Skip to main content

The 3-Nitropropionic Acid Model of Huntington’s Disease

Do Alterations in the Expression of Metabolic mRNAs Predict the Development of Striatal Pathology?

  • Chapter
Mitochondrial Inhibitors and Neurodegenerative Disorders

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 213 Accesses

Abstract

Metabolic compromise has been found to precede both neuronal loss and the appearance of motoric and cognitive deficits in Huntington’s disease (HD) patients. Studies using both magnetic resonance imaging (MRI) and positron emission tomography (PET) to assess the metabolic status of the central nervous system (CNS) have demonstrated anatomically restricted deficits in energy metabolism in the caudate putamen and frontal cortex of both confirmed HD patients and also those genetically at risk of developing the disease (1–6). These findings have been confirmed biochemically in regional assessments of oxidative damage and metabolic dysfunctions in the HD brain (7). Taken together, these findings strongly suggest that a preclinical determinant of HD is the specific inhibition of energy metabolism in those brain regions most affected during the course of the pathology. Precisely how metabolic inhibition leads to neurodegeneration in the HD brain is currently not fully understood. However, analysis of the consequences of metabolic dysfunction in the CNS has opened avenues for researchers interested in establishing the pathological basis for not only Huntington’ s disease but also Alzheimer’s and Parkinson’s diseases and schizophrenia (8,9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maziotta JC, Phelps ME, Pahl JJ, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987; 316: 357–362.

    Article  Google Scholar 

  2. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter P. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computerised tomography. Ann Neurol 1982; 12: 425–434.

    Article  PubMed  CAS  Google Scholar 

  3. Sax DS, Powser R, Kim A, Bhatia R, Cupples LA, Myers RH. Evidence of cortical metabolic dysfunction in early Huntington’s disease by single-photonemission computed tomography. Mov Disord 1996; 11: 671–677.

    Article  PubMed  CAS  Google Scholar 

  4. Martin WRW, Clark C, Ammann W, Stoessl AJ, Shytbel W, Hayden MR. Cortical glucose metabolism in Huntington’s disease. Neurology 1992; 42: 223–229.

    Article  PubMed  CAS  Google Scholar 

  5. Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’ s disease. Brain 1996; 119: 2085–2095.

    Article  PubMed  Google Scholar 

  6. Harms L, Meierkord H, Timm G, Pfieffer L, Ludolph AC. Decreased N-acetylaspartate/choline ratio in the frontal lobe of patients with Huntington’s disease; a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry 1997; 62: 27–30.

    Article  PubMed  CAS  Google Scholar 

  7. Browne SE, Bowling AC, MacGarvery U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease—selective vulnerability of the basal ganglia. Ann Neurol 1997; 41: 646–653.

    Article  PubMed  CAS  Google Scholar 

  8. Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative disease? Trends Neurosci 1993; 16: 125–131.

    Article  PubMed  CAS  Google Scholar 

  9. Coyle JT, Puttfarcken P. Oxidative stress glutamate and neurodegenerative disorders. Science 1993; 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  10. Alston TA, Mela L, Bright HF. 3-Nitropropionic acid the toxic substance of Indigofera is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 1977; 74: 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  11. Coles CJ, Edmondson DE and Singer TP. Inactivation of succinate dehydrogenase by 3-nitropropionic acid. J Biol Chem 1979; 254: 5161–5167.

    PubMed  CAS  Google Scholar 

  12. Webb JL. Enzyme and Metabolic Inhibitors, 2nd edit. Academic Press, New York, 1966.

    Google Scholar 

  13. Henshaw R, Jenkins BG, Schulz JB, et al. Malonate produces striatal lesions by indirect NMDA-receptor activation. Brain Res 1994; 647: 161–166

    Article  PubMed  CAS  Google Scholar 

  14. Beal MF, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman BT. Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 1993; 61: 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  15. Greene JG, Greenamyre JT. Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J Neurochem 1995; 64: 430–436.

    Article  PubMed  CAS  Google Scholar 

  16. Richfield EK, Maguire-Zeiss KA, Vonkemanne HE, Voorn P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 1995; 38: 852–860.

    Article  PubMed  CAS  Google Scholar 

  17. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–983.

    Article  Google Scholar 

  18. Albin RL and Tagle DA. Genetics and molecular biology of Huntington’s disease. Trends Neurosci 1995; 18: 11–14.

    Article  PubMed  CAS  Google Scholar 

  19. Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat huntington’s disease gene in brain and nonneural tissues. Nat Genet 1993; 5: 259–265.

    Article  PubMed  CAS  Google Scholar 

  20. diFiglia M, Sapp E, Chase K, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14: 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  21. Sharpe AH, Loev SJ, Schilling G, et al. Widespread expression of Huntington’s disease gene (IT15) product. Neuron 1995; 14: 1065–1074.

    Article  Google Scholar 

  22. Wood JD, MacMillan JC, Harper PS, Lowenstein PR, Jones AL. Partial characterisation of murine huntingtin and apparent variations in the subcellular localisation of Huntingtin in human mouse and rat brain. Hum Mol Genet 1996; 5: 481–487.

    Article  PubMed  CAS  Google Scholar 

  23. Bhide PG, Day M, Sapp E, et al. Expression of normal and mutant huntingtin in the developing brain. J Neurosci 1996; 16: 5523–5535.

    PubMed  CAS  Google Scholar 

  24. Vonsattel J-P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP. Neuropathological classification of Huntington’s disease. Neuropathol Exp Neurol 1985; 44: 559–577.

    Article  CAS  Google Scholar 

  25. Hedreen JC, Folstein SE. Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 1995; 54: 105–120.

    Article  PubMed  CAS  Google Scholar 

  26. Kosinski CM, Cha J-H, Young AB, et al. Huntingtin immunoreactivity in the rat neostriatum: differential accumulation in projection and interneurons. Exp Neurol 1997; 144: 239–247.

    Article  PubMed  CAS  Google Scholar 

  27. Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characteristion of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993; 13: 4181–4192.

    PubMed  CAS  Google Scholar 

  28. Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995; 92: 7105–7109.

    Article  PubMed  CAS  Google Scholar 

  29. Borlongan CV, Koutouzis TK, Freeman TB, Cahill DW, Sanberg PR. Behavioural pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motorie symptoms of Huntington’s disease. Brain Res 1995; 697: 254–257.

    Article  PubMed  CAS  Google Scholar 

  30. Brouillet E, Jenkins BG, Hyman BT, et al. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 1993; 60: 356–359.

    Article  PubMed  CAS  Google Scholar 

  31. Simpson JR, Isacson O. Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum. Exp Neurol 1993; 121: 57–64.

    Article  PubMed  CAS  Google Scholar 

  32. Zeevalk GD, Derr-Yellin E, Nicklas WJ. NMDA receptor involvement in toxicity to dopamine neurons in vitro caused by the succinate dehydrogenase inhibitor 3-nitropropionic acid. J Neurochem 1995; 64: 455–458.

    Article  PubMed  CAS  Google Scholar 

  33. Bowyer JF, Clausing P, Schmued L, et al. Paternally administered 3-nitropropionic acid and amphetamine can combine to produce damage to terminals and cell bodies in the striatum. Brain Res 1996; 712: 221–229.

    Article  PubMed  CAS  Google Scholar 

  34. Nishino H, Shimano Y, Kumazaki M, Sakurai T. Chronically administered 3-nitropropionic acid induces striatal lesions attributed to dysfunction of the blood—brain barrier. Neurosci Lett 1995; 186: 161–164.

    Article  PubMed  CAS  Google Scholar 

  35. Nishino H, Kumazaki M, Fukada A, et al. Acute 3-nitropropionic acid intoxication induces astrocytic cell death and dysfunction of the blood—brain barrier: involvement of dopamine toxicity. Neurosci Res 1997; 27: 343–355.

    Article  PubMed  CAS  Google Scholar 

  36. Beal MF, Ferrante RJ, Henshaw R, et al. 3-Nitropropionic acid neurotoxicity is attenuated in copper/zinc superoxide dismutase transgenic mice. J Neurochem 1995; 65: 919–922.

    Article  PubMed  CAS  Google Scholar 

  37. Zeitlin S, Liu J-P, Chapman DL, Papaioannou VE, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995; 11: 155–163.

    Article  PubMed  CAS  Google Scholar 

  38. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 1995; 15: 3774–3787.

    Google Scholar 

  39. Behrens MI, Koh J, Canzoniero LMT, Sensi SL, Csernansky CA, Choi DW. 3-Nitropropionic acid induces apoptosis in cultured striatal and cortical neurons. NeuroReport 1995; 6: 545–548.

    Article  PubMed  CAS  Google Scholar 

  40. Sato S, Gobbel GT, Honkaneimi J, et al. Apoptosis in the striatum of rats following intraperitoneal injection of 3-nitropropionic acid. Brain Res 1997; 745: 343–347.

    Article  PubMed  CAS  Google Scholar 

  41. Pang Z, Geddes JW. Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute necrosis and delayed apoptosis. J Neurosci 1997; 19: 3064–3073.

    Google Scholar 

  42. Palfi S, Ferrante RJ, Brouillet E, et al. Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 1996; 16: 3019–3025.

    PubMed  CAS  Google Scholar 

  43. Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model of Huntington’s disease. Neurosci Biobehav Rev 1997; 21: 289–293.

    Article  PubMed  CAS  Google Scholar 

  44. Sirinathsinghji DJS, Dunnett SB. Imaging gene expression in neural grafts. In: Sharif NA, ed. Molecular Imaging in the Neuroscience: A Practical Approach. IRL Press, Oxford, 1993, pp. 43–68.

    Google Scholar 

  45. Baker DM, Santer RM. Development of a quantitative histochemical method for determination of succinate dehydrogenase activity in autonomic neurons and its application to the study of aging in the autonomic nervous system. J Histochem Cytochem 1990; 38: 525–531.

    Article  PubMed  CAS  Google Scholar 

  46. Goto Y, Amuro N, Okazaki T. Nucleotide sequence of cDNA for rat brain and liver cytochrome c oxidase subunit IV. Nucleic Acids Res 1989; 17: 2851.

    Google Scholar 

  47. Cao J, Revzin A and Ferguson-Miller S. Conversion of a mitochondrial gene for mammalian cytochrome c oxidase subunit II into its universal codon equivalent and expression in vivo and in vitro. Biochemistry 1991; 30: 2642–2650.

    Article  PubMed  CAS  Google Scholar 

  48. Chen W-J, Liem RRKH GenBank Accession Number L27219. 1993.

    Google Scholar 

  49. Lee NH, Weistock KG, Kirkness EF, et al. Comparative expressed-sequencetag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. Proc Natl Acad Sci USA 1995; 92: 8303–8307.

    Article  PubMed  CAS  Google Scholar 

  50. Wullner U, Young AB, Penney JB, Beal MF. 3-Nitropropionic acid toxicity in the striatum. J Neurochem 1994; 63: 1772–1781.

    Article  PubMed  CAS  Google Scholar 

  51. Page KJ, Dunnett SB, and Everitt BJ. 3-Nitropropionic acid-induced changes in the expression of metabolic and astrocytic mRNAs. NeuroReport 1998; 9: 2881–2886.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Page, K.J., Meldrum, A., Dunnett, S.B. (2000). The 3-Nitropropionic Acid Model of Huntington’s Disease. In: Sanberg, P.R., Nishino, H., Borlongan, C.V. (eds) Mitochondrial Inhibitors and Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-692-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-692-8_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9821-9

  • Online ISBN: 978-1-59259-692-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics