DNA Vaccines

  • Michael Bereta
  • Howard L. Kaufman
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Among the most important goals for modern immunologists are finding systemic approaches to curing allergic and autoimmune diseases and developing vaccines that stimulate stronger immune responses against pathogenic organisms and cancer. Vaccines composed of genetic material, either DNA or RNA, promise all the benefits of existing vaccines without the risk of infection. Ideal vaccines should be inexpensive, stable, and easy to manufacture and store. In fact, tremendous progress in genomics and biotechnology have given us hope that construction of such “smart” vaccines will be possible in the near future.


Internal Ribosome Entry Site Transporter Associate With Antigen Processing General Vaccine Immunotherapy Strategy Trans Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Baltimore D. Our genome unveiled. Nature 2001; 409:814–816.PubMedCrossRefGoogle Scholar
  3. 3.
    Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465–1468.PubMedCrossRefGoogle Scholar
  4. 4.
    Nicolau C, La Pape A, Soriano IP, Fargette F, Juhel MF. In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci USA 1983; 80:1068–1072.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu. Receptor-mediated gene delivery and expression in vivo. J Biol Chem 1988; 263:14621–14624.PubMedGoogle Scholar
  6. 6.
    Szybalska EH, Szybalski W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc Nat! Acad Sci USA 1962; 48:2026–2034.CrossRefGoogle Scholar
  7. 7.
    Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992; 356:152–154.PubMedCrossRefGoogle Scholar
  8. 8.
    Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259:1745–1749.PubMedCrossRefGoogle Scholar
  9. 9.
    Prud’homme GJ, Lawson BR, Chang Y, Theofilopoulos AN. Immunotherapeutic gene transfer into muscle. Trends Immunol 2001; 22:149–155.PubMedCrossRefGoogle Scholar
  10. 10.
    Dupuis M, Denis-Mize K, Woo C, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165:2850–2858.PubMedGoogle Scholar
  11. 11.
    Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189:169–178.PubMedCrossRefGoogle Scholar
  12. 12.
    Vitadello M, Schiaffino MV, Picard A, Scarpa M, Schiaffino S. Gene transfer in regenerating muscle. Hum Gene Ther 1994; 5:11–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Davis HL, Whalen RG, Demeneix BA. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 1993; 4:151–159.PubMedCrossRefGoogle Scholar
  14. 14.
    Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nature Rev Immunol 2001; 1:126–134.CrossRefGoogle Scholar
  15. 15.
    Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD, Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2:1122–1128.PubMedCrossRefGoogle Scholar
  16. 16.
    Corr M, von Damm A, Lee DJ, Tighe H. In vivo priming by DNA injection occurs predominantly by antigen transfer. J Immunol 1999; 163:4721–4727.PubMedGoogle Scholar
  17. 17.
    Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Commun 1982; 107:584–587.PubMedCrossRefGoogle Scholar
  18. 18.
    Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088:131–134.PubMedCrossRefGoogle Scholar
  19. 19.
    Rizzuto G, Cappelletti M, Maione D, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96:6417–6422.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston SA, Tang DC. Gene gun transfection of animal cells and genetic immunization. Methods Cell Biol 1994; 43:353–365.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshida A, Nagata T, Uchijima M, Higashi T, Koide Y. Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses. Vaccine 2000; 18:1725–1729.PubMedCrossRefGoogle Scholar
  22. 22.
    Furth PA, Kerr D, Wall R. Gene transfer by jet injection into differentiated tissues of living animals and in organ culture. Mol Biotechnol 1995; 4:121–127.PubMedCrossRefGoogle Scholar
  23. 23.
    Ren S, Li M, Smith JM, DeTolla LJ, Furth PA. Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol 2002; 2:10.PubMedCrossRefGoogle Scholar
  24. 24.
    Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105:1233–1239.PubMedCrossRefGoogle Scholar
  25. 25.
    Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9:102–109.PubMedCrossRefGoogle Scholar
  26. 26.
    Brown MD, Schatzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm 2001; 229:1–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 2000; 97:811–816.PubMedCrossRefGoogle Scholar
  28. 28.
    Denis-Mize KS, Dupuis M, MacKichan ML, et al. Plasmid DNA adsorbed onto cationic micropartidles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 2000; 7: 2105–2112.PubMedCrossRefGoogle Scholar
  29. 29.
    Midoux P, Mendes C, Legrand A, et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res 1993; 21:871–878.PubMedCrossRefGoogle Scholar
  30. 30.
    Fajac I, Briand P, Monsigny M, Midoux P. Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther 1999; 10:395–406.PubMedCrossRefGoogle Scholar
  31. 31.
    Xu Y, Szoka FC, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996; 35:5616–5623.PubMedCrossRefGoogle Scholar
  32. 32.
    Boussif O, Lezoualc’ h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92:7297–7301.PubMedCrossRefGoogle Scholar
  33. 33.
    Roberts PJ. Development, characterization, and subcellular location of DNAse activity in HL-60 cells and monocytes. Blood 1990; 75:976–983.PubMedGoogle Scholar
  34. 34.
    Tseng WC, Haselton FR, Giorgio TD. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim Biophys Acta 1999; 1445:53–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Dean DA, Dean BS, Muller S, Smith LC. Sequence requirements for plasmid nuclear import. Exp Cell Res 1999; 253:713–722.PubMedCrossRefGoogle Scholar
  36. 36.
    Sebestyen MG, Ludtke JJ, Bassik MC, et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 1998; 16:80–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96:91–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Ma H, Zhu J, Maronski M, et al. Non-classical nuclear localization signal peptides for high efficiency lipofection of primary neurons and neuronal cell lines. Neuroscience 2002; 112:1–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Moroianu J. Nuclear import and export pathways. J Cell Biochem 1999; Supp1:76–83.Google Scholar
  40. 40.
    Yoneda Y. How proteins are transported from cytoplasm to the nucleus. J Biochem (Tokyo) 1997; 121:811–817.CrossRefGoogle Scholar
  41. 41.
    Irvine AS, Trinder PK, Laughton DL, et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273–1278.PubMedCrossRefGoogle Scholar
  42. 42.
    Morris MC, Chaloin L, Heitz F, Divita G. Translocating peptides and proteins and their use for gene delivery. Curr Opin Biotechnol 2000; 11:461–466.PubMedCrossRefGoogle Scholar
  43. 43.
    Sosnowski BA, Gonzalez AM, Chandler LA, Buechler YJ, Pierce GF, Baird A. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J Biol Chem 1996; 271:33647–33653.PubMedCrossRefGoogle Scholar
  44. 44.
    He D, Casscells W, Engler DA. Nuclear accumulation of exogenous DNA fragments in viable cells mediated by FGF-2 and DNA release upon cellular injury. Exp Cell Res 2001; 265:31–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Bouche G, Gas N, Prats H, et al. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing GO-G1 transition. Proc Natl Acad Sci USA 1987; 84:6770–6774.PubMedCrossRefGoogle Scholar
  46. 46.
    Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 2000; 67:598–606.PubMedCrossRefGoogle Scholar
  47. 47.
    Brivanlou AH, Darnell JE, Jr. Signal transduction and the control of gene expression. Science 2002; 295:813–818.PubMedCrossRefGoogle Scholar
  48. 48.
    Nelson JA, Gnann JW, Jr, Ghazal P. Regulation and tissue-specific expression of human cytomegalovirus. Curr Top Microbiol Immunol 1990; 154:75–100.PubMedCrossRefGoogle Scholar
  49. 49.
    Baskar JF, Smith PP, Nilaver G, et al. The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol 1996; 70:3207–3214.PubMedGoogle Scholar
  50. 50.
    Baskar JF, Smith PP, Ciment GS, et al. Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J Virol 1996; 70:3215–3226.PubMedGoogle Scholar
  51. 51.
    Allamane S, Ratel D, Jourdes P, Berger F, Benabid AL, Wion D. p53 Status and gene transfer experiments using CMV enhancer/promoter. Biochem Biophys Res Commun 2001; 280:45–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Prosch S, Staak K, Stein J, et al. Stimulation of the human cytomegalovirus JE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology 1995; 208:197–206.PubMedCrossRefGoogle Scholar
  53. 53.
    Prosch S, Heine AK, Volk HD, Kruger DH. CCAAT/enhancer-binding proteins alpha and beta negatively influence the capacity of tumor necrosis factor alpha to up-regulate the human cytomegalovirus IE1/2 enhancer/promoter by nuclear factor kappaB during monocyte differentiation. J Biol Chem 2001; 276:40712–40720.PubMedCrossRefGoogle Scholar
  54. 54.
    Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767–811.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang H, Haasch D, Idler KB, Okasinski GF. Isolation and promoter mapping of the gene encoding murine co-stimulatory factor B7–1. Gene 1996; 183:1–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang H, Haasch D, Patterson B, Dickinson B, Okasinski GF. Expression of CD80 promoter in transgenic mice. Biochim Biophys Acta 2000; 1490:342–347.PubMedCrossRefGoogle Scholar
  57. 57.
    Nettelbeck DM, Jerome V, Muller R. Gene therapy: designer promoters for tumour targeting. Trends Genet 2000; 16:174–181.PubMedCrossRefGoogle Scholar
  58. 58.
    Haviv YS, Curiel DT. Conditional gene targeting for cancer gene therapy. Adv Drug Deliv Rev 2001; 53:135–154.PubMedCrossRefGoogle Scholar
  59. 59.
    Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3:515–520.PubMedCrossRefGoogle Scholar
  60. 60.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89:5547–5551.PubMedCrossRefGoogle Scholar
  61. 61.
    Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268:1766–1769.PubMedCrossRefGoogle Scholar
  62. 62.
    Harrington KJ, Linardakis E, Vile RG. Transcriptional control: an essential component of cancer gene therapy strategies? Adv Drug Deliv Rev 2000; 44:167–184.PubMedCrossRefGoogle Scholar
  63. 63.
    Tang Y, Jackson M, Qian K, Phillips MI. Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 2002; 39:695–698.PubMedCrossRefGoogle Scholar
  64. 64.
    Stanojevic D, Young RA. A highly potent artificial transcription factor. Biochemistry 2002; 41:7209–7216.PubMedCrossRefGoogle Scholar
  65. 65.
    Wicher K, Szybalski W, Bereta M. Construction of eukaryotic expression system based on Flp recombinase activity. Biotechnologia 1999; 1:144–152.Google Scholar
  66. 66.
    Kaczmarczyk SJ, Green JE. A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 2001; 29:E56.CrossRefGoogle Scholar
  67. 67.
    Uebel S, Tampe R. Specificity of the proteasome and the TAP transporter. Curr Opin Immunol 1999; 11:203–208.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dey Biol 2000; 11:141–148.CrossRefGoogle Scholar
  69. 69.
    Wu Y, Kipps TJ. Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome- dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol 1997; 159:6037–6043.PubMedGoogle Scholar
  70. 70.
    van Endert PM. Genes regulating MHC class I processing of antigen. Curr Opin Immunol 1999; 11: 82–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Busch R, Doebele RC, Patil NS, Pashine A, Mellins ED. Accessory molecules for MHC class II peptide loading. Curr Opin Immunol 2000; 12:99–106.PubMedCrossRefGoogle Scholar
  72. 72.
    Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 2000; 68:793–806.PubMedGoogle Scholar
  73. 73.
    Ciemik IF, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156:2369–2375.Google Scholar
  74. 74.
    Obermuller S, Kiecke C, von Figura K, Honing S. The tyrosine motifs of Lamp 1 and LAP determine their direct and indirect targeting to lysosomes. J Cell Sci 2002; 115:185–194.PubMedGoogle Scholar
  75. 75.
    Wu TC, Guarnieri FG, Staveley-O’ Carroll KF, et al. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci USA 1995; 92:11671–11675.PubMedCrossRefGoogle Scholar
  76. 76.
    Bonini C, Lee SP, Riddell SR, Greenberg PD. Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol 2001; 166:5250–5257.PubMedGoogle Scholar
  77. 77.
    McNeela EA, Mills KH. Manipulating the immune system: humoral versus cell-mediated immunity. Adv Drug Deliv Rev 2001; 51:43–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Barash S, Wang W, Shi Y. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun 2002; 294:835–842.PubMedCrossRefGoogle Scholar
  79. 79.
    Ferlazzo G, Semino C, Spaggiari GM, Meta M, Mingari MC, Melioli G. Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 2000; 12:1741–1747.PubMedCrossRefGoogle Scholar
  80. 80.
    Kwissa M, Unsinger J, Schirmbeck R, Hauser H, Reimann J. Polyvalent DNA vaccines with bidirectional promoters. J Mol Med 2000; 78:495–506.PubMedCrossRefGoogle Scholar
  81. 81.
    Vagner S, Galy B, Pyronnet S. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2001; 2:893–898.PubMedCrossRefGoogle Scholar
  82. 82.
    Kozak M. New ways of initiating translation in eukaryotes? Mol Cell Biol 2001; 21:1899–1907.PubMedCrossRefGoogle Scholar
  83. 83.
    Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene 1999; 234:187–208.PubMedCrossRefGoogle Scholar
  84. 84.
    Clarke NJ, Hissey P, Buchan K, Harris S. pPV: a novel IRES-containing vector to facilitate plasmid immunization and antibody response characterization. Immunotechnology 1997; 3:145–153.PubMedCrossRefGoogle Scholar
  85. 85.
    Barouch DH, Santra S, Tenner-Racz K, et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002; 168:562–568.PubMedGoogle Scholar
  86. 86.
    Barouch DH, Santra S, Steenbeke TD, et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J Immunol 1998; 161:1875–1882.PubMedGoogle Scholar
  87. 87.
    Djukanovic R. Airway inflammation in asthma and its consequences: implications for treatment in children and adults. J Allergy Clin Immunol 2002; 109:539S-5485.CrossRefGoogle Scholar
  88. 88.
    Lobell A, Weissert R, Storch MK, et al. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. J Exp Med 1998; 187:1543–1548.PubMedCrossRefGoogle Scholar
  89. 89.
    Tisch R, Wang B, Weaver DJ, et al. Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. J Immunol 2001; 166:2122–2132.PubMedGoogle Scholar
  90. 90.
    Prud’homme GJ. Gene therapy of autoimmune diseases with vectors encoding regulatory cytokines or inflammatory cytokine inhibitors. J Gene Med 2000; 2:222–232.PubMedGoogle Scholar
  91. 91.
    Drew DR, Boyle JS, Lew AM, Lightowlers MW, Chaplin PJ, Strugnell RA. The comparative efficacy of CTLA-4 and L-selectin targeted DNA vaccines in mice and sheep. Vaccine 2001; 19:4417–4428.PubMedCrossRefGoogle Scholar
  92. 92.
    Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–594.PubMedCrossRefGoogle Scholar
  93. 93.
    Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002; 3:611–618.PubMedCrossRefGoogle Scholar
  94. 94.
    Xiang R, Primus FJ, Ruehlmann JM, et al. A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol 2001; 167:4560–4565.PubMedGoogle Scholar
  95. 95.
    van Kooten C, Banchereau J. CD4O-CD40 ligand. J Leukoc Biol 2000; 67:2–17.PubMedGoogle Scholar
  96. 96.
    Strom TB, Steele AW, Nichols J. Genetically engineered proteins for immunoregulation. Transplant Proc 1995; 27:18–20.PubMedGoogle Scholar
  97. 97.
    You Z, Huang X, Hester J, Toh HC, Chen SY. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 2001; 61:3704–3711.PubMedGoogle Scholar
  98. 98.
    Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17:253–258.PubMedCrossRefGoogle Scholar
  99. 99.
    Maecker HT, Umetsu DT, DeKruyff RH, Levy S. DNA vaccination with cytokine fusion constructs biases the immune response to ovalbumin. Vaccine 1997; 15:1687–1696.PubMedCrossRefGoogle Scholar
  100. 100.
    Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8:657–665.PubMedCrossRefGoogle Scholar
  101. 101.
    Chen CH, Wang TL, Hung CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60:1035–1042.PubMedGoogle Scholar
  102. 102.
    Kammerer R, Stober D, Riedl P, Oehninger C, Schirmbeck R, Reimann J. Noncovalent association with stress protein facilitates cross-priming of CD8+ T cells to tumor cell antigens by dendritic cells. J Immunol 2002; 168:108–117.PubMedGoogle Scholar
  103. 103.
    Wolkers MC, Toebes M, Okabe M, Haanen JB, Schumacher TN. Optimizing the efficacy of epitopedirected DNA vaccination. J Immunol 2002: 168:4998–5004.PubMedGoogle Scholar
  104. 104.
    Davis MM, Boniface JJ, Reich Z, et al. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 1998; 16:523–544.PubMedCrossRefGoogle Scholar
  105. 105.
    Sette A, Nepom GT. Antigen recognition. Curr Opin Immunol 2000; 12:77–79.PubMedCrossRefGoogle Scholar
  106. 106.
    Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R. Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 1998; 19:163–168.PubMedCrossRefGoogle Scholar
  107. 107.
    Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 2000; 6:951–955.PubMedCrossRefGoogle Scholar
  108. 108.
    Hanke T, Neumann VC, Blanchard TJ, et al. Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 1999; 17:589–596.PubMedCrossRefGoogle Scholar
  109. 109.
    Wee EG, Patel S, McMichael AJ, Hanke T. A DNA/MVA-based candidate human immunodeficiency virus vaccine for Kenya induces multi-specific T cell responses in rhesus macaques. J Gen Virol 2002; 83:75–80.PubMedGoogle Scholar
  110. 110.
    Livingston B, Crimi C, Newman M, et al. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 2002; 168:5499–5506.PubMedGoogle Scholar
  111. 111.
    Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709–760.PubMedCrossRefGoogle Scholar
  112. 112.
    Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997; 13:335–340.PubMedCrossRefGoogle Scholar
  113. 113.
    Hejnar J, Hajkova P, Plachy J, Elleder D, Stepanets V, Svoboda J. CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc Nat! Acad Sci USA 2001; 98:565–569.PubMedCrossRefGoogle Scholar
  114. 114.
    Medzhitov R, Janeway CA, Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296:298–300.PubMedCrossRefGoogle Scholar
  115. 115.
    Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740–745.PubMedCrossRefGoogle Scholar
  116. 116.
    Takeshita F, Leifer CA, Gursel I, et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001; 167:3555–3558.PubMedGoogle Scholar
  117. 117.
    Krieg AM. From A to Z on CpG. Trends Immunol 2002; 23:64–65.PubMedCrossRefGoogle Scholar
  118. 118.
    Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 2000; 18:927–974.PubMedCrossRefGoogle Scholar
  119. 119.
    Ma X, Trinchieri G. Regulation of interleukin-12 production in antigen-presenting cells. Adv Immunol 2001; 79:55–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper- 1 -promoting adjuvants. Nat Med 1997; 3:849–854.PubMedCrossRefGoogle Scholar
  121. 121.
    Cho HJ, Hayashi T, Datta SK, et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J Immunol 2002; 168:4907–4913.PubMedGoogle Scholar
  122. 122.
    Stoll S, Jonuleit H, Sphmitt E, et al. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Thl development. Eur J Immunol 1998; 28:3231–3239.PubMedCrossRefGoogle Scholar
  123. 123.
    Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13:715–725.PubMedCrossRefGoogle Scholar
  124. 124.
    Weiss R, Scheiblhofer S. Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Thl-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 3277:1–7.Google Scholar
  125. 125.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245–252.PubMedCrossRefGoogle Scholar
  126. 126.
    Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253–256.PubMedCrossRefGoogle Scholar
  127. 127.
    Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000; 290:92–97.PubMedCrossRefGoogle Scholar
  128. 128.
    Hwang LY, Lieu PT, Peterson PA, Yang Y. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Immunol Res 2001; 24:245–272.PubMedCrossRefGoogle Scholar
  129. 129.
    Van den Eynde BJ, Morel S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 2001; 13:147–153.PubMedCrossRefGoogle Scholar
  130. 130.
    Ramshaw IA, Ramsay AJ. The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 2000; 21:163–165.PubMedCrossRefGoogle Scholar
  131. 131.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999; 11:753–761.PubMedCrossRefGoogle Scholar
  132. 132.
    Lanzavecchia A, Sallusto F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 2000; 12:92–98.PubMedCrossRefGoogle Scholar
  133. 133.
    Eo SK, Lee S, Kumaraguru U, Rouse BT. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine 2001; 19:4685–4693.PubMedCrossRefGoogle Scholar
  134. 134.
    Carter LL, Swain SL. From naive to memory. Development and regulation of CD4+ T cell responses. Immunol Res 1998; 18:1–13.PubMedCrossRefGoogle Scholar
  135. 135.
    Bertram EM, Lau P, Watts TH. Temporal segregation of 4–1BB versus CD28-mediated costimulation: 4–1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 2002; 168:3777–3785.PubMedGoogle Scholar
  136. 136.
    Berzofsky JA, Ahlers JD, Derby MA, Pendleton CD, Arichi T, Belyakov IM. Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol Rev 1999: 170:151–172.PubMedCrossRefGoogle Scholar
  137. 137.
    Estcourt MJ, Ramsay AJ, Brooks A, Thomson SA, Medveckzy CJ, Ramshaw IA. Prime-boost immunization generates a high frequency, high-avidity CD8(+) cytotoxic T lymphocyte population. Int Immunol 2002; 14:31–37.PubMedCrossRefGoogle Scholar
  138. 138.
    Barouch DH, Craiu A, Santra S, et al. Elicitation of high-frequency cytotoxic T-lymphocyte responses against both dominant and subdominant simian-human immunodeficiency virus epitopes by DNA vaccination of rhesus monkeys. J Virol 2001; 75:2462–2467.PubMedCrossRefGoogle Scholar
  139. 139.
    Santra S, Barouch DH, Kuroda MJ, et al. Prior vaccination increases the epitopic breadth of the cytotoxic T-lymphocyte response that evolves in rhesus monkeys following a simian-human immunodeficiency virus infection. J Virol 2002; 76:6376–6381.PubMedCrossRefGoogle Scholar
  140. 140.
    Maloy KJ, Erdmann I, Basch V, et al. Intralymphatic immunization enhances DNA vaccination. Proc Natl Acad Sci USA 2001; 98:3299–3303.PubMedCrossRefGoogle Scholar
  141. 141.
    Zinkernagel RM. Immunity against solid tumors? Int J Cancer 2001; 93:1–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science 2001; 293: 251–253.PubMedCrossRefGoogle Scholar
  143. 143.
    Yoneyama H, Narumi S, Zhang Y, et al. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 2002; 195:1257–1266.PubMedCrossRefGoogle Scholar
  144. 144.
    Pert! U, Luster AD, Varii NM, et al. IFN-gamma-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J Immunol 2001; 166:6944–6951.Google Scholar
  145. 145.
    Scheerlinck JY. Genetic adjuvants for DNA vaccines. Vaccine 2001; 19:2647–2656.PubMedCrossRefGoogle Scholar
  146. 146.
    Lefrancois L, Masopust D. T cell immunity in lymphoid and non-lymphoid tissues. Curr Opin Immunol 2002; 14:503–508.PubMedCrossRefGoogle Scholar
  147. 147.
    Zinkernagel RM. On differences between immunity and immunological memory. Curr Opin Immunol 2002; 14:523–536.PubMedCrossRefGoogle Scholar
  148. 148.
    Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines and the e\olution of pathogen virulence. Nature 2001; 414:751–756.PubMedCrossRefGoogle Scholar
  149. 149.
    Van Valen L. Two modes of evolution. Nature 1974; 252:298–300.PubMedCrossRefGoogle Scholar
  150. 150.
    Ulmer JB, Liu MA. Ethical issues for vaccines and immunization. Nature Rev Immunol 2002; 2: 291–296.CrossRefGoogle Scholar
  151. 151.
    Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann NY Acad Sci 1995; 772:30–39.PubMedCrossRefGoogle Scholar
  152. 152.
    Ledwith BJ, Manam S, Troilo PJ, et al. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol 2000; 104:33–43.Google Scholar
  153. 153.
    Subramanian G, Adams MD, Venter JC, Broder S. Implications of the human genome for understanding human biology and medicine. JAMA 2001; 286:2296–2307.PubMedCrossRefGoogle Scholar
  154. 154.
    Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol 1997; 15:617–648.PubMedCrossRefGoogle Scholar
  155. 155.
    Roses AD. Genome-based pharmacogenetics and the pharmaceutical industry. Nat Rev Drug Discov 2002; 1:541–549.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Michael Bereta
  • Howard L. Kaufman

There are no affiliations available

Personalised recommendations