Skip to main content

Functional Mechanisms of G Protein-Coupled Receptors in a Structural Context

  • Chapter

Abstract

The central role of G protein-coupled receptors (GPCRs) in most aspects of biological signal transduction has made them the object of extensive studies for a long period of time. These studies have revealed the key physiological roles of the many members of this family, and the manifold functions they have in the central nervous system (CNS) and the periphery (for recent reviews, see refs. [1,2]). Despite the abundance of information available in the literature, however, many of the fundamental questions regarding the molecular and structural requirements for GPCR function remain unanswered. A large number of reviews and compendia of results have been devoted to such fundamental elements in the biological mechanisms of GPCR (3–9). For this reason, we review here only some of the key aspects of recent progress in the development and application of approaches aiming to elucidate functional mechanisms of GPCRs in a detailed structural context. A central aim of our own collaborative studies of GPCRs is to develop such a coherent structural context (e.g., see [5,10–15]) that can serve in the interpretation, as well as the integration into a mechanistic understanding, of the abundant data about these systems. For this reason, we focus here specifically on the following three aspects of recent developments in the field: (1) the management of the copious data accumulated from structure-function studies, including genomic information; (2) some novel insights about intramolecular mechanisms triggering the activation of GPCRs; and (3) the recently characterized oligomerization of the receptors. The concluding Perspective section points to the integration of the mechanistic insights at the level of GPCR function with the growing understanding of signal-transduction pathways in the cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nature Rev. Mol. Cell Biol . 3, 639–650.

    Article  CAS  Google Scholar 

  2. Rockman, H. A., Koch, W. J., and Lefkowitz, R. J. (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212.

    Article  PubMed  CAS  Google Scholar 

  3. Stenkamp, R. E., Teller, D. C., and Palczewski, K. (2002) Crystal structure of rhodopsin: a G protein-coupled receptor. Chem. BioChem . 3, 963–967.

    CAS  Google Scholar 

  4. Oussama, E. F. and Heinrich, B. (2002) G protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem. J . 365, 329–336.

    Google Scholar 

  5. Visiers, I., Ballesteros, J. A., and Weinstein, H. (2002) Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol 343, 329–371.

    Article  PubMed  Google Scholar 

  6. Kroeze, W. K., Kristiansen, K., and Roth, B. L. (2002) Molecular biology of serotonin receptors structure and function at the molecular level. Curr. Top. Med. Chem . 2, 507–528.

    Article  PubMed  CAS  Google Scholar 

  7. Ballesteros, J. A., Shi, L., and Javitch, J. A. (2001) Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure—function analysis of rhodopsin-like receptors. Mol. Pharmacol . 60, 1–19.

    PubMed  CAS  Google Scholar 

  8. Shi, L. and Javitch, J. A. (2002) The binding site of aminergic G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol . 42, 437–467.

    Article  PubMed  CAS  Google Scholar 

  9. Javitch, J. A., Ballesteros, J. A., Chen, J., Chiappa, V., and Simpson, M. M. (1999) Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: contributions of the second membrane-spanning segment. Biochemistry 38, 7961–7968.

    Article  PubMed  CAS  Google Scholar 

  10. Prioleau, C., Visiers, I., Ebersole, B. J., Weinstein, H., and Sealfon, S. (2002) Conserved helix7 tyrosine acts as a multistate conformational switch in the 5-HT2C receptor:Identification of a novel “locked-on” phenotype and double revertant mutations. J. Biol. Chem . 277, 36577–36584.

    Article  PubMed  CAS  Google Scholar 

  11. Ebersole, B. J., Visiers, I., Weinstein, H., and Sealfon, S. (2003) Molecular basis of partial agonism: orientation of indolamine ligands in the binding pocket of the human serotonin 5-HT2A receptor determines relative efficacy. Mol. Pharmacol . 63, 36–43.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, P., Li, J., Visiers, I., Weinstein, H., and Liu-Chen, L.-Y. (2001) Functional role of a conserved motif in TM6 of the rat m opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6.34(279) with Lys and Asp. Biochemistry 40, 13501–13509.

    Article  PubMed  CAS  Google Scholar 

  13. Ballesteros, J. A., Kitanovic, S., Guarnieri, F., et al. (1998) Functional microdomains in G protein-coupled receptors: The conserved arginine cage motif in the gonadotropin-releasing hormone receptor. J. Biol. Chem . 273, 10445–10453.

    Article  PubMed  CAS  Google Scholar 

  14. Ballesteros, J. A. and Weinstein, H. (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428.

    Article  CAS  Google Scholar 

  15. Gether, U., Lin, S., Ghanouni, P., Ballesteros, J. A., Weinstein, H., and Kobilka, B. K. (1997) Agonists induce conformational changes in transmembrane domains III and VI of the b2 adrenergic receptor. EMBO J. 16, 6737–6747.

    Article  PubMed  CAS  Google Scholar 

  16. Anastasiadis-Pool, A. and Schwalbe, H. (2002) Web sites about G protein-coupled receptors. ChemBioChem. 3, 1029–1030.

    Article  CAS  Google Scholar 

  17. van Rhee, A. M. and Jacobson, K. A. (1996) Molecular architecture of G protein coupled receptors. Drug Dey. Res . 37, 1–38.

    Article  Google Scholar 

  18. Kristiansen, K., Dahl, S. G., and Edvardsen, O. (1996) A database of mutants and effects of site-directed mutagenesis experiments on GPCRs. Prot. Struct. Func. Genet . 26, 81–94.

    Article  CAS  Google Scholar 

  19. Beukers, M. W., Kristiansen, I., AP, I. J., and Edvardsen, I. (1999) TinyGRAP database: a bioinformatics tool to mine G protein-coupled receptor mutant data. Trends Pharmacol. Sci . 20, 475–477.

    Article  PubMed  CAS  Google Scholar 

  20. Campagne, F., Jestin, R., Reversat, J. L., Bernassau, J. M., and Maigret, B. (1999) Visualisation and integration of G protein-coupled receptor related information help the modelling: description and applications of the Viseur program. J. Comput, Aided Mol. Des . 13, 625–643.

    Article  CAS  Google Scholar 

  21. Campagne, F. and Weinstein, H. (1999) Schematic representation of residue-based protein context-dependent data: an application to transmembrane proteins. J. Mol. Graph. Model 17, 207–213.

    Article  PubMed  CAS  Google Scholar 

  22. Konvicka, K., Campagne, F., and Weinstein, H. (2000) Interactive construction of residue-based diagrams of proteins: the RbDe web service. Prot. Eng . 13, 395–396.

    Article  CAS  Google Scholar 

  23. Horn, F., Bywater, R., Krause, G., et al. (1998) The interaction of class B G protein-coupled receptors with their hormones. Recep. Channels 5, 305–314.

    CAS  Google Scholar 

  24. Bairoch, A. and Apweiler, R. (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48.

    Article  PubMed  CAS  Google Scholar 

  25. Cotton, R. G. and Horaitis, O. (2002) The HUGO Mutation Database Initiative. Human Genome Organization. Pharmacogen. J . 2, 16–19.

    Article  CAS  Google Scholar 

  26. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311.

    Article  PubMed  CAS  Google Scholar 

  27. Small, K. M., Seman, C. A., Castator, A., Brown, K. M., and Liggett, S. B. (2002) False positive non-synonymous polymorphisms of G protein coupled receptor genes. FEBS Lett. 516, 253–256.

    Article  PubMed  CAS  Google Scholar 

  28. Visiers, I., Hassan, S. A., and Weinstein, H. (2001) Differences in conformational properties of the second intracellular loop (IL2) in 5HT(2C) receptors modified by RNA editing can account for G protein coupling efficiency. Prot. Eng . 14, 409–414.

    Article  CAS  Google Scholar 

  29. Shapiro, D. A., Kristiansen, K., Weiner, D. M., Kroeze, W. K., and Roth, B. L. (2002) Evidence for a model of agonist-induced activation of 5-HT2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J. Biol. Chem . 277, 11441–11449.

    Article  PubMed  CAS  Google Scholar 

  30. Fanelli, F., Menziani, C., Scheer, A., Cotecchia, S., and DeBenedetti, P. G. (1999) Theoretical study on receptor-G protein recognition: new insights into the mechanism of the albadrenergic receptor activation. Intl. J. Quant. Chem . 73, 71–83.

    Article  CAS  Google Scholar 

  31. Fanelli, F. (2000) Theoretical study on mutation-induced activation of the luteinizing hormone receptor. J. Mol. Biol . 296, 1333–1351.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, P., Visiers, I., Weinstein, H., and Liu-Chen, L.-Y. (2002) The local environment at the cytoplasmic end of TM6 of the m opioid receptor differs from those of rhodopsin and monoamine receptors: introduction of an ionic lock between the cytoplasmic ends of helices 3 and 6 by a L6.30(275)E mutation inactivates the m opioid receptor and reduces the constitutive activity of its Thr6.34(279)K mutant. Biochemistry 41, 11972–11980.

    Article  PubMed  CAS  Google Scholar 

  33. Jensen, A. D., Guarnieri, F., Rasmussen, S. G., Asmar, F., Ballesteros, J. A., and Gether, U. (2001) Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem . 276, 9279–9290.

    Article  PubMed  CAS  Google Scholar 

  34. Ghanouni, P., Gryszynski, Z., Steeinhuis, J. J., Lee, T. W., Farrens, D. L., Lakowitz, J. R., and Kobilka, B. K. (2001) Functionally different agonists induce distinct conformations in the G protein coupling domain of the 32 adrenergic receptor. J. Biol. Chem . 276, 24433–24436.

    Article  PubMed  CAS  Google Scholar 

  35. Ghanouni, P., Steenhuis, J. J., Farrens, D. L., and Kobilka, B. K. (2001) Agonist-induced conformational changes in the G protein-coupling domain of the beta 2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002.

    Article  PubMed  CAS  Google Scholar 

  36. Chalmers, D. T. and Behan, D. P. (2002) The use of constitutively active GPCRs in drug discovery and functional genomics. Nat. Rev. Drug Dis . 1, 599–608.

    Article  CAS  Google Scholar 

  37. Klabunde, T. and Hessler, G. (2002) Drug design strategies for targeting G protein-coupled receptors. ChemBioChem 3, 928–944.

    Article  PubMed  CAS  Google Scholar 

  38. Singh, R., Hurst, D. R, Barnett-Norris, J., Lynch, D. L., Reggio, P. H., and Guarnieri, F. (2002) Activation of the cannabinoid CB 1 receptor may involve a W6.48/F3.36 rotamer toggle switch. J. Peptide Res . 60, 357–370.

    Article  CAS  Google Scholar 

  39. Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J. A., and Javitch, J. A. (2002) beta2 Adrenergic receptor activation. J. Biol. Chem . 277, 40989–40996.

    Google Scholar 

  40. Sealfon, S. C., Chi, L., Ebersole, B. J., Rodic, V., Zhang, D., Ballesteros, J. A., and Weinstein, H. (1995) Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J. Biol. Chem . 270, 16683–16688.

    Article  PubMed  CAS  Google Scholar 

  41. Visiers, I., Ebersole, B. J., Dracheva, S., Ballesteros, J., Sealfon, S. C., and Weinstein, H. (2002) Structural motifs as functional microdomains in GPCRs: energetic considerations in the mechanism of activation of the serotonin 5-HT2A receptor by disruption of the ionic lock of the arginine cage. Intl. J. Quant. Chem . 88, 65–75.

    Article  CAS  Google Scholar 

  42. Ballesteros, J. A., Jensen, A. D., Liapakis, G., Rasmussen, S. G., Shi, L., Gether, U., and Javitch, J. A. (2001) Activation of the beta 12 adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem . 276, 29171–29177.

    Article  PubMed  CAS  Google Scholar 

  43. Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  44. Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K., and Stenkamp, R. E. (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G protein-coupled receptors (GPCRs). Biochemistry 40, 7761–7772.

    Article  PubMed  CAS  Google Scholar 

  45. Angelova, K., Fanelli, F., and Puett, D. (2002) A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7. J. Biol. Chem . 277, 32202–32213.

    Article  PubMed  CAS  Google Scholar 

  46. Greasley, P. J., Fanelli, F., Scheer, A., Abuin, L., Nenniger-Tosato, M., DeBenedetti, P. G., and Cotecchia, S. (2001) Mutational and computational analysis of the alpha(1 b)-adrenergic receptor. Involvement of basic and hydrophobic residues in receptor activation and G protein coupling. J. Biol. Chem . 276, 46485–46495.

    Article  PubMed  CAS  Google Scholar 

  47. Greasley, P. J., Fanelli, F., Rossier, O., Abuin, L., and Cotecchia, S. (2002) Mutagenesis and modelling of the alpha(lb)-adrenergic receptor highlight the role of the helix 3/helix 6 interface in receptor activation. Mol. Pharmacol . 61, 1025–1032.

    Article  PubMed  CAS  Google Scholar 

  48. Cotecchia, S., Rossier, O., Fanelli, F., Leonardi, A., and De Benedetti, P. G. (2000) The alpha la and alpha lb-adrenergic receptor subtypes: molecular mechanisms of receptor activation and of drug action. Pharm. Acta Heiv . 74, 173–179.

    Article  CAS  Google Scholar 

  49. Zhou, W., Flanagan, C., Ballesteros, J. A., et al. (1994) A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol. Pharmacol . 45, 165–170.

    PubMed  CAS  Google Scholar 

  50. Xu, W., Ozdener, F., Li, J. G., Chen, C., de Riel, J. K., Weinstein, H., and Liu Chen, L.-Y. (1999) Functional role of the spatial proximity of Asp2.50(114) in TMH2 and Asn7.49(332) in TMH7 of the opioid receptor. FEBS Lett. 447, 318–324.

    Google Scholar 

  51. Sealfon, S. C., Chi, L., Ebersole, B. J., Rodic, V., Zhang, D., Ballesteros, J. A., and Weinstein, H. (1995) Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J. Biol. Chem . 270, 16683–16688.

    Article  PubMed  CAS  Google Scholar 

  52. Meng, E. C. and Boume, H. R. (2001) Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol. Sci . 22, 587–593.

    Article  PubMed  CAS  Google Scholar 

  53. Javitch, J. A., Ballesteros, J. A., Weinstein, H., and Chen, J. (1998) A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding site crevice. Biochemistry 37, 998–1006.

    Article  PubMed  CAS  Google Scholar 

  54. Krishna, A. G., Menon, S. T., Terry, T. J., and Sakmar, T. P. (2002) Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. Biochemistry 41, 8298–8309.

    Article  PubMed  CAS  Google Scholar 

  55. Choudhary, M. S., Craigo, S., and Roth, B. L. (1993) A single point mutation (Phe340 to Leu340) of a conserved phenylalanin abolishes 4-[125I]lodo-(2,5-dimethoxy) phenylisopropylamine and [3H]Mesulergine but not [3H]Ketanserin binding to 5-hydroxytryptamine2 receptors. Mol. Pharmacol . 43, 755–761.

    PubMed  CAS  Google Scholar 

  56. Visiers, I., Ballesteros, J. A., and Weinstein, H. (2000) A spatially ordered sequence of intramolecular rearrangements observed from simulations of agonist-related activation of 5HT(2C) receptors. Biophys. J . 78, 394.

    Article  Google Scholar 

  57. Lin, S. W. and Sakmar, T. R. (1996) Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry 35, 11149–11159.

    Article  PubMed  CAS  Google Scholar 

  58. Choudhary, M. S., Craigo, S., and Roth, B. L. (1992) Identification of receptor domains that modify ligand binding to 5-hydroxytryptamine2 and 5-hydroxytryptamine1C serotonin receptors. Mol. Pharmacol . 42, 627–633.

    PubMed  CAS  Google Scholar 

  59. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Khorana, H. G. (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770.

    Article  PubMed  CAS  Google Scholar 

  60. Klein-Seetharaman, J. (2002) Dynamics in rhodopsin. ChemBioChem 3, 981–986.

    Article  PubMed  CAS  Google Scholar 

  61. Sheikh, S. R, Zvyaga, T. A., Lichtarge, O., Sakmar, T. R, and Bourne, H. R. (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350.

    Article  PubMed  CAS  Google Scholar 

  62. Sansom, M. S. R. and Weinstein, H. (2000) Hinges, swivels and switches: the role of pro-lines in signalling via transmembrane alpha-helices. Trends Pharmacol. Sci . 21, 445–451.

    Article  PubMed  CAS  Google Scholar 

  63. Tieleman, D. R, Shrivastava, I. H., Ulmschneider, M. R., and Sansom, M. S. (2001) Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63–72.

    Article  PubMed  CAS  Google Scholar 

  64. Ballesteros, J. A. and Weinstein, H. (1992) The role of Pro/Hyp-kinks in determining the transmembrane helix length and gating mechanism of a Leu-zervamicin channel. Biophys. J . 62, 110–111.

    Article  PubMed  CAS  Google Scholar 

  65. Visiers, I., Braunheim, B. B., and Weinstein, H. (2000) Prokink: a protocol for numerical evaluation of helix distortions by proline. Prot. Eng . 13, 603–606.

    Article  CAS  Google Scholar 

  66. Scheer, A., Costa, T., Fanelli, F., et al. (2000) Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(lb)-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol . 57, 219–231.

    PubMed  CAS  Google Scholar 

  67. Christopoulos, A. and Kenakin, T. (2002) G protein-coupled receptor allosterism and cornplexing. Pharmacol. Rev . 54, 323–374.

    Article  PubMed  CAS  Google Scholar 

  68. Brady, A. E. and Limbird, L. E. (2002) G protein coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell. Signal . 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  69. George, S. R., O’Dowd, B. F., and Lee, S. P. (2002) Oligomerization and its potential for drug discovery. Nat. Rev. Drug Disc . 1, 808–820.

    Article  CAS  Google Scholar 

  70. Kenakin, T. (2002) Efficacy at G protein-coupled receptors. Nat. Rev. Drug Discov . 1, 103–110.

    Article  PubMed  CAS  Google Scholar 

  71. Hur, E. M. and Kim, K. T. (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell. Signal . 14, 397–405.

    Article  PubMed  CAS  Google Scholar 

  72. Angers, S., Salahpour, A., and Bouvier, M. (2002) Dimerization: an emerging concept for G protein coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol . 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  73. Levac, B. A., O’Dowd, B. F., and George, S. R. (2002) Oligomerization of opioid receptors: generation of novel signaling units. Curr. Opin. Pharmacol . 2, 76–81.

    Article  PubMed  CAS  Google Scholar 

  74. Lee, S. P., O’Dowd, B. F., Ng, G. Y., et al. (2000) Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol. Pharmacol . 58, 120–128.

    PubMed  CAS  Google Scholar 

  75. Karpa, K. D., Lin, R., Kabbani, N., and Levenson, R. (2000) The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3–D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol . 58, 677–683.

    PubMed  CAS  Google Scholar 

  76. Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A., and Jeang, K. T. (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J. Biol. Chem . 272, 30603–30606.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu, X. and Wess, J. (1998) Truncated V2 vasopressin receptors as negative regulators of wild-type V2 receptor function. Biochemistry 37, 15773–15784.

    Article  PubMed  CAS  Google Scholar 

  78. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.

    Article  PubMed  CAS  Google Scholar 

  79. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 67 /1 679.

    Google Scholar 

  80. White, J. H., Wise, A., Main, M. J., et al. (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679–682.

    Article  PubMed  CAS  Google Scholar 

  81. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  82. Limbird, L. E., Meyts, P. D., and Lefkowitz, R. J. (1975) Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun . 64, 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  83. Henis, Y. I. and Sokolovsky, M. (1983) Muscarinic antagonists induce different receptor conformations in rat adenohypophysis. Mol. Pharmacol . 24, 357–365.

    PubMed  CAS  Google Scholar 

  84. Mattera, R., Pitts, B. J., Entman, M. L., and Birnbaumer, L. (1985) Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo-and heterotropic cooperativity in ligand binding analyzed by computer-assisted curve fitting. J. Biol. Chem . 260, 7410–7421.

    PubMed  CAS  Google Scholar 

  85. Wreggett, K. A. and Wells, J. W. (1995) Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem . 270, 22488–22499.

    Article  PubMed  CAS  Google Scholar 

  86. Gines, S., Hillion, J., Torvinen, M., et al. (2000) Dopamine D1 and adenosine Al receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA 97, 8606–8611.

    Article  PubMed  CAS  Google Scholar 

  87. Chazenbalk, G. D., Kakinuma, A., Jaume, J. C., McLachlan, S. M., and Rapoport, B. (1996) Evidence for negative cooperativity among human thyrotropin receptors overexpressed in mammalian cells. Endocrinology 137, 4586–4591.

    Article  PubMed  CAS  Google Scholar 

  88. Boyer, J. L., Martinez-Carcamo, M., Monroy-Sanchez, J. A., Posadas, C., and GarciaSainz, J. A. (1986) Guanine nucleotide-induced positive cooperativity in muscariniccholinergic antagonist binding. Biochem. Biophys. Res. Commun . 134, 172–177.

    Article  PubMed  CAS  Google Scholar 

  89. Potter, L. T., Ballesteros, L. A., Bichajian, L. H., Ferrendelli, C. A., Fisher, A., Hanchett, H. E., and Zhang, R. (1991) Evidence of paired M2 muscarinic receptors. Mol. Pharmacol . 39, 211–221.

    PubMed  CAS  Google Scholar 

  90. Sinkins, W. G., Kandel, M., Kandel, S. I., Schunack, W., and Wells, J. W. (1993) G protein-linked receptors labeled by [3H]histamine in guinea pig cerebral cortex. I. Pharmacological characterization [corrected]. Mol. Pharmacol . 43, 583–594.

    PubMed  CAS  Google Scholar 

  91. Hirschberg, B. T. and Schimerlik, M. I. (1994) A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J. Biol. Chem . 269, 26127–26135.

    PubMed  CAS  Google Scholar 

  92. Armstrong, D. and Strange, P. G. (2001) Dopamine d2 receptor dimer formation. evidence from ligand binding. J. Biol. Chem . 276, 22621–22629.

    Article  PubMed  CAS  Google Scholar 

  93. Pizard, A., Marchetti, J., Allegrini, J., Alhenc-Gelas, F., and Rajerison, R. M. (1998) Negative cooperativity in the human bradykinin B2 receptor. J. Biol. Chem . 273, 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  94. Abd-Alla, S., Lother, H., and Quitterer, U. (2000) AT1-receptor heterodimers show enhanced G protein activation and altered receptor sequestration. Nature 407, 94–98.

    Article  CAS  Google Scholar 

  95. Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157.

    Article  PubMed  CAS  Google Scholar 

  96. Jordan, B. A. and Devi, L. A. (1999) G protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700.

    Article  PubMed  CAS  Google Scholar 

  97. George, S. R., Fan, T., Xie, Z., Tse, R., Tam, V., Varghese, G., and O’Dowd, B. E (2000) Oligomerization of mu-and delta-opioid receptors. Generation of novel functional properties. J. Biol. Chem . 275, 26128–26135.

    Article  PubMed  CAS  Google Scholar 

  98. Mellado, M., Rodriguez-Frade, J. M., Vila-Coro, A. J., Fernandez, S., Martin De Ana, A., Jones, D. R., et al. (2001) Chemokine receptor homo-or heterodimerization activates distinct signaling pathways. Embo J, 20, 2497–2507.

    Google Scholar 

  99. Rios, C. D., Jordan, B. A., Gomes, I., and Devi, L. A. (2001) G protein coupled receptor dimerization: modulation of receptor function. Pharmacol. Ther . 92, 71–87.

    Article  PubMed  CAS  Google Scholar 

  100. Rodriguez-Frade, J. M., Mellado, M., and Martinez-A, C. (2001) Chemokine receptor dimerization: two are better than one. Trends Immunol. 22, 612–617.

    Article  PubMed  CAS  Google Scholar 

  101. Rodriguez-Frade, J. M., Vila-Coro, A. J., de Ana, A. M., Albar, J. P., Martinez-A, C., and Mellado, M. (1999) The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl. Acad. Sci. USA 96, 3628–3633.

    CAS  Google Scholar 

  102. Mellado, M., Rodriguez-Frade, J. M., Manes, S., and Martinez, A. C. (2001) Chemokine signaling and functional responses: the role of receptor dimerization and tk pathway activation. Annu. Rev. Immunol . 19, 397–421.

    Article  PubMed  CAS  Google Scholar 

  103. Vila-Coro, A. J., Mellado, M., Martin de Ana, A., Lucas, P., del Real, G., Martinez-A, C., and Rodriguez-Frade, J. M. (2000) HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl. Acad. Sci. USA 97, 3388–3393.

    Google Scholar 

  104. Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin De Ana, A., Moreno-Ortiz, M. C., Martinez-A, C., and Mellado, M. (1999) The chemokine SDF-1 alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J . 13, 1699–1710.

    Google Scholar 

  105. Cheng, Z. J. and Miller, L. J. (2001) Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J. Biol. Chem . 276, 48040–48047.

    PubMed  CAS  Google Scholar 

  106. Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., and Patel, Y. C. (2000) Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J. Biol. Chem . 275, 7862–7869.

    Article  PubMed  CAS  Google Scholar 

  107. Patel, R. C., Kumar, U., Lamb, D. C., et al. (2002) Ligand binding to somatostatin receptors induces receptors-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA 99, 3294–3299.

    Article  PubMed  CAS  Google Scholar 

  108. Horvat, R. D., Roess, D. A., Nelson, S. E., Barisas, B. G., and Clay, C. M. (2001) Binding of agonist but not antagonist leads to fluorescence resonance energy transfer between intrinsically fluorescent gonadotropin-releasing hormone receptors. Mol. Endocrinol 15, 695–703.

    Article  PubMed  CAS  Google Scholar 

  109. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2001) Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc. Natl. Acad. Sci. USA 98, 14643–14648.

    Article  PubMed  CAS  Google Scholar 

  110. Zhu, C. C., Cook, L. B., and Hinkle, P. M. (2002) Dimerization and phosphorylation of thyrotropin-releasing hormone receptors are modulated by agonist stimulation. J. Biol. Chem . 277, 28228–28237.

    Article  PubMed  CAS  Google Scholar 

  111. Torvinen, M., Gines, S., Hillion, J., Latini, S., Canals, M., Ciruela, F., et al. (2002) Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 113, 709–719.

    Article  PubMed  CAS  Google Scholar 

  112. Kniazeff, J., Galvez, T., Labesse, G., and Pin, J. P. (2002) No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J. Neurosci . 22, 7352–7361.

    PubMed  CAS  Google Scholar 

  113. Issafras, H., Angers, S., Bulenger, S., et al. (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J. Biol. Chem . 277, 34666–34673.

    Article  PubMed  CAS  Google Scholar 

  114. Mercier, J. F., Salahpour, A., Angers, S., Breit, A., and Bouvier, M. (2002) Quantitative assessment of beta 1 and beta 2-adrenergic receptor homo and hetero-dimerization by bioluminescence resonance energy transfer. J. Biol. Chem . 277, 44925–44931.

    Article  PubMed  CAS  Google Scholar 

  115. Ayoub, M. A., Couturier, C., Lucas-Meunier, E., Angers, S., Fossier, P., Bouvier, M., and Jockers, R. (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem 277, 21522–21528.

    Article  PubMed  CAS  Google Scholar 

  116. Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E., and Eidne, K. A. (2001) Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem . 276, 12736–12743.

    Article  PubMed  CAS  Google Scholar 

  117. Hebert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem . 271, 16384–16392.

    Article  PubMed  CAS  Google Scholar 

  118. Ng, G. Y., O’Dowd, B. F., Lee, S. R, Chung, H. T., Brann, M. R., Seeman, P., and George, S. R. (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys. Res. Commun . 227, 200–204.

    Article  PubMed  CAS  Google Scholar 

  119. Romano, C., Yang, W. L., and O’Malley, K. L. (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem . 271, 28612–28616.

    Article  PubMed  CAS  Google Scholar 

  120. Cvejic, S. and Devi, L. A. (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J. Biol. Chem . 272, 26959–26964.

    Article  PubMed  CAS  Google Scholar 

  121. Bai, M., Trivedi, S., and Brown, E. M. (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J. Biol. Chem . 273, 23605–23610.

    Article  PubMed  CAS  Google Scholar 

  122. Zeng, F. Y. and Wess, J. (1999) Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem . 274, 19487–19497.

    Article  PubMed  CAS  Google Scholar 

  123. Gomes, I., Jordan, B. A., Gupta, A., Trapaidze, N., Nagy, V., and Devi, L. A. (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J. Neurosci. 20, RC 110.

    Article  Google Scholar 

  124. Pfeiffer, M., Koch, T., Schroder, H., et al. (2001) Homo-and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J. Biol. Chem . 276, 14027–14036.

    PubMed  CAS  Google Scholar 

  125. Jordan, B. A., Trapaidze, N., Gomes, I., Nivarthi, R., and Devi, L. A. (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogenactivated protein kinase activation. Proc. Natl. Acad. Sci. USA 98, 343–348.

    PubMed  CAS  Google Scholar 

  126. Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M., and Bouvier, M. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689.

    PubMed  CAS  Google Scholar 

  127. McVey, M., Ramsay, D., Kellett, E., Rees, S., Wilson, S., Pope, A. J., and Milligan, G. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J. Biol. Chem . 276, 14092–14099.

    PubMed  CAS  Google Scholar 

  128. Overton, M. C. and Blumer, K. J. (2000) G protein-coupled receptors function as oligomers in vivo. Curr. Biol . 10, 341–344.

    Article  PubMed  CAS  Google Scholar 

  129. Cornea, A., Janovick, J. A., Maya-Nunez, G., and Conn, P. M. (2001) Gonadotropinreleasing hormone receptor microaggregation. Rate monitored by fluorescence resonance energy transfer. J. Biol. Chem . 276, 2153–2158.

    Article  PubMed  CAS  Google Scholar 

  130. Babcock, G. J., Farzan, M., and Sodroski, J. (2002) Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. Nov 13; [epub ahead of print].

    Google Scholar 

  131. Goldsmith, R K., Fan, G. E, Ray, K., Shiloach, J., McPhie, R, Rogers, K. V., and Spiegel, A. M. (1999) Expression, purification, and biochemical characterization of the aminoterminal extracellular domain of the human calcium receptor. J. Biol. Chem . 274, 11303–11309.

    Article  PubMed  CAS  Google Scholar 

  132. Pace, A. J., Gama, L., and Breitwieser, G. E. (1999) Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys–Ser mutations at Cysl01 and Cys236. J. Biol. Chem . 274, 11629–11634.

    Article  PubMed  CAS  Google Scholar 

  133. Kunishima, N., Shimada, Y., Tsuji, Y., et al. (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977.

    Article  PubMed  CAS  Google Scholar 

  134. AbdAlla, S., Zaki, E., Lother, H., and Quitterer, U. (1999) Involvement of the amino terminus of the B(2) receptor in agonist-induced receptor dimerization. J. Biol. Chem . 274, 26079–26084.

    Article  PubMed  CAS  Google Scholar 

  135. Abe, J., Suzuki, H., Notoya, M., Yamamoto, T., and Hirose, S. (1999) Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J. Biol. Chem . 274, 19957–19964.

    Article  PubMed  CAS  Google Scholar 

  136. Overton, M. C. and Blumer, K. J. (2002) The extracellular N-terminal domain and trans-membrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. J. Biol. Chem . 277, 41463–41472.

    Article  PubMed  CAS  Google Scholar 

  137. Fleming, K. G. and Engelman, D. M. (2001) Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc. Natl. Acad. Sci. USA 98, 14340–14344.

    Article  PubMed  CAS  Google Scholar 

  138. George, S. R., Lee, S. R, Varghese, G., Zeman, R. R., Seeman, P., Ng, G. Y., and O’Dowd, B. F. (1998) A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J. Biol. Chem . 273, 30244–30248.

    Article  PubMed  CAS  Google Scholar 

  139. Maggio, R., Vogel, Z., and Wess, J. (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G protein-linked receptors. Proc. Natl. Acad. Sci. USA 90, 3103–3107.

    Article  PubMed  CAS  Google Scholar 

  140. Hamdan, F. F., Ward, S. D., Siddiqui, N. A., Bloodworth, L. M., and Wess, J. (2002) Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Biochemistry 41, 7647–7658.

    Article  PubMed  CAS  Google Scholar 

  141. Hadac, E. M., Ji, Z., Pinon, D. I., Henne, R. M., Lybrand, T. P., and Miller, L. J. (1999) A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. J. Med. Chem . 42, 2105–2111.

    Article  PubMed  CAS  Google Scholar 

  142. Lemmon, M. A., Flanagan, J. M., Treutlein, H. R., Zhang, J., and Engelman, D. M. (1992) Sequence specificity in the dimerization of transmembrane a-helices. Biochemistry 31, 12719–12725.

    Article  PubMed  CAS  Google Scholar 

  143. Ray, K. and Hauschild, B. C. (2000) Cys-140 is critical for metabotropic glutamate receptor-1 dimerization. J. Biol. Chem . 275, 34245–34251.

    Article  PubMed  CAS  Google Scholar 

  144. Lee, S. P., Xie, Z., Varghese, G., Nguyen, T., O’Dowd, B. F., and George, S. R. (2000) Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology 23, S32–40.

    Article  PubMed  CAS  Google Scholar 

  145. Zhang, Z., Sun, S., Quinn, S. J., Brown, E. M., and Bai, M. (2001) The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J. Biol. Chem . 276, 5316–5322.

    Article  PubMed  CAS  Google Scholar 

  146. Tsuji, Y., Shimada, Y., Takeshita, T., et al. (2000) Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem . 275, 28144–28151.

    PubMed  CAS  Google Scholar 

  147. Romano, C., Miller, J. K., Hyrc, K., et al. (2001) Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol. Pharmacol . 59, 46–53.

    PubMed  CAS  Google Scholar 

  148. Schulz, A., Grosse, R., Schultz, G., Gudermann, T., and Schoneberg, T. (2000) structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J. Biol. Chem . 275, 2381–2389.

    Google Scholar 

  149. Gouldson, P. R. and Reynolds, C. A. (1997) Simulations on dimeric peptides: evidence for domain swapping in G protein-coupled receptors? Biochem. Soc. Trans . 25, 1066–1071.

    PubMed  CAS  Google Scholar 

  150. Gouldson, P. R., Snell, C. R., and Reynolds, C. A. (1997) A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G protein-coupled receptors. J. Med. Chem . 40, 3871–3886.

    Article  PubMed  CAS  Google Scholar 

  151. Gouldson, P. R., Snell, C. R., Bywater, R. P., Higgs, C., and Reynolds, C. A. (1998) Domain swapping in G protein coupled receptor dimers. Prot. Eng . 11, 1181–1193.

    Article  CAS  Google Scholar 

  152. Gouldson, P. R., Higgs, C., Smith, R. E., Dean, M. K., Gkoutos, G. V., and Reynolds, C. A. (2000) Dimerization and domain swapping in G protein-coupled receptors: a computational study. Neuropsychopharmacology 23, S60 - S77.

    Article  PubMed  CAS  Google Scholar 

  153. Monnot, C., Bihoreau, C., Conchon, S., Curnow, K. M., Corvol, P., and Clauser, E. (1996) Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J. Biol. Chem . 271, 1507–1513.

    Article  PubMed  CAS  Google Scholar 

  154. Davies, A., Gowen, B. E., Krebs, A. M., Schertler, G. F., and Saibil, H. R. (2001) Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J. Mol. Biol . 314, 455–463.

    Article  PubMed  CAS  Google Scholar 

  155. Krebs, A., Villa, C., Edwards, P. C., and Schertler, G. F. (1998) Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J. Mol. Biol . 282, 991–1003.

    Article  PubMed  CAS  Google Scholar 

  156. Schertler, G. F. and Hargrave, P. A. (1995) Projection structure of frog rhodopsin in two crystal forms. Proc. Natl. Acad. Sci. USA 92, 11578–11582.

    Article  PubMed  CAS  Google Scholar 

  157. Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128.

    Article  PubMed  CAS  Google Scholar 

  158. Jones, S. and Thornton, J. M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20.

    Article  PubMed  CAS  Google Scholar 

  159. Norel, R., Petrey, D., Wolfson, H. J., and Nussinov, R. (1999) Examination of shape cornplementarity in docking of unbound proteins. Proteins 36, 307–317.

    Article  PubMed  CAS  Google Scholar 

  160. Lo Conte, L., Chothia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol . 285, 2177–2198.

    Article  PubMed  Google Scholar 

  161. Gavin, A. C., Bosche, M., Krause, R., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  162. Ho, Y., Gruhler, A., Heilbut, A., et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  163. Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  164. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  165. Valencia, A. and Pazos, F. (2002) Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol . 12, 368–373.

    Article  PubMed  CAS  Google Scholar 

  166. Smith, G. R. and Sternberg, M. J. (2002) Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol . 12, 28–35.

    Article  PubMed  Google Scholar 

  167. Dixon, J. S. (1997) Evaluation of the CASP2 docking section. Proteins Suppl. 1, 198–204.

    Google Scholar 

  168. Moller, S., Vilo, J., and Croning, M. D. (2001) Prediction of the coupling specificity of G protein coupled receptors to their G proteins. Bioinformatics 17, S174–181.

    Article  PubMed  Google Scholar 

  169. Goh, C. S. and Cohen, F. E. (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol . 324, 177–192.

    Article  PubMed  CAS  Google Scholar 

  170. Oliveira, L., Paiva, A. C., and Vriend, G. (2002) Correlated mutation analysis on very large sequence families. Chembiochem 3, 1010–1017.

    Article  PubMed  CAS  Google Scholar 

  171. Horn, F., van der Wenden, E. M., Oliveira, L., AP, I. J., and Vriend, G. (2000) Receptors coupling to G proteins: is there a signal behind the sequence? Proteins 41, 448–459.

    Article  PubMed  CAS  Google Scholar 

  172. Oliveira, L., Paiva, A. C., and Vriend, G. (1999) A low resolution model for the interaction of G proteins with G protein-coupled receptors. Prot. Eng . 12, 1087–1095.

    Article  CAS  Google Scholar 

  173. Lichtarge, O., Sowa, M. E., and Philippi, A. (2002) Evolutionary traces of functional surfaces along G protein signaling pathway. Methods Enzymol. 344, 536–556.

    Article  PubMed  CAS  Google Scholar 

  174. Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex. Proc. Natl. Acad. Sci. USA 93, 7507–7511.

    Article  PubMed  CAS  Google Scholar 

  175. Dean, M. K., Higgs, C., Smith, R. E., et al. (2001) Dimerization of G protein-coupled receptors. J. Med. Chem . 44, 4595–4614.

    Article  PubMed  CAS  Google Scholar 

  176. Gobel, U., Sander, C., Schneider, R., and Valencia, A. (1994) Correlated mutations and residue contacts in proteins. Proteins 18, 309–317.

    Article  PubMed  CAS  Google Scholar 

  177. Olmea, O. and Valencia, A. (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des. 2, S25–32.

    Article  PubMed  CAS  Google Scholar 

  178. Pazos, F., Olmea, O., and Valencia, A. (1997) A graphical interface for correlated mutations and other protein structure prediction methods. Comput. Appl. Biosci . 13, 319–321.

    PubMed  CAS  Google Scholar 

  179. Pazos, F., Helmer-Citterich, M., Ausiello, G., and Valencia, A. (1997) Correlated mutations contain information about protein-protein interaction. J. Mol. Biol . 271, 511–523.

    Article  PubMed  CAS  Google Scholar 

  180. Pazos, F. and Valencia, A. (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47, 219–227.

    Article  PubMed  CAS  Google Scholar 

  181. Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol . 257, 342–358.

    Article  PubMed  CAS  Google Scholar 

  182. Madabushi, S., Yao, H., Marsh, M., Kristensen, D. M., Philippi, A., Sowa, M. E., and Lichtarge, O. (2002) Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol . 316, 139–154.

    Article  PubMed  CAS  Google Scholar 

  183. Lichtarge, O. and Sowa, M. E. (2002) Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol . 12, 21–27.

    Article  PubMed  CAS  Google Scholar 

  184. Gouldson, P. R., Dean, M. K., Snell, C. R., Bywater, R. P., Gkoutos, G., and Reynolds, C. A. (2001) Lipid-facing correlated mutations and dimerization in G protein coupled receptors. Prot. Eng . 14, 759–767.

    Article  CAS  Google Scholar 

  185. Gkoutos, G. V., Higgs, C., Bywater, R. P., Gouldson, P. R., and Reynolds, C. A. (1999) Evidence for dimerization in the (32-adrenergic receptor from the evolutionary trace method. Intl. J. Quantum. Chem. Biophys. Q . 74, 371–379.

    Article  CAS  Google Scholar 

  186. Filizola, M., Guo, W., Javitch, J. A., and Weinstein, H. (2003) Dimerization in G protein coupled receptors: Correlation analysis and electron density maps of rhodopsin from different species suggest subtype-specific interfaces. Biophys. J. 84(2), 1309 Pos Part 2.

    Google Scholar 

  187. Filizola, M., Olmea, O., and Weinstein, H. (2002) Prediction of heterodimerization interfaces of G protein coupled receptors with a new subtractive correlated mutation method. Prot. Eng . 15, 881–885.

    Article  CAS  Google Scholar 

  188. Filizola, M., Olmea, O., and Weinstein, H. (2002) Using correlated mutation analysis to predict the heterodimerization interface of GPCRs. Biophys. J. 82, 2307. (Part 2302 Jan 2002.)

    Google Scholar 

  189. Filizola, M. and Weinstein, H. (2002) Structural models for dimerization of G protein coupled receptors: the opioid receptor homodimers. Biopolymers (Peptide Sci.) 66, 317–325.

    Article  CAS  Google Scholar 

  190. Kuipers, W., Oliveira, L., Vriend, G., and Ijzerman, A. P. (1997) Identification of class-determining residues in G protein-coupled receptors by sequence analysis. Recept. Channels 5, 159–174.

    PubMed  CAS  Google Scholar 

  191. Singer, M. S., Oliveira, L., Vriend, G., and Shepherd, G. M. (1995) Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis. Recept. Channels 3, 89–95.

    PubMed  CAS  Google Scholar 

  192. Geva, A., Lassere, T. B., Lichtarge, O., Pollitt, S. K., and Baranski, T. J. (2000) Genetic mapping of the human C5a receptor. Identification of transmembrane amino acids critical for receptor function. J. Biol. Chem . 275, 35393–35401.

    Article  PubMed  CAS  Google Scholar 

  193. Baranski, T. J., Herzmark, P., Lichtarge, O., et al. (1999) C5a receptor activation. Genetic identification of critical residues in four transmembrane helices. J. Biol. Chem . 274, 15757–15765.

    Article  PubMed  CAS  Google Scholar 

  194. Jordan, B. A., Cvejic, S., and Devi, L. A. (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23, S5–S18.

    Google Scholar 

  195. Devi, L. A. (2000) G protein-coupled receptor dimers in the lime light. Trends Pharmacol. Sci . 21, 324–326.

    Article  PubMed  CAS  Google Scholar 

  196. Ramsay, D., Kellett, E., McVey, M., Rees, S., and Milligan, G. (2002) Homo-and heterooligomeric interactions between G protein-coupled receptors in living cells monitored by two variants of bioluminescene resonance energy transfer. Biochem. J . 365, 429–440.

    Article  PubMed  CAS  Google Scholar 

  197. Suzuki, S., Chuang, L. F., Yau, P., Doi, R. H., and Chuang, R. Y. (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp. Cell. Res . 280, 192–200.

    Article  PubMed  CAS  Google Scholar 

  198. Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002) The IkappaB-NFKappaB signaling module: temporal control and selective gene activation. Science 298, 1241–1245.

    Article  PubMed  CAS  Google Scholar 

  199. Bhalla, U. S., Ram, P. T., and Iyengar, R. (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  200. Neves, S. R. and Iyengar, R. (2002) Modeling of signaling networks. Bioessays 24, 1110–1117.

    Article  PubMed  CAS  Google Scholar 

  201. Neves, S. R., Ram, P. T., and Iyengar, R. (2002) G protein pathways. Science 296, 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  202. Ciruela, F., Casado, V., Mallol, J., Canela, E. I., Lluis, C., and Franco, R. (1995) Immunological identification of Al adenosine receptors in brain cortex. J. Neurosci. Res . 42, 818–828.

    Article  PubMed  CAS  Google Scholar 

  203. Cirula, F., Escriche, M., Burgueno, J., et al. (2001) Metabotropic glutamate lalpha and adenosine Al receptors assemble into functionally interacting complexes. J. Biol. Chem . 276, 18345–18351.

    Article  Google Scholar 

  204. Yoshioka, K., Saitoh, O., and Nakata, H. (2001) Heteromeric association creates a P2Ylike adenosine receptor. Proc. Natl. Acad. Sci. USA 98, 7617–7622.

    Article  PubMed  CAS  Google Scholar 

  205. Hillion, J., Canals, M., Torvinen, M., et al. (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem . 277, 18091–18097.

    Article  PubMed  CAS  Google Scholar 

  206. AbdAlla, S., Lother, H., Abdel-tawab, A. M., and Quitterer, U. (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem . 276, 39721–39726.

    Article  PubMed  CAS  Google Scholar 

  207. AbdAlla, S., Lother, H., el Massiery, A., and Quitterer, U. (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med . 7, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  208. Xu, J., He, J., Castleberry, A., Balasubramanian, S., Lau, A. G., and Hall, R. A. (2003) Heterodimerization of alpha-2A- and beta-1-adrenergic receptors. J. Biol. Chem . 278, 10770–10777.

    Article  PubMed  CAS  Google Scholar 

  209. Lavoie, C., Mercier, J. F., Salahpour, A., Umapathy, D., Breit, A., Villeneuve, L. R., et al. (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem . 277, 35402–35410.

    Article  PubMed  CAS  Google Scholar 

  210. Mukhopadhyay, S., McIntosh, H. H., Houston, D. B., and Howlett, A. C. (2000) The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol. Pharmacol . 57, 162–170.

    PubMed  CAS  Google Scholar 

  211. Ng, G. Y., Mouillac, B., George, S. R., Caron, M., Dennis, M., Bouvier, M., and O’Dowd, B. F. (1994) Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur. J. Pharmacol . 267, 7–19.

    Article  PubMed  CAS  Google Scholar 

  212. Nimchinsky, E. A., Hof, P. R., Janssen, W. G., Morrison, J. H., and Schmauss, C. (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem . 272, 29229–29237.

    Article  PubMed  CAS  Google Scholar 

  213. Scarselli, M., Novi, F., Schallmach, E., et al. (2001) D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem . 276, 30308–30314.

    Article  PubMed  CAS  Google Scholar 

  214. Fukushima, Y., Asano, T., Satioh, T., et al. (1997) Oligomer formation of histamine H2 receptors expressed in Sf9 and COS7 cells. FEBS Lett. 409, 283–286.

    Article  PubMed  CAS  Google Scholar 

  215. Nguyen, T., Shapiro, D. A., George, S. R., et al. (2001) Discovery of a novel member of the histamine receptor family. Mol. Pharmacol . 59, 427–433.

    PubMed  CAS  Google Scholar 

  216. Ng, G. Y., George, S. R., Zastawny, R. L., Caron, M., Bouvier, M., Dennis, M., and O’Dowd, B. F. (1993) Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 32, 11727–11733.

    Article  PubMed  CAS  Google Scholar 

  217. Xie, Z., Lee, S. P., O’Dowd, B. E, and George, S. R. (1999) Serotonin 5-HT1B and 5HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett. 456, 63–67.

    Article  PubMed  CAS  Google Scholar 

  218. Indrapichate, K., Meehan, D., Lane, T. A., et al. (1992) Biological actions of monoclonal luteinizing hormone/human chorionic gonadotropin receptor antibodies. Biol. Reprod . 46, 265–278.

    Article  PubMed  CAS  Google Scholar 

  219. Roess, D. A., Horvat, R. D., Munnelly, H., and Barisas, B. G. (2000) Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology 141, 4518–4523.

    Article  PubMed  CAS  Google Scholar 

  220. Maggio, R., Barbier, P., Colelli, A., Salvadori, F., Demontis, G., and Corsini, G. U. (1999) G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J. Pharmacol. Exp. Ther . 291, 251–257.

    PubMed  CAS  Google Scholar 

  221. Sawyer, G. W. and Ehlert, F. J. (1999) Muscarinic M3 receptor inactivation reveals a pertussis toxin-sensitive contractile response in the guinea pig colon: evidence for M2/M3 receptor interactions. J. Pharmacol. Exp. Ther . 289, 464–476.

    PubMed  CAS  Google Scholar 

  222. Dinger, M. C., Bader, J. E., Kobor, A. D., Kretzschmar, A. K., and Beck-Sickinger, A. G. (2003) Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells. J. Biol. Chem . 10, 10.

    Google Scholar 

  223. Pfeiffer, M., Koch, T., Schroder, H., Laugsch, M., Hollt, V., and Schulz, S. (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem . 277, 19762–19772.

    Article  PubMed  CAS  Google Scholar 

  224. Hanyaloglu, A. C., Seeber, R. M., Kohout, T. A., Lefkowitz, R. J., and Eidne, K. A. (2002) Homo and hetero-oligomerization of thyrotropin releasing hormone (TRH) receptor subtypes: differential regulation of -arrestins 1 and 2. J. Biol. Chem . 277, 50422–50430.

    Article  PubMed  CAS  Google Scholar 

  225. Cornea, A. and Michael Conn, P. (2002) Measurement of changes in fluorescence resonance energy transfer between gonadotropin-releasing hormone receptors in response to agonists. Methods 27, 333.

    Google Scholar 

  226. Ng, G. Y., Clark, J., Coulombe, N., et al. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem . 274, 7607–7610.

    Article  PubMed  CAS  Google Scholar 

  227. Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J., and Zuker, C. S. (2002) An amino-acid taste receptor. Nature 416, 199–202.

    Article  PubMed  CAS  Google Scholar 

  228. Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., and Zuker, C. S. (2001) Mammalian sweet taste receptors. Cell 106, 381–390.

    Article  PubMed  CAS  Google Scholar 

  229. Yesilaltay, A. and Jenness, D. D. (2000) Homo-oligomeric complexes of the yeast alpha-factor pheromone receptor are functional units of endocytosis. Mol. Biol. Cell . 11, 2873–2884.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filizola, M., Visiers, I., Skrabanek, L., Campagne, F., Weinstein, H. (2004). Functional Mechanisms of G Protein-Coupled Receptors in a Structural Context. In: Schousboe, A., Bräuner-Osborne, H. (eds) Molecular Neuropharmacology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-672-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-672-0_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-384-8

  • Online ISBN: 978-1-59259-672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics