terms of the level of oxidative DNA damage is roughly related to metabolic rate in a number of mammalian species (1–3). Apart from normal brain aging, it is hypothesized that there is a free radical mediated deterioration of neuronal membrane components leading to age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinsonism, amyotrophic lateral sclerosis, and Huntington’s disease. Harman was the first to propose that the mitochondrion was involved in the aging process (4). The dysfunctional mitochondrion is a cellular organelle that also has been implicated in several neurodegenerative disease states (5). Evidence suggests that biomolecular components of the mitochondria, such as mitochondrial DNA (mtDNA), electron transport chain enzymes (e.g., cytochrome oxidase), and lipid components (e.g., cardiolipin) undergo possible free radical mediated deterioration, resulting in a compromise of the associated bioenergetic processes (4–5). The tightly coupled process of oxidative phosphorylation during mitochondrial respiration utilizes the electron transport chain to accomplish a four-electron reduction of O2 to water with a simultaneous production of ATP through phosphorylation of ADP. A temporary or sustained loss of mitochondrial function and ATP production has been implicated in etiology of several neurodegenerative disorders (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perez-Campo R, Lopez-Tones M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 1998; 168: 149–158.

    Article  PubMed  CAS  Google Scholar 

  2. Ku HH, Sohal RS. Comparison of mitochondrial pro-oxidant generation and antioxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 1993; 72: 67–76.

    Article  PubMed  CAS  Google Scholar 

  3. Ku HH, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radical Biol Med 1993; 15: 621–627.

    Article  CAS  Google Scholar 

  4. Harman D. The biological clock: the mitochondria? J Am Geriatr Soc 1972; 20: 145–147.

    PubMed  CAS  Google Scholar 

  5. Browne SE, Beal MF. Oxidative damage and mitochondrial function in neurodegenerative diseases. Biochem Soc Trans 1994; 22: 1002–1006.

    PubMed  CAS  Google Scholar 

  6. Beal MF. Energy, oxidative damage, Alzheimer’s disease: clues to the underlying puzzle. Neurobiol Aging 1994; 15: S171–174.

    Article  PubMed  Google Scholar 

  7. Sohal RS, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radical Biol Med 1994; 16: 621–626.

    Article  CAS  Google Scholar 

  8. Hiramatsu, M, Mori A. Exhaustive exercise affects fluidity and alpha-tocopherol levels in brain synaptosomal membranes of normal and vitamin E supplemented rats. Neurochem Res 1993; 18: 313–316.

    Article  CAS  Google Scholar 

  9. Partridge RS, Monroe SM, Parks JK, et al. Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles. Arch Biochem Biophys 1994; 310: 210–217.

    Article  PubMed  CAS  Google Scholar 

  10. Gabbita SP, Butterfield DA, Hensley K, et al. Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radical Biol Med 1997; 23: 191–201.

    Article  CAS  Google Scholar 

  11. Gabbita SP, Subramaniam R, Allouch F, et al. Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation. Biochim Biophys Acta 1998; 1372: 163–173.

    Article  PubMed  CAS  Google Scholar 

  12. Harman D. The aging process. Proc Natl Acad Sci USA 1981; 78: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  13. Harman D. Free radical theory of aging. Mutat Res 1992; 275: 257–266.

    Article  PubMed  CAS  Google Scholar 

  14. Halllwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59: 1609–1623.

    Article  Google Scholar 

  15. Kehrer JP. Free radicals, mediators of tissue injury and disease. Crit Rev Toxicol 1993; 23: 21–48.

    Article  PubMed  CAS  Google Scholar 

  16. Stadtman ER. Protein oxidation and aging. Science1992; 257: 1220–1224.

    Google Scholar 

  17. Butterfield DA, Howard BJ, Yatin S, et al. Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alphaphenyinitrone (PBN). Proc Natl Acad Sci USA 1997; 94: 674–678.

    Article  PubMed  CAS  Google Scholar 

  18. Turturro A, Blank K, Murasko D, et al. Mechanisms of caloric restriction affecting aging and disease. Ann NY Acad Sci 1994; 719: 159–170

    Article  PubMed  CAS  Google Scholar 

  19. Sohal RS, Agarwal S, Candas M, et al. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BU6 mice. Mech Ageing Dev 1994; 76: 215–224.

    Article  PubMed  CAS  Google Scholar 

  20. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–62.

    Article  PubMed  CAS  Google Scholar 

  21. Sohal RS, Ku HH, Agarwal S, et al. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74: 121–133.

    Article  PubMed  CAS  Google Scholar 

  22. Wendruch R. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol 1996; 24: 642–745.

    Article  Google Scholar 

  23. Yu BP, Suescun EA, Yang SY. Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: modulation by dietary restriction. Mech Ageing Dev1992; 65: 17–33.

    Google Scholar 

  24. Butterfield DA. Spin labeling in disease. In: Berliner LJ, Reuben J, eds. Biological Magnetic Resonance, Vol. 4. Plenum Press, New York, 1982, pp. 1–78.

    Google Scholar 

  25. Butterfield DA. Spectroscopic methods in degenerative neurological diseases. Crit Rev Neurobiol 1985; 2: 169–240.

    Google Scholar 

  26. Hubbell WL, McConnell HM. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc 1971; 93: 314–323.

    Article  PubMed  CAS  Google Scholar 

  27. Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease. Proc Natl Acad Sci USA 1994; 91: 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  28. Hensley K, Carney JM, Hall N, et al. Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure. Free Radical Biol Med 1993; 17: 321–331.

    Article  Google Scholar 

  29. Butterfield DA, Carney JM, Umhauer S., et al. Changes in membrane cytoskeletal protein-protein interactions upon interactions of potential Alzheimer’s disease therapeutic agents. In: Corain B, et al., eds. Advances in Clinical and Basic Research. John Wiley, New York, 1993.

    Google Scholar 

  30. Butterfield DA, Rangachari A. Membrane altering effects of velnacrine and N-methylacridinium: relevance to tacrine and Alzheimer’s disease. Biochem Biophys Res Commun 1993; 185: 596–603.

    Article  Google Scholar 

  31. Howard BJ, Yatin S, Hensley K, et al. Prevention of hyperoxia-induced alterations in synaptosomal membrane-associated proteins by N-tert-butyl-alphaphenyinitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperdidine-1-oxyl (Tempol). J Neurochem 1996; 67: 2045–2050.

    Article  PubMed  CAS  Google Scholar 

  32. Hall NC, Carney JM, Cheng MS, et al. Ischemia/reperfusion-induced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience 1995; 64: 81–89.

    Article  PubMed  CAS  Google Scholar 

  33. Butterfield DA, Hensley K, Harris M, et al. Beta-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 1994; 200: 710–715.

    Article  PubMed  CAS  Google Scholar 

  34. Koppal T, Subramaniam R, Drake J, et al. Vitamin E protects against amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res 1998; 786: 270–273.

    CAS  Google Scholar 

  35. Belkin S, Mehlhorn RJ, Hideg K, et al. Reduction and destruction rates of nitroxide spin probes. Arch Biochem Biophys 1987; 256: 232–243.

    Article  PubMed  CAS  Google Scholar 

  36. Quintanilha AT, Packer L. Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc Natl Acad Sci USA 1977; 74: 570–574.

    Article  PubMed  CAS  Google Scholar 

  37. Samuni A, Krishna MC, Mitchell JB, et al. Superoxide reaction with nitroxides. Free Radical Res Commun 1990; 9: 241–246.

    Article  CAS  Google Scholar 

  38. Voest EE, van Faassen E, Marx JMM. An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO. Free Radical Biol Med 1993; 15: 589–595.

    Article  CAS  Google Scholar 

  39. Voest EE., Van Faassen E, Neijt JP, et al. Doxorubicin-mediated free radical generation in intact human tumor cells enhances nitroxide electron paramagnetic resonance absorption intensity decay. Magnet Reson Med 1993; 30: 283–288.

    Article  CAS  Google Scholar 

  40. Chen K, Swartz HM. The products of the reduction of doxylstearates in cells are hydroxylamines as shown by oxidation by 15N-perdeuterated Tempone. Biochim Biophys Acta 1989; 992: 131–133.

    Article  PubMed  CAS  Google Scholar 

  41. Subramaniam R, Roediger F, Jordan B, et al. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem 1997; 69: 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  42. Esterbauer H, Schaur, RJ, Zollner H. Chemistry and biology of 4-hydroxy nonenal, malondialdehyde and related aldehydes. Free Radical Biol Med 1991; 11: 81–128.

    Article  CAS  Google Scholar 

  43. Chen JJ, Bertrand H, Yu BP. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radical Biol Chem 1995; 19: 583–590.

    Article  CAS  Google Scholar 

  44. Hensley K, Carney JM, Subramaniam R et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65: 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  45. Smith CD, Carney JM, Starke-Reed PE, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 1991;88:10, 540–10, 543.

    CAS  Google Scholar 

  46. Laganiere S, Yu BP. Anti-lipid peroxidation action of food restriction. Biochim Biophys Acta 1987; 779: 89–137.

    Google Scholar 

  47. Choi JH, Yu BP. Brain synaptosomal aging: free radicals and membrane fluidity. Free Radical Biol Med 1995; 18: 133–139.

    Article  CAS  Google Scholar 

  48. Aksenova MN, Aksenov MY, Carney JM, et al. Protein oxidation and enzyme activity decline in old brown norway rats are reduced by dietary restriction. Mech Ageing Develop 1998; 100: 157–168.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gabbita, S.P., Carney, J.M., Butterfield, A. (2000). Effects of Brain Mitochondrial Metabolism, Aging, and Caloric Restriction on Membrane Lipids and Proteins. In: Sanberg, P.R., Nishino, H., Borlongan, C.V. (eds) Mitochondrial Inhibitors and Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-692-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-692-8_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9821-9

  • Online ISBN: 978-1-59259-692-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics