Skip to main content

Cardiac Monitoring in the Neurosciences Critical Care Unit

  • Chapter
Critical Care Neurology and Neurosurgery

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 315 Accesses

Abstract

The cardiovascular and central nervous systems (CNS) are closely related. Coronary artery disease and ischemic stroke share similar risk factors, including age, gender, hypertension, diabetes, hyperlipidemia, and cigarette smoking (1,2). In addition, structural heart disease, such as atrial fibrillation, decreased left ventricular function, patent foramen ovale, and atrial septal aneurysm, are independent risk factors for stroke (3–6). The cardiovascular system in turn is closely regulated by the nervous system, which helps modulate cardiovascular changes to demand during various physiological and pathologic states (7,8) (see also Chapter 10). Afferent fibers from the heart and arterial baroreceptors are carried to the nucleus tractus solitarius (NTS) and dorsal vagal nucleus (DVN), located in the brainstem via the glossopharyngeal and vagus nerves. The efferent parasympathetic fibers arise in the DVN, and the efferent sympathetic fibers arise in the intermediolateral column (IML) of the spinal cord. These nuclei are extensively connected to each other and in turn receive input from the hypothalamus and the cerebral cortex (9–13). The CNS acts primarily by modulating the autonomic nervous system by excitatory or inhibitory impulses. The resultant changes in efferent sympathetic and parasympathetic activity allow for rapid changes in heart rate, blood pressure, vasomotor tone, cardiac metabolism and cardiac output (14,15). Therefore lesions affecting the CNS can be caused by a primary cardiac problem or may cause cardiovascular dysfunction in a previously normal heart or may precipitate underlying cardiac disease. Cardiovascular diseases can be grouped under three clinical entities: arrhythmias, myocardial contractile dysfunction, and hemodynamic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sacco, RL. Newer risk factors for stroke. Neurology 2001; 57 (Suppl 2): S31–S34.

    Article  PubMed  CAS  Google Scholar 

  2. Sacco RL, Benson RT, Kargman DE, et al. High-density lioprotein cholesterol and ischemic stroke in the elderly: the Northern manhattan Stroke Study. JAMA 2001; 285: 2729–2735.

    Article  PubMed  CAS  Google Scholar 

  3. Gorelick PB, Sacco RL, Smith D, et al. Prevention of a first stroke- A review of guidelines and a multidisciplinary consensus statement from the National Stroke Association. JAMA 1999; 281: 1112–1120.

    Article  PubMed  CAS  Google Scholar 

  4. Pullicino PM, Halperin JL, Thompson JL. Stroke in patients with heart failure and reduced left ventricular ejection fraction. Neurology 2000; 54: 288–294.

    Article  PubMed  CAS  Google Scholar 

  5. Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Arch. Intern. Med. 1994; 154: 1449–1457.

    Article  Google Scholar 

  6. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation, a major contributor to stroke in the elderly: the Framingham study. Arch. Intern. Med. 1987; 147: 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  7. Kannel WB, Wolf PA, Verter J. Manifestations of coronary disease predisposing to stroke: the Framingham study. JAMA 1983; 250: 2942–2946.

    Article  PubMed  CAS  Google Scholar 

  8. Smith OA, Galosy RA, Weiss SM. Circulation, Neurobiology and Behavior. New York: Elsevier, 1982.

    Google Scholar 

  9. Natelson BH. Neurocardiology: an interdisciplinary area for the 80s. Arch. Neurol. 1985; 42: 178–184.

    Article  PubMed  CAS  Google Scholar 

  10. Dampney RAL. Functional organization of central cardiovascular pathways. Clin. Exp. Pharmacol. Physiol. 1981; 8: 241–259.

    Article  PubMed  CAS  Google Scholar 

  11. Loewy. Descending pathways to the sympathetic preganglionic neurons. Prog. Brain Res. 1982; 57: 267–277.

    Article  Google Scholar 

  12. Loewy AD, Burton H. Nuclei of the solitary tract: efferent projections to the lower brainstem. and the spinal cord of the cat. J. Comp. Neurol. 1978; 181: 421–449.

    Article  PubMed  CAS  Google Scholar 

  13. Loewy AD, McKellar S, Saper CB. Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 1979; 174: 309–314.

    Article  PubMed  CAS  Google Scholar 

  14. Korner PI. Integrative neural cardiovascular control. Physiol. Rev. 1971; 51: 312–367.

    PubMed  CAS  Google Scholar 

  15. Talman WT. Cardiovascular regulation and lesions of the central nervous system. Ann. Neurol. 1985; 18: 1–12.

    Article  PubMed  CAS  Google Scholar 

  16. Randall WC, Wechsler JS, Pace JB, Szentivanyi M: Alteration in myocardial contractility during stimulation of cardiac nerves. Am. J. Physiol. 1968; 214: 1205–1212.

    PubMed  CAS  Google Scholar 

  17. Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 1993; 87: 230–239.

    Article  PubMed  CAS  Google Scholar 

  18. Powner DJ, Hendrich A, Nyhuis A, Strate R. Changes in serum catecholamine levels in patients who are brain dead. J. Heart Lung Transplant. 1992; 11: 1046–1053.

    PubMed  CAS  Google Scholar 

  19. Pitts RF, Bronk DW. Excitability cycle of the hypothalamus-sympathetic neurone system. Am. J. Physiol. 1941; 135: 504–522.

    Google Scholar 

  20. Reis DJ, Oliphant MC. Bradycardia and tachycardia following electrical stimulation of the amygdaloid region in the monkey. J. Neurophysiol. 1964; 27: 893–912.

    PubMed  CAS  Google Scholar 

  21. Anand DK, Dua S. Circulatory and respiratory changes induced by electrical stimulation of the limbic system (visceral brain). J. Neurophysiol. 1956; 19: 393–400.

    PubMed  CAS  Google Scholar 

  22. Tokgozoglu SL, Batur MF, Topcuoglu MA, et al. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 1999; 30: 1307–1311.

    Article  PubMed  CAS  Google Scholar 

  23. Rona G. Catecholamine cardiotoxicity. J. Mol. Cell Cardiol. 1985; 17: 291–306.

    Article  PubMed  CAS  Google Scholar 

  24. Todd GL, Baroldi G, Pieper GM, et al. Experimental catecholamine-induced myocardial necrosis: Morphology, quantification and regional distribution of acute contraction band necrosis. J. Mol. Cell. Cardiol. 1985; 17: 317–338.

    Article  PubMed  CAS  Google Scholar 

  25. Benedict CR, Loach AB. Clinical significance of plasma adrenaline and noradrenaline concentrations in patients with subarachnoid hemorrhage. J. Neurol. Neurosurg. Psychiatry 1978; 41: 113–117.

    Article  PubMed  CAS  Google Scholar 

  26. Greenhoot JH, Reichenbach DD. Cardiac injury and subarachnoid hemorrhage: A clinical, pathological and physiological correlation. J. Neurosurg. 1969; 30: 521–531.

    Article  PubMed  CAS  Google Scholar 

  27. Samuels MA. Neurogenic heart disease: A unifying hypothesis. Am. J. Cardiol. 1987; 60: 15J–19J.

    Article  PubMed  CAS  Google Scholar 

  28. Lehmann KG, Lane JG, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence time course and severity. J. Am. Coll. Cardiol. 1987; 10: 46–52.

    Article  PubMed  CAS  Google Scholar 

  29. Ball PA. Critical care of spinal cord injury. Spine 2001; 26: S27–S30.

    Article  PubMed  CAS  Google Scholar 

  30. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N. Engl. J. Med. 2001; 344: 1450–1460.

    Article  PubMed  CAS  Google Scholar 

  31. Qureshi AI. Geocadin RG. Suarez JI. Ulatowski JA. Long-term outcome after medical reversal of transtentorial herniation in patients with supratentorial mass lesions. Crit. Care Med. 2000; 28: 1556–1564.

    Article  PubMed  CAS  Google Scholar 

  32. Adams J, Abendschein D, Jaffe A. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation 1993; 88: 750–763.

    Article  PubMed  CAS  Google Scholar 

  33. Lee TH, Goldman L. Serum enzyme assays in the diagnosis of myocardial infarction. Ann. Intern. Med. 1986; 105: 221–225.

    PubMed  CAS  Google Scholar 

  34. Mair J, Dienstl J, Puschendorf B. Cardiac troponin T in the diagnosis of myocardial injury. Crit. Rev. Clin. Lab. Sci. 1992; 29: 31–57.

    Article  PubMed  CAS  Google Scholar 

  35. Wu AH, Apple FS, Gibler WB, et al. National Academy of Clinical Biochemistry Standards of Laboratory Practice: Recommendation for the use of cardiac markers in coronary artery disease. Clin. Chem. 1999; 45: 1104–1121.

    PubMed  CAS  Google Scholar 

  36. Brogan GX Jr, Hollander JE, McCuskey CF, et al. Evaluation of a new assay for cardiac troponin I vs creatine kinase-MB for the diagnosis of acute myocardial infarction. Biochemical Markers for Acute Myocardial Ischemia (BAMI) Study Group. Acad. Emerg. Med. 1997; 4: 6–12.

    Article  PubMed  Google Scholar 

  37. Zimmerman J, Fromm R, Meyer D, et al. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation 1999; 1671–1677.

    Google Scholar 

  38. Hamm CW. New serum markers for acute myocardial infarction. N. Engl. J. Med. 1994; 331: 607–608.

    Article  PubMed  CAS  Google Scholar 

  39. Tanasijevic MJ, Cannon CP, Antman EM, et al. Myoglobin, creatine kinase-MB and cardiac troponin –I 60-minute ratios predict infarct related artery patency after thrombolysis for acute myocardial infarction: results from the Thrombolysis in Myocardial Infarction study (TIMI) 10B. J. Am. Coll. Cardiol. 1999: 34: 739–747.

    Article  PubMed  CAS  Google Scholar 

  40. Heeschen C, Hamm CW, Goldmann B, et al. Troponin concentrations for stratification of patients with acute coronary syndromes in relation to therapeutic efficacy of tirofiban. PRISM Study Investigators. Lancet 1999; 354: 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  41. Kreus KE, Kemila SJ, Takala JK. Electrocardiographic changes in cerebrovascular accidents. Acta. Med. Scand. 1969; 185: 327–334.

    Article  PubMed  CAS  Google Scholar 

  42. Davis TP, Alexander J, Lesch M. Electrocardiographic changes associated with acute cerebrovascular disease: A clinical review. Prog. Cardiovasc. Dis. 1993; 36: 245–260.

    Article  PubMed  CAS  Google Scholar 

  43. Chua HC, Sen S, Cosgriff RF, Gerstenblith G, Beauchamp NJ Jr, Oppenheimer SM. Neurogenic ST depression in stroke. Clin. Neurol. Neurosurg. 1999; 101: 44–48.

    Article  PubMed  CAS  Google Scholar 

  44. Kono T, Morita H, Kuroiwa T, et al. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: Neurogenic stunned myocardium. J. Am. Coll. Cardiol. 1994; 24: 636–640.

    Article  PubMed  CAS  Google Scholar 

  45. Dujardin KS, McCully RB, Wijdicks EFM, et al. Myocardial dysfunction associated with brain death: Clinical, echocardiographic and pathologic features. J. Heart Lung Transplant. 2001; 20: 350–357.

    Article  PubMed  CAS  Google Scholar 

  46. Heckmann J, Lang CJ, Neundorfer B, et al. Should stroke caregivers recognize the J wave (Osborn Wave). Stroke 2001; 32: 1692–1694.

    PubMed  CAS  Google Scholar 

  47. Daisuke Y, Testuya H, Kenichiro T, et al. An association between QTc prolongation and left ventricular hypokinesis during sequential episodes of subarachnoid hemorrhage. Anesth. Analg. 1999; 89: 962–966.

    Google Scholar 

  48. Winchell RJ, Hoyt DB. Analysis of heart rate variability: A noninvasive predictor of death and poor outcome in patients with severe head injury. J. Trauma 1997; 43: 927–933.

    Article  PubMed  CAS  Google Scholar 

  49. Haji-Michael PG, Vincent JL, Degaute JP, van de Borne P. Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit. Care Med. 2000; 28: 2578–2583.

    Article  PubMed  CAS  Google Scholar 

  50. Channon KM, Banning AP. Echocardiography in stroke and thromboembolism: transoesophageal imaging for all? QJM 1999; 92: 619–621.

    Article  PubMed  CAS  Google Scholar 

  51. Gilbert EM, Kreuger SK, Murray JL, et al. Echocardiographic evaluation of potential cardiac transplant donors. J. Thorac. Cardiovasc. Surg. 1988; 95: 1003–1007.

    PubMed  CAS  Google Scholar 

  52. Dae MW, O’Connell JW, Botvinick EH, et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation 1989; 79: 634–644.

    Article  PubMed  CAS  Google Scholar 

  53. Elrifai AM, Bailes JE, Shih SR, et al. Characterization of cardiac effects of acute subarachnoid hemorrhage in dogs. Stroke 1996; 27: 737–741.

    Article  PubMed  CAS  Google Scholar 

  54. Pearson AC. Transthoracic echocardiography versus transesophageal echocardiography in detecting cardiac sources of embolism. Echocardiography 1993; 10: 397–403.

    Article  PubMed  CAS  Google Scholar 

  55. Albers GW, Comess KA, DeRook FA, et al. Transesophageal echocardiographic findings in stroke subtypes. Stroke 1994; 25: 23–28.

    Article  PubMed  CAS  Google Scholar 

  56. Archer SL, James KE, Kvernen LR, Cohen IS, Ezekowitz MD, Gornick CC. Role of transesophageal echocardiography in the detection of left atrial thrombus in patients with chronic nonrheumatic atrial fibrillation. Am. Heart J. 1995; 130: 287–295.

    Article  PubMed  CAS  Google Scholar 

  57. Mahagney A, Sharif D, Weller B, Abineder E, Sharf B. [Diagnosis of cerebral embolism by transesophageal echocardiography]. Harefuah 1998; 134: 256–259, 336.

    Google Scholar 

  58. Tullio MR, Sacco RL, Savoia MT, Sciacca RR, Homma S. Aortic atheroma morphology and the risk of ischemic stroke in a multiethnic population. Am. Heart J. 2000; 139 (2 Pt 1): 329–336.

    PubMed  Google Scholar 

  59. Sen S, Wu K, McNamara R, Lima J, Piantadosi S, Oppenheimer SM. Distribution, severity and risk factors for aortic atherosclerosis in cerebral ischemia. Cerebrovasc. Dis. 2000; 10: 102–109.

    Article  PubMed  CAS  Google Scholar 

  60. Rundek T, Di Tullio MR, Sciacca RR, et al. Association between large aortic arch atheromas and high-intensity transient signals in elderly stroke patients. Stroke 1999; 30: 2683–2686.

    Article  PubMed  CAS  Google Scholar 

  61. Ferrari E,Vidal R, Chevallier T, Baudouy M. Atherosclerosis of the thoracic aorta and aortic debris as a marker of poor prognosis: benefit of oral anticoagulants. J. Am. Coll. Cardiol. 1999; 33: 1317–1322.

    Article  Google Scholar 

  62. Connors AF, MCCaffree DR, Gray BA. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N. Engl. J. Med. 1983; 308: 263–267.

    Article  PubMed  Google Scholar 

  63. Starling EH. The Linacre Lecture on the Law of the Heart. London, UK: Longmans, Green, 1918.

    Google Scholar 

  64. Marik PE, Varon J, Heard SO. Interpretation of the pulmonary artery occlusion (wedge) pressure: physicians’ knowledge versus the experts’ knowledge. Crit. Care Med. 1998; 26: 1761–1763.

    Article  PubMed  CAS  Google Scholar 

  65. Morris AH, Chapman RH, Gardner RM. Frequency of technical problems encountered in the measurement of pulmonary artery wedge pressure. Crit. Care Med. 1984; 12: 164–170.

    Article  PubMed  CAS  Google Scholar 

  66. Pinsky M, Vincent JL, De Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am. Rev. Respir. Dis. 1991; 143: 25–31.

    PubMed  CAS  Google Scholar 

  67. Connors AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276: 889–897.

    Article  PubMed  Google Scholar 

  68. Weisel RD, Berger RL, Hechtman HB. Measurement of cardiac output by thermodilution. N. Engl. J. Med. 1975; 292: 682–85.

    Article  PubMed  CAS  Google Scholar 

  69. Jardin F, Brun-Ney D, Hardy A, et al. Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEEP. Chest 1991; 99: 162–168.

    Article  PubMed  CAS  Google Scholar 

  70. Dhainaut JF, Brunet F, Monsallier JF, et al. Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit. Care Med. 1987; 15: 148–152.

    Article  PubMed  CAS  Google Scholar 

  71. Cheatham ML, Nelson LD, Chang MC, et al. Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Crit. Care Med. 1998; 26: 1801–1806.

    Article  PubMed  CAS  Google Scholar 

  72. Davies JN, Allen DR, Chant AD. Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur. J. Vasc. Surg. 1991; 5: 497–500.

    Article  PubMed  CAS  Google Scholar 

  73. Kumar A, Parrillo JE. Shock: classification, pathophysiology, and approach to management. In: Parrillo JE, Dellinger RP, eds. Critical Care Medicine: Principles of Diagnosis and Management in the Adult, 2nd ed. St Louis: Mosby, 2001, pp. 371–420.

    Google Scholar 

  74. Zaloga GP, Prielipp RC, Butterworth JF, Royster RL. Pharmacologic cardiovascular support. Crit. Care Clin. 1993; 9: 335–362.

    PubMed  CAS  Google Scholar 

  75. Trujillo MH, Arai K, Bellorin-Font E. Practical guide for durg administration by intravenous infusion in intensive care units. Crit. Care Med. 1994; 22: 1049–1063.

    Article  PubMed  CAS  Google Scholar 

  76. Levy JH, Bailey JM. Amrinone: its effects on vascular resistance and capacitance in human subjects. Chest 1994; 105: 62–64.

    Article  PubMed  CAS  Google Scholar 

  77. Hollingsworth HM, Giansiracusa DF, Upchurch KS. Anaphylaxis. J. Intensive Care Med. 1991; 6: 55–70.

    Google Scholar 

  78. Desairs P, Pinaud M, Bugnon D, Tasseau F. Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit. Care Med. 1989; 17: 426–429.

    Article  Google Scholar 

  79. Scheinman MM. Recognition and management of patients with tachyarrhythmias. In: Goldman L, Braunwald E, eds. Primary Cardiology. Philadelphia: WB Saunders, 1998, pp. 330–352.

    Google Scholar 

  80. Collier WW, Holt SE, Wellford LA. Narrow complex tachycardias. Emerg. Med. Clin. North Am. 1995; 13: 925–954.

    PubMed  CAS  Google Scholar 

  81. Dellbridge TR, Yealy DM. Wide complex tachycardia. Emerg. Med. Clin. North Am. 1995; 13: 903–924.

    Google Scholar 

  82. Marcus FI, Opie LH. Antiarrhythmic drugs. In: Opie LH, ed. Drugs for the Heart, 4th ed. Philadelphia: WB Saunders, 1995, pp. 207–246.

    Google Scholar 

  83. Chronister C. Clinical management of supraventricular tachycardia with adenosine. Am. J. Crit. Care 1993; 2: 41–47.

    PubMed  CAS  Google Scholar 

  84. Slovis CM, Wrenn KD. The technique of managing ventricular tachycardia. J. Crit. Illness 1993; 8: 731–741.

    Google Scholar 

  85. Roden D. Magnesium treatment of ventricular arrhythmias. Am. J. Cardiol. 1989; 63: 43G–46G.

    Article  PubMed  CAS  Google Scholar 

  86. Goldschlager N. Recognition and mangement of patients with bradyarrhythmias. In: Goldman L, Braunwald E, eds. Primary Cardiology. Philadelphia: WB Saunders, 1998, pp. 353–369.

    Google Scholar 

  87. Kusumoto FM, Goldschlager N. Cardiac pacing. N. Engl. J. Med. 1996; 334: 89–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arab, D., Kirmani, J.F., Xavier, A.R., Yahia, A.M., Suarez, J.I., Qureshi, A.I. (2004). Cardiac Monitoring in the Neurosciences Critical Care Unit. In: Suarez, J.I. (eds) Critical Care Neurology and Neurosurgery. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-660-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-660-7_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-350-3

  • Online ISBN: 978-1-59259-660-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics