Skip to main content

Insights From Endogenous and Engineered Zn2+ Binding Sites in Monoamine Transporters

  • Chapter
Molecular Neuropharmacology
  • 208 Accesses

Abstract

The availability in the synaptic cleft of dopamine, serotonin, and norepinephrine, referred to as the monoamines, is tightly regulated by specific transport proteins that mediate rapid uptake into the presynaptic nerve terminals utilizing the Na+ gradient across the plasma membrane as the driving force (1–3). Three distinct monoamine transporters have been identified: the dopamine transporter (DAT) (Fig. 1), the norepinephrine transporter (NET), and the serotonin transporter (SERT) (1–3). These transporters belong to the family of Na+/C1-coupled transporters that also include transporters for other neurotransmitters such as GABA (γ-aminobutyric acid) and glycine (1–3). The homology among the Na+/Cl-dependent neurotransmitter transporters is striking with, e.g., 67% sequence identity between DAT and NET, 49% between DAT and SERT, and 45% between DAT and the (GABA transporter-1 (GAT-1) (2,4). Recently, it has become clear that homologs of Na+/Cl-dependent transporters also exist in prokaryotes. BLAST searches of newly sequenced bacterial genomes have revealed the existence of genes in many bacteria and archae (~50) encoding proteins with up to 25% sequence identity with the human DAT (see also Chapter 12). The function of these putative transporters is unknown, except that one transporter from the thermophilic bacteria Symbiobacterium Thermophillum very recently has been identified as a highly selective tryptophan transporter (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakely, R. D. and Bauman, A. L. (2000) Biogenic amine transporters: regulation in flux. Curr. Opin. Neurobiol. 10, 328–336.

    Article  PubMed  CAS  Google Scholar 

  2. Norregaard, L. and Gether, U. (2001) The monoamine neurotransmitter transporters: structure, conformational changes and molecular gating. Curr. Opin. Drug Discov. Dey. 4, 591–601.

    CAS  Google Scholar 

  3. Tones, G. E., Gainetdinov, R. R., and Caron, M. G. (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci. 4, 13–25.

    Google Scholar 

  4. Miller, J. W., Kleven, D. T., Domin, B. A., and Fremau Jr., R. T. (1997) Cloned sodium-(and chloride-) dependent high affinity transporters for GABA, glycine, proline, betaine, taurine, and creatine, in Neurotransmitter Transporters: Structure, Function, and Regulation ( Reith, M. E. A., ed.). Humana Press, Totowa, NJ, pp. 101–150.

    Google Scholar 

  5. Androutsellis-Theotokis, A., Ueda, K., Beppu, T., Goldberg, N. R., Das, S., Javitch, J. A., and Rudnick, G. (2003) Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J. Biol. Chem.

    Google Scholar 

  6. Williams, K. A. (2000) Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403, 112–115.

    Article  PubMed  CAS  Google Scholar 

  7. Heymann, J. A., Sarker, R., Hirai, T., Shi, D., Milne, J. L., Maloney, P. C., and Subramaniam, S. (2001) Projection structure and molecular architecture of Ox1T, a bacterial membrane transporter. Embo. J. 20, 4408–4413.

    Article  PubMed  CAS  Google Scholar 

  8. Melikian, H. E., McDonald, J. K., Gu, H., Rudnick, G., Moore, K. R., and Blakely, R. D. (1994) Human norepinephrine transporter. Biosynthetic studies using a site-directed poly-clonal antibody. J. Biol. Chem. 269, 12290–12297.

    PubMed  CAS  Google Scholar 

  9. Bruss, M., Hammermann, R., Brimijoin, S., and Bonisch, H. (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J. Biol. Chem. 270, 9197–9201.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, J. G., Liu-Chen, S., and Rudnick, G. (1998) Determination of external loop topology in the serotonin transporter by site-directed chemical labeling [In Process Citation]. J. Biol. Chem. 273, 12675–12681.

    Article  PubMed  CAS  Google Scholar 

  11. Ferrer, J. and Javitch, J. A. (1998) Cocaine alters the accessibility of endogenous cysteines in putative extracellular and extracellular loops of the human dopamine transporter. Proc. Natl. Acad. Sci. USA 95, 9238–9243.

    Article  PubMed  CAS  Google Scholar 

  12. Barker, E. L., Kimmel, H. L., and Blakely, R. D. (1994) Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol. Pharmacol. 46, 799–807.

    PubMed  CAS  Google Scholar 

  13. Buck, K. J. and Amara, S. G. (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1methyl-4phenylpyridinium. Proc. Natl. Acad. Sci. USA 91, 12584–12588.

    Article  PubMed  CAS  Google Scholar 

  14. Giros, B., Wang, Y. M., Suter, S., McLeskey, S. B., Pifl, C., and Caron, M. G. (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J. Biol. Chem. 269, 15985–15988.

    PubMed  CAS  Google Scholar 

  15. Buck, K. J. and Amara, S. G. (1995) Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol. Pharmacol. 48, 1030–1037.

    PubMed  CAS  Google Scholar 

  16. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., and Uhl, G. R. (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl. Acad. Sci. USA 89, 7782–7785.

    Article  PubMed  CAS  Google Scholar 

  17. Barker, E. L. and Blakely, R. D. (1996) Identification of a single amino acid, phenylalanine 586, that is responsible for high affinity interactions of tricyclic antidepressants with the human serotonin transporter. Mol. Pharmacol. 50, 957–965.

    PubMed  CAS  Google Scholar 

  18. Bismuth, Y., Kavanaugh, M. P., and Kanner, B. I. (1997) Tyrosine 140 of the gammaaminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem. 272, 16096–16102.

    Article  PubMed  CAS  Google Scholar 

  19. Barker, E. L. and Blakely, R. D. (1998) Structural determinants of neurotransmitter transport using cross-species chimeras: studies on serotonin transporter. Methods Enzymol 296, 475–498.

    Article  PubMed  CAS  Google Scholar 

  20. Barker, E. L., Moore, K. R., Rakhshan, E, and Blakely, R. D. (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter [In Process Citation]. J. Neurosci. 19, 4705–4717.

    PubMed  CAS  Google Scholar 

  21. Adkins, E. M., Barker, E. L., and Blakely, R. D. (2001) Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain I in substrate recognition. Mol. Pharmacol. 59, 514–523.

    PubMed  CAS  Google Scholar 

  22. Chen, N., Vaughan, R. A., and Reith, M. E. (2001) The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis. J. Neurochem. 77, 1116–1127.

    Article  PubMed  CAS  Google Scholar 

  23. Vaughan, R. A. (1995) Photoaffinity-labeled ligand binding domains on dopamine transporters identified by peptide mapping. Mol. Pharmacol. 47, 956–964.

    PubMed  CAS  Google Scholar 

  24. Rasmussen, S. G., Carroll, E I., Maresch, M. J., Jensen, A. D., Tate, C. G., and Gether, U. (2001) Biophysical characterization of the cocaine binding pocket in the serotonin transporter using a fluorescent cocaine analogue as a molecular reporter. J. Biol. Chem. 276, 4717–4723.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J. Biol. Chem. 272, 28321–28327.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, N., Ferrer, J. V., Javitch, J. A., and Justice, J. B., Jr. (2000) Transport-dependent accessibility of a cytoplasmic loop cysteine in the human dopamine transporter.. 1. Biol. Chem. 275, 1608–1614.

    CAS  Google Scholar 

  27. Androutsellis-Theotokis, A., Ghassemi, F., and Rudnick, G. (2001) A conformationally sensitive residue on the cytoplasmic surface of serotonin transporter. J. Biol. Chem. 9, 9.

    Google Scholar 

  28. Androutsellis-Theotokis, A. and Rudnick, G. (2002) Accessibility and conformational coupling in serotonin transporter predicted internal domains. J. Neurosci. 22, 8370–8378.

    PubMed  CAS  Google Scholar 

  29. Schmid, J. A., Scholze, P., Kudlacek, O., Freissmuth, M., Singer, E. A., and Sitte, H. H. (2000) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J. Biol. Chem. 8, 8.

    Google Scholar 

  30. Hastrup, H., Karlin, A., and Javitch, J. A. (2001) Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc. Natl. Acad. Sci. USA 98, 10055–10060.

    Article  PubMed  CAS  Google Scholar 

  31. Frederickson, C. J. (1989) Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145–238.

    Article  PubMed  CAS  Google Scholar 

  32. Vallee, B. L. and Falchuk, K. H. (1993) The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118.

    Article  PubMed  CAS  Google Scholar 

  33. Alberts, I. L., Nadassy, K., and Wodak, S. J. (1998) Analysis of zinc binding sites in protein crystal structures. Protein. Sci. 7, 1700–1716.

    Article  PubMed  CAS  Google Scholar 

  34. Auld, D. S. (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271–313.

    Article  PubMed  CAS  Google Scholar 

  35. Schwabe, J. W. and Klug, A. (1994) Zinc mining for protein domains [news; comment]. Nat. Struct. Biol. 1, 345–349.

    Article  PubMed  CAS  Google Scholar 

  36. Norregaard, L., Visiers, I., Loland, C. J., Ballesteros, J., Weinstein, H., and Gether, U. (2000) Structural probing of a microdomain in the dopamine transporter by engineering of artificial Zn(2+) binding sites. Biochemistry 39, 15836–15846.

    Article  PubMed  CAS  Google Scholar 

  37. Draguhn, A., Verdorn, T. A., Ewen, M., Seeburg, P. H., and Sakmann, B. (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5, 781–788.

    Article  PubMed  CAS  Google Scholar 

  38. Horenstein, J. and Akabas, M. H. (1998) Location of a high affinity Zn2+ binding site in the channel of alphalbetal gamma-aminobutyric acidA receptors. Mol. Pharmacol. 53, 870–877.

    PubMed  CAS  Google Scholar 

  39. Bloomenthal, A. B., Goldwater, E., Pritchett, D. B., and Harrison, N. L. (1994) Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol. Pharmacol. 46, 1156–1159.

    PubMed  CAS  Google Scholar 

  40. Laube, B., Kuhse, J., Rundstrom, N., Kirsch, J., Schmieden, V., and Betz, H. (1995) Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J. Physiol. (Lond.) 483, 613–619.

    CAS  Google Scholar 

  41. Peters, S., Koh, J., and Choi, D. W. (1987) Zinc selectively blocks the action of N-methyl-Daspartate on cortical neurons. Science 236, 589–593.

    Article  PubMed  CAS  Google Scholar 

  42. Westbrook, G. L. and Mayer, M. L. (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643.

    Article  PubMed  CAS  Google Scholar 

  43. Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954.

    Article  PubMed  CAS  Google Scholar 

  44. Choi, Y. B. and Lipton, S. A. (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180.

    Article  PubMed  CAS  Google Scholar 

  45. Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J., and Neyton, J. (2000) Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683–694.

    Article  PubMed  CAS  Google Scholar 

  46. Holst, B., Elling, C. E., and Schwartz, T. W. (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J. Biol. Chem. 277, 47662–47670.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenkilde, M. M., Lucibello, M., Holst, B., and Schwartz, T. W. (1998) Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor. FEBS Lett. 439, 35–40.

    Article  PubMed  CAS  Google Scholar 

  48. Swaminath, G., Steenhuis, J., Kobilka, B., and Lee, T. W. (2002) Allosteric modulation of beta2-adrenergic receptor by Zn(2+) Mol. Pharmacol. 61, 65–72.

    Article  PubMed  CAS  Google Scholar 

  49. Swaminath, G., Lee, T. W., and Kobilka, B. (2003) Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor. J. Biol. Chem. 278, 352–356.

    Article  PubMed  CAS  Google Scholar 

  50. Norregaard, L., Frederiksen, D., Nielsen, E. O., and Gether, U. (1998) Delineation of an endogenous zinc-binding site in the human dopamine transporter. Embo. J. 17, 4266–4273.

    Article  PubMed  CAS  Google Scholar 

  51. Loland, C. J., Norregaard, L., and Gether, U. (1999) Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site. J Biol. Chem. 274, 36928–36934.

    Article  PubMed  CAS  Google Scholar 

  52. Vandenberg, R. J., Mitrovic, A. D., and Johnston, G. A. (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol. Pharmacol. 54, 189–196.

    PubMed  CAS  Google Scholar 

  53. Frederickson, C. J. and Bush, A. I. (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14, 353–366.

    Article  PubMed  CAS  Google Scholar 

  54. Vogt, K., Mellor, J., Tong, G., and Nicoll, R. (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196.

    Article  PubMed  CAS  Google Scholar 

  55. Li, Y., Hough, C. J., Frederickson, C. J., and Sarvey, J. M. (2001) Induction of mossy fiber Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J. Neurosci. 21, 8015–8025.

    PubMed  CAS  Google Scholar 

  56. Li, Y., Hough, C. J., Suh, S. W., Sarvey, J. M., and Frederickson, C. J. (2001) Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86, 2597–2604.

    PubMed  CAS  Google Scholar 

  57. Assaf, S. Y. and Chung, S. H. (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736.

    Article  PubMed  CAS  Google Scholar 

  58. Berg, J. M. and Shi, Y. (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  59. Elling, C. E., Nielsen, S. M., and Schwartz, T. W. (1995) Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature 374, 74–77.

    Article  PubMed  CAS  Google Scholar 

  60. Voss, J., Hubbell, W. L., and Kaback, H. R. (1995) Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 12300–12303.

    Article  PubMed  CAS  Google Scholar 

  61. Voss, J., Salwinski, L., Kaback, H. R., and Hubbell, W. L. (1995) A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proc. Natl. Acad. Sci. USA 92, 12295–12299.

    Article  PubMed  CAS  Google Scholar 

  62. Elling, C. E. and Schwartz, T. W. (1996) Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. Embo. J. 15, 6213–6219.

    PubMed  CAS  Google Scholar 

  63. Thirstrup, K., Elling, C. E., Hjorth, S. A., and Schwartz, T. W. (1996) Construction of a high affinity zinc switch in the kappa-opioid receptor. J. Biol. Chem. 271, 7875–7878.

    Article  PubMed  CAS  Google Scholar 

  64. Elling, C. E., Thirstrup, K., Nielsen, S. M., Hjorth, S. A., and Schwartz, T. W. (1997) Engineering of metal-ion sites as distance constraints in structural and functional analysis of 7TM receptors. Fold Des. 2, S76–80.

    Article  PubMed  CAS  Google Scholar 

  65. MacAulay, N., Bendahan, A., Loland, C. J., Zeuthen, T., Kanner, B. I., and Gether, U. (2001) Engineered Znsuper2J+ switches in the GABA transporter-1: differential effects on GABA uptake and currents. J. Biol. Chem. 29, 29.

    Google Scholar 

  66. Loland, C. J., Norregaard, L., Litman, T., and Gether, U. (2002) Generation of an activating Zn(2+) switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl. Acad. Sci. USA 99, 1683–1688.

    Article  PubMed  CAS  Google Scholar 

  67. Norgaard-Nielsen, K., Norregaard, L., Hastrup, H., Javitch, J. A., and Gether, U. (2002) Zn(2+) site engineering at the oligomeric interface of the dopamine transporter. FEBS Lett. 524, 87–91.

    Article  PubMed  CAS  Google Scholar 

  68. Elling, C. E., Thirstrup, K., Holst, B., and Schwartz, T. W. (1999) Conversion of agonist site to metal-ion chelator site in the beta(2)- adrenergic receptor. Proc. Natl. Acad. Sci. USA 96, 12322–12327.

    Article  PubMed  CAS  Google Scholar 

  69. Regan, L. (1995) Protein design: novel metal-binding sites. Trends Biochem. Sci. 20, 280–285.

    Article  PubMed  CAS  Google Scholar 

  70. Ippolito, J. A., Baird, T. T., Jr., McGee, S. A., Christianson, D. W., and Fierke, C. A. (1995) Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity. Proc. Natl. Acad. Sci. USA 92, 5017–5021.

    Article  PubMed  CAS  Google Scholar 

  71. He, M. M., Voss, J., Hubbell, W. L., and Kaback, H. R. (1995) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and G1u325). Biochemistry 34, 15667–15670.

    Article  PubMed  CAS  Google Scholar 

  72. He, M. M., Voss, J., Hubbell, W. L., and Kaback, H. R. (1995) Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 1. Proximity of helix VII (Asp237 and Asp240) with helices X (Lys319) and XI (Lys358). Biochemistry 34, 15661–15666.

    Article  PubMed  CAS  Google Scholar 

  73. Jung, K., Voss, J., He, M., Hubbell, W. L., and Kaback, H. R. (1995) Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry 34, 6272–6277.

    Article  PubMed  CAS  Google Scholar 

  74. Holst, B., Elling, C. E., and Schwartz, T. W. (2000) Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor. Mol. Pharmacol. 58, 263–270.

    PubMed  CAS  Google Scholar 

  75. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P., and Boume, H. R. (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350.

    Article  PubMed  CAS  Google Scholar 

  76. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Khorana, H. G. (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770.

    Article  PubMed  CAS  Google Scholar 

  77. Jensen, A. D., Guarnieri, F., Rasmussen, S. G., Asmar, F., Ballesteros, J. A., and Gether, U. (2001) Agonist-induced conformational changes at the cytoplasmic side of TM6 in the beta2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem. 276, 9279–9290.

    Article  PubMed  CAS  Google Scholar 

  78. Ballesteros, J. A., Jensen, A. D., Liapakis, G., Rasmussen, S. G., Shi, L., Gether, U., and Javitch, J. A. (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177.

    Article  PubMed  CAS  Google Scholar 

  79. Jensen, A. A., Sheppard, R. O., Jensen, L. B., O’Hara, P. J., and Brauner-Osborne, H. (2001) Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1: noncompetitive antagonism originating from the amino-terminal domain of a family C G protein-coupled receptor. J. Biol. Chem. 276, 10110–10118.

    Article  PubMed  CAS  Google Scholar 

  80. Levi, G. and Raiteri, M. (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci. 16, 415–419.

    Article  PubMed  CAS  Google Scholar 

  81. Sitte, H. H., Huck, S., Reither, H., Boehm, S., Singer, E. A., and Pifl, C. (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J. Neurochem. 71, 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  82. Fischer, J. F. and Cho, A. K. (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp. Ther. 208, 203–209.

    PubMed  CAS  Google Scholar 

  83. Scholze, P., Norregaard, L., Singer, E. A., Freissmuth, M., Gether, U., and Sitte, H. H. (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J. Biol. Chem. 8, 8.

    Google Scholar 

  84. Falkenburger, B. H., Barstow, K. L., and Mintz, I. M. (2001) Dendrodendritic inhibition through reversal of dopamine transport. Science 293, 2465–2470.

    Article  PubMed  CAS  Google Scholar 

  85. Rudnick, G. (1997) Mechanisms of biogenic amine neurotransporters, in Neurotransmitter Transporters: Structure, Function, and Regulation 1st ed. ( Reith, M. E. A., ed.), Humana Press, Totowa, NJ, pp. 73–100.

    Google Scholar 

  86. Lefkowitz, R. J., Cotecchia, S., Samama, R, and Costa, T. (1993) Constitutive activity of receptors coupled to guanine nucelotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307.

    Article  PubMed  CAS  Google Scholar 

  87. Gether, U. (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113.

    Article  PubMed  CAS  Google Scholar 

  88. Wang, J. B., Moriwaki, A., and Uhl, G. R. (1995) Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression. J. Neurochem. 64, 1416–1419.

    Google Scholar 

  89. Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) External cysteine residues in the serotonin transporter. Biochemistry 36, 1479–1486.

    Article  PubMed  CAS  Google Scholar 

  90. Sur, C., Schloss, R, and Betz, H. (1997) The rat serotonin transporter: identification of cysteine residues important for substrate transport. Biochem. Biophys. Res. Commun. 241, 68–72.

    Article  PubMed  CAS  Google Scholar 

  91. Thayer, M. M., Flaherty, K. M., and McKay, D. B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J. Biol. Chem. 266, 2864–2871.

    PubMed  CAS  Google Scholar 

  92. Hakansson, K., Carlsson, M., Svensson, L. A., and Liljas, A. (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol. 227, 1192–1204.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loland, C.J., Gether, U. (2004). Insights From Endogenous and Engineered Zn2+ Binding Sites in Monoamine Transporters. In: Schousboe, A., Bräuner-Osborne, H. (eds) Molecular Neuropharmacology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-672-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-672-0_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-384-8

  • Online ISBN: 978-1-59259-672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics