Skip to main content

Computational Studies of Ligand-Receptor Interactions in Ionotropic Glutamate Receptors

  • Chapter
Molecular Neuropharmacology

Abstract

The determination by Gouaux and co-workers of the three-dimensional (3D) structure of a construct corresponding to the ligand-binding domain (S1S2) of the iGluR2 ionotropic glutamate receptor subunit constitutes a breakthrough in glutamate receptor research. Since the first publication of an iGluR2 construct (S1S2I) in complex with kainate (1), a number of X-ray structures based on a slightly modified construct (S1S2J) have been reported, including the ligand-free apo form of the protein (2) and ligand—iGlur2 complexes involving antagonists as well as agonists. The ligands in these complexes include the agonists (S)-glutamate (Glu) (2), (S)-2-amino-3-hydroxy-5-methyl-4-isoxazolyl propionic acid (AMPA) (2), kainate (2), (S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)-propionic acid (ACPA), (3), (S)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol-4-yl]propionic acid (2-methyltetrazolyl AMPA) (3), (S)-2-amino-3-(4-bromo-3-hydroxy-5-isoxazolyl) propionic acid (Br-HIBO) (3); and the competitive antagonists 6,7-dinitro-2,3-quinoxalinedione (DNQX) (2) and (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]-propionic acid (ATPO) (4). The structures of these ligands are shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, N., Sun, Y., Chen, G.-Q., and Gouaux, E. (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917.

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong, N. and Gouaux, E. (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the G1uR2 ligand binding core. Neuron 28, 165–181.

    Article  PubMed  CAS  Google Scholar 

  3. Hogner, A., Kastrup, J. S., Jin, R., Liljefors, T., Mayer, M. L., Egebjerg, J., et al. (2002) Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the G1uR2 binding core. J. Mol. Biol. 322, 93–109.

    Article  PubMed  CAS  Google Scholar 

  4. Hogner, A., Greenwood, J. R., Liljefors, T., Lunn, M.-L., Egebjerg, J., Larsen, I. K., et al. (2002) Competitive antagonism of AMPA receptors by ligands of different classes: crystal structures of ATPO bound to the G1uR2 ligand-binding core, in comparison with DNQX. J. Med. Chem. 46, 214–221.

    Article  Google Scholar 

  5. Coquelle, T., Christensen, J. K., Banke T. G., Madsen, U., Schousboe, A., and Pickering, D. S. (2000) Agonist discrimination between AMPA receptor subtypes. NeuroReport 11, 2643–2648.

    Article  PubMed  CAS  Google Scholar 

  6. Banke, T. G., Greenwood, J. R., Christensen, J. K., Liljefors, T., Schousboe, A., and Pickering, D. S. (2001) Identification of amino acid residues in GluR1 responsible for ligand binding and desensitisation. J. Neurosci. 21, 3052–3062.

    PubMed  CAS  Google Scholar 

  7. Yu, S., Olson, R., Horning, M., Armstrong, N., Mayer, M., and Gouaux, E. (2002) Mechanism of glutamate receptor desensitization. Nature 417, 245–253.

    Article  Google Scholar 

  8. Arinaminpathy, Y., Sansom, M. S. P., and Biggin, B. C. (2002) Molecular Dynamics simulations of the ligand binding domain of the ionotropic glutamate receptor G1uR2. Biophys. J. 82, 676–693.

    Article  PubMed  CAS  Google Scholar 

  9. McFeeters, R. L. and Oswald, R. E. (2002) Structural mobility of the extracellular ligand-binding core of an ionotropic glutamate receptor. Analysis of NMR relaxation dynamics. Biochemistry 41, 10472–10481.

    Article  PubMed  CAS  Google Scholar 

  10. Lunn, M.-L. (2002) From gene to crystal structure. PhD thesis, Royal Danish School of Pharmacy, Copenhagen.

    Google Scholar 

  11. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool (BLAST). J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  12. Schwede T., Diemand A., Guex N., and Peitsch M. C. (2000) Protein structure computing in the genomic era. Res. Microbiol.151, 107 - 112. http://www.expasy.ch/swissmod/SWISSMODEL.html.

    Article  PubMed  CAS  Google Scholar 

  13. Brehm, L., Greenwood, J. R., Nielsen, B., Egebjerg, J., Stensbol, T. B., Bräuner-Osborne, H., et al. (2003) (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohept[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the G1uR5 subtype of glutamate receptors. Synthesis, modelling and molecular pharmacology. J. Med. Chem. 46, 1350–1358.

    Google Scholar 

  14. Singh, J. and Thornton, J. M. (1992). Atlas of Protein Side-Chain Interactions, Vols. 1 and 2. IRL Press, Oxford, UK.

    Google Scholar 

  15. Campiani, G., Morelli, E., Nacci, V., Fattorusso, C., Ramunno, A., Novellino, E., et al. (2001) Characterization of the 1H-Cyclopentapyrimidine-2,4(IH,3H)-dione derivative (S)CPW399 as a novel, potent, and subtype-selective AMPA receptor full agonist with partial desensitization properties. J. Med. Chem. 44, 4501–4504.

    Article  PubMed  CAS  Google Scholar 

  16. Goodford, P. J. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857.

    Article  PubMed  CAS  Google Scholar 

  17. GRID version 20 (2002) Molecular Discovery Ltd., 4 Chandos Street, London, W1A 3AQ.

    Google Scholar 

  18. Vriend, G. (1990) A molecular modeling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  19. Kizelsztein, P., Eisenstein, M., Strutz, N., Hollmann, M., and Teichberg, V. I. (2000) Mutant cycle analysis of the active and desensitized states of an AMPA receptor induced by willardiines. Biochemistry 39, 12819–12827.

    Article  PubMed  CAS  Google Scholar 

  20. Lampinen, M., Settimo, L., Pentikäinen, O. T., Jouppila, A., Mottershead, D. G., Johnson, M. S., and Keinänen, K. (2002) Discrimination between agonists and antagonists by the a-amino3-hydroxy-5-methyl-4-isoxazole propionoic acid selective glutamate receptor. A mutation analysis of the ligand-binding domain for G1uR-D subunit. J. Biol. Chem. 227, 41, 940 11, 947.

    Google Scholar 

  21. Pentikäinen, O., Settimo, L., Lampinin, M., Jouppila, A., Keinänen, K., and Johnson, M. S. (2002) Selective agonist binding of AMPA and kainate receptors. P21, Biomolecular Interactions, Molecular Graphics and Modelling Society, Bristol UK, 3–5 April.

    Google Scholar 

  22. Jensen, T. V., Jakobsen, K. B., Greenwood, J. R., and Johansen, T. N. (2002) Unpublished data.

    Google Scholar 

  23. Glide version 1.8 (2002) Schrödinger, Inc., 1500 S.W. First Avenue, Suite 1180 Portland, OR 97201.

    Google Scholar 

  24. Rarey, M., Kramer, B., Lengauer, T., and Klebe G. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.

    Article  PubMed  CAS  Google Scholar 

  25. Jones, G., Willett, P., and Glen, R. C. (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53.

    Article  PubMed  CAS  Google Scholar 

  26. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Olsen, A. J. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662.

    Article  CAS  Google Scholar 

  27. Muegge, I. and Rarey, M. (2001) Small molecule docking and scoring in Rev. Comput. Chem. Vol. 17, (Lipkowitz, K. and Boyd, D. B., eds.) Wiley-VCH, John Wiley and Sons, Inc., New York, NY, pp. 3–60.

    Google Scholar 

  28. Jacobsen, L. (2002) Ligand docking to iGluR2 and PPARy. Evaluation of the docking program Glide and comparisons with FlexX and GOLD. Master’s Thesis, Royal Danish School of Pharmacy, Copenhagen.

    Google Scholar 

  29. Stensbol, T. B., Ulmann, P., Morel, S., Eriksen, B. L., Felding, J., Kromann, H., et al. (2002) Novel 1-hydroxyazole bioisosteres of (S)-glutamic acid; synthesis, proteolytic properties and pharmacology. J. Med. Chem. 45, 19–31.

    Article  PubMed  CAS  Google Scholar 

  30. Johansen, T. N., Greenwood, J. R., Frydenvang, K., Madsen, U., and Krogsgaard-Larsen, P. (2003). Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors. Chirality, 15, 167–179.

    Article  PubMed  CAS  Google Scholar 

  31. Johansen, T. N., Janin, Y. L., Nielsen, B., Frydenvang, K., Bräuner-Osborne, H., Stensbol, T. B., et al. (2002) 2-Amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid: resolution, absolute stereochemistry and enantiopharmacology at glutamate receptors. Bioorg. Med. Chem. 10, 2259–2266.

    Google Scholar 

  32. Pickering, D. S. (2002) Unpublished data.

    Google Scholar 

  33. Ebert, B., Lenz, S. M., Brehm, L., Bregnedal, P., Hansen, J. J., Frederiksen, K., et al. (1994) Resolution, absolute stereochemistry, and pharmacology of the S-(+)- and R-(—)-isomers of the apparent partial AMPA receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-phenylisoxazol4-yl)propionic acid [(R,S)-APPA]. J. Med. Chem. 37, 878–884.

    Article  PubMed  CAS  Google Scholar 

  34. Stensbol, T. B., Jensen, H. S., Nielsen, B., Johansen, T. N., Egebjerg, J., Frydenvang, K., and Krogsgaard-Larsen, P. (2001) Stereochemistry and molecular pharmacology of (S)thio-ATPA, a new potent and selective G1uR5 agonist. Eur. J. Pharmacol. 411, 245–253.

    Article  PubMed  CAS  Google Scholar 

  35. Vogensen, S. B., Jensen, H. S., Stensbol, T. B., Frydenvang, K., Bang-Andersen, B., Johansen, T. N., et al. (2000) Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent G1uR3- and G1uR4-preferring AMPA receptor agonist. Chirality 12, 705–713.

    Article  PubMed  CAS  Google Scholar 

  36. Stensbol, T. B., Madsen, U., and Krogsgaard-Larsen, P. (2002) The AMPA receptor binding site: focus on agonists and competitive antagonists. Curr. Pharm. Design 8, 857–872.

    Article  CAS  Google Scholar 

  37. Bleakman, R., Schoepp, D. D., Ballyk, B., Bufton, H., Sharpe, E. F., Thomas, K., et al. (1996) Pharmacological discrimination of G1uR5 and G1uR6 kainate receptor subtypes by (3S, 4aR, 6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid. Mol. Pharmacol. 49, 581–585.

    PubMed  CAS  Google Scholar 

  38. Greenwood, J. R. and T. Liljefors, T. (2001) Using the new X-ray crystal structures of ionotropic glutamate neuroreceptor subunit ligand-protein complexes for understanding subtype selectivity. Molecular Graphics and Modelling Society, Model(l)ing 2001, Erlangen, Germany.

    Google Scholar 

  39. Jane, D. E., Hoo, K., Kamboj, R., Deverill, M., Bleakman, D., and Mandelzys, A. Synthesis of willardiine and 6-azawillardiine analogues: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes. J. Med. Chem. 40, 3645–3650.

    Google Scholar 

  40. Hogner, A. (2002) AMPA receptor activation and deactivation: a study of protein—ligand interactions of the G1uR2 ligand binding core by X-ray crystallography. PhD thesis, Royal Danish School of Pharmacy, Copenhagen.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greenwood, J.R., Liljefors, T. (2004). Computational Studies of Ligand-Receptor Interactions in Ionotropic Glutamate Receptors. In: Schousboe, A., Bräuner-Osborne, H. (eds) Molecular Neuropharmacology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-672-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-672-0_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-384-8

  • Online ISBN: 978-1-59259-672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics