Skip to main content

Part of the book series: Current Clinical Practice ((CCP))

  • 133 Accesses

Abstract

Densitometry is primarily a quantitative measurement technique rather than a skeletal imaging technique. Nevertheless, there are unique aspects of skeletal anatomy in densitometry that must be appreciated to properly utilize the technology and interpret the quantitative results as well as the skeletal images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Recker RR. Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press, 1992:219–240.

    Google Scholar 

  2. American Medical Association. Current procedural technology 2003. Professional edition. Chicago, IL: AMA PresS, 2002:287.

    Google Scholar 

  3. Dempster DW. Bone remodeling. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press, 1992:355–380.

    Google Scholar 

  4. Schlenker RA, Von Seggen WW. The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 1976; 20:41–52.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson LC. Morphologic analysis in pathology: the kinetics of disease and general biology of bone. In Frost HM, ed. Bone biodynamics. Boston: Little, 1964:543–564.

    Google Scholar 

  6. Rockoff SD, Sweet E. Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 1969;3:163–175.

    Article  PubMed  CAS  Google Scholar 

  7. Nottestad SY, Baumel JJ, Kemmel DB, Recker RR, Heaney RP. The proportion of trabecular bone in human vertebrae. J Bone Miner Res 1987;2:221–229.

    Article  PubMed  CAS  Google Scholar 

  8. Eastell R, Mosekilde L, Hodgson SF, Riggs BL. Proportion of human vertebral body bone that is cancellous. J Bone Miner Res 1990;5:1237–1241.

    Article  PubMed  CAS  Google Scholar 

  9. Heaney RP. Personal communication, November 23, 1994.

    Google Scholar 

  10. Bonnick SL. Bone densitometry techniques in modern medicine. In: Rosen C, ed. Osteoporosis: diagnostic and therapeutic principles. Totowa, NJ: Humana Press, 1996:89–112.

    Google Scholar 

  11. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone 1992;13:317–320.

    Article  PubMed  CAS  Google Scholar 

  12. Peel NFA, Johnson A, Barrington NA, Smith TWD, Eastell R. Impact of anomalous vertebral segmentation of measurements of bone mineral density. J Bone Miner Res 1993; 8:719–723.

    Article  PubMed  CAS  Google Scholar 

  13. Bornstein PE, Peterson RR. Numerical variation of the presacral vertebral column in three population groups in North America. Am J Phys Anthropo 1996;25:139–146.

    Article  Google Scholar 

  14. Davis JW, Grove JS, Wasnich RD, Ross PD. Spatial relationships between prevalent and incident fractures. Bone 1999;24:261–264.

    Article  PubMed  CAS  Google Scholar 

  15. Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 1999;25:613–619.

    Article  PubMed  CAS  Google Scholar 

  16. Krolner B, Berthelsen B, Nielsen SP. Assessment of vertebral osteopenia-comparison of spinal radiography and dual-photon absorptiometry. Acta Radiol Diagn 1982;23:517–521.

    CAS  Google Scholar 

  17. Rand T, Seidl G, Kainberger F, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 1997;60:430–433.

    Article  PubMed  CAS  Google Scholar 

  18. Cann CE, Rutt BK, Genant HK. Effect of extraosseous calcification on vertebral mineral measurement. Calcif Tissue Int 1983;35:667.

    Google Scholar 

  19. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 1997; 7:564–569.

    Article  PubMed  CAS  Google Scholar 

  20. Frye MA, Melton LJ, Bryant SC, et al. Osteoporosis and calcification of the aorta. Bone Miner 1992;19: 185–194.

    Article  PubMed  CAS  Google Scholar 

  21. Frohn J, Wilken T, Falk S, Stutte HJ, Kollath J, Hor G. Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptiometry. J Nucl Med 1990;32:259–262.

    Google Scholar 

  22. Orwoll ES, Oviatt SK, Mann T. The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 1990;70:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  23. Reid IR, Evans MC, Ames R, Wattie DJ. The influence of osteophytes and aortic calcification on spinal mineral density in post-menopausal women. J Clin Endocrinol Metab 1991;72:1372–1374.

    Article  PubMed  CAS  Google Scholar 

  24. Banks LM, Lees B, MacSweeney JE, Stevenson JC. Do degenerative changes and aortic calcification influence long-term bone density measurements? Abstract. 8th International Workshop on Bone Densitometry 1991. Bad Reichenhall, Germany.

    Google Scholar 

  25. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 1992;50:507–510.

    Article  PubMed  CAS  Google Scholar 

  26. Cherney DD, Laymon MS, McNitt A, Yuly S. A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom 2002;5:193–198.

    Article  PubMed  Google Scholar 

  27. Girardi FP, Parvataneni HK, Sandhu HS, et al. Correlation between vertebral body rotation and twodimensional vertebral bone density measurement. Osteoporos Int 2001;12:738–740.

    Article  PubMed  CAS  Google Scholar 

  28. Stutzman ME, Yester MV, Dubovsky EV. Technical aspects of dual-photon absorptiometry of the spine. Technique 1997;15:177–181.

    Google Scholar 

  29. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 1992;7:97–101.

    Article  PubMed  CAS  Google Scholar 

  30. Jergas M, BreitenseherMMMM, Gluer CC, et al. Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine? Osteoporos Int 1995;5:196–204.

    Article  PubMed  CAS  Google Scholar 

  31. Goh JCH, Low SL, Bose K. Effect of femoral rotation on bone mineral density measurements with dual energy X-ray absorptiometry. Calcif Tissue Int 1995;57:340–343.

    Article  PubMed  CAS  Google Scholar 

  32. Bonnick SL, Nichols DL, Sanborn CF, Payne SG, Moen SM, Heiss CJ. Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int 1996;58:307–310.

    PubMed  CAS  Google Scholar 

  33. Faulkner KG, Genant HK, McClung M. Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans. Calcif Tissue Int 1995;56:26–31.

    Article  PubMed  CAS  Google Scholar 

  34. Rao AK, Reddy S, Rao DS. Is there a difference between right and left femoral bone density? J Clin Densitom 2000;3:57–61.

    Article  PubMed  CAS  Google Scholar 

  35. Petley GW, Taylor PA, Murrills AJ, Dennison E, Pearson G, Cooper C. An investigation of the diagnostic value of bilateral femoral neck bone mineral density measurements. Osteoporos Int 2000;11:675–679.

    Article  PubMed  CAS  Google Scholar 

  36. Nevitt MC, Lane NE, Scott JC, et al. Radiographic osteoarthritis of the hip and bone mineral density. Arth Rheum 1995;38:907–916.

    Article  CAS  Google Scholar 

  37. Preidler KW, White LS, Tashkin J, et al. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck. Acta Radiol 1997;38: 539–542.

    PubMed  CAS  Google Scholar 

  38. Hans D, Biot B, Schott AM, Meunier PJ. No diffuse osteoporosis in lumbar scoliosis but lower femoral bone density on the convexity. Bone 1996;18:15–17.

    Article  PubMed  CAS  Google Scholar 

  39. Karjalainen P, Alhava EM. Bone mineral content of the forearm in a healthy population. Acta Radiol Oncol Radiat Phys Biol 1976;16:199–208.

    Article  Google Scholar 

  40. Borg J, Mollgaard A, Riis BJ. Single X-ray absorptiometry: performance characteristics and comparison with single photon absorptiometry. Osteoporos Int 1995;5:377–381.

    Article  PubMed  CAS  Google Scholar 

  41. Huddleston AL, Rockwell D, Kulund DN, Harrison B. Bone mass in lifetime tennis athletes. JAMA 1980;244:1107–1109.

    Article  PubMed  CAS  Google Scholar 

  42. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 1994;15:279–284.

    Article  PubMed  CAS  Google Scholar 

  43. Akesson K, Gardsell P, Sernbo I, Johnell O, Obrant KJ. Earlier wrist fracture: a confounding factor in distal forearm bone screening. Osteoporos Int 1992;2:201–204.

    Article  PubMed  CAS  Google Scholar 

  44. Berntsen GKR, Tollan A, Magnus JH, SØgaard AJ, Ringberg T, FØnnebØ V. The TromsØ study: artifacts in forearm densitometry-prevalence and effects. Osteoporos Int 1999;10:425–432.

    Article  PubMed  CAS  Google Scholar 

  45. Mussolino ME, Looker AC, Madans JH, et al. Phalangeal bone density and hip fracture risk. Arch Intern Med 1997;157:433–438.

    Article  PubMed  CAS  Google Scholar 

  46. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 1998;6:380–384.

    Article  Google Scholar 

  47. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72–75.

    Article  PubMed  CAS  Google Scholar 

  48. Lee CA, Einhorn TA. The bone organ system. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:3–20.

    Chapter  Google Scholar 

  49. Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:433–447.

    Chapter  Google Scholar 

  50. Eriksen EF, Axelrod DW, Melson F. Bone histomorphometry. New York: Raven Press, 1994:1–59.

    Google Scholar 

  51. Rasch PJ, Burke RK. Kinesiology and applied anatomy. Second edition. Philadelphia: Lee & Febiger, 1963:1–503.

    Google Scholar 

  52. Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:433–447.

    Chapter  Google Scholar 

  53. Ross FP, Teitelbaum SL. Osteoclast biology. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:73–105.

    Chapter  Google Scholar 

  54. Lian JB, Stein GS. Osteoblast biology. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:21–71.

    Chapter  Google Scholar 

  55. Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture. A 15-year follow-up study. Bone 1996;19:9–12.

    Article  PubMed  CAS  Google Scholar 

  56. Garnero P, Hausherr E, Chapuy M-C, et al. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS Prospective Study. J Bone Miner Res 1996;11:1531–1538.

    Article  PubMed  CAS  Google Scholar 

  57. Melton LJ III, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 2002;12:1083–1091.

    Article  Google Scholar 

  58. Parfitt AM. Letter to the editor. High bone turnover is intrinsically harmful: two paths to a similar conclusion. The Parfitt view. J Bone Miner Res 2002;17:1558–1559.

    Google Scholar 

  59. Riggs BL, Melton LJ, III. In reply. High bone turnover. The Riggs/Melton view. J Bone Miner Res 2002; 17:1560.

    Google Scholar 

  60. Riggs BL, Melton LJ III. Editorial. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 2002;17:11–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L. (2004). Skeletal Anatomy in Densitometry. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-659-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-659-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4662-4

  • Online ISBN: 978-1-59259-659-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics