Skip to main content

Predicting Fracture Risk

  • Chapter
  • 128 Accesses

Part of the book series: Current Clinical Practice ((CCP))

Abstract

The risk of any outcome can be expressed in a variety of different ways, as was noted in Chapter 3. The more commonly used measures of risk are prevalence, incidence, absolute and relative risk, and odds ratios. All of these measures can be employed in the specific context of the assessment of fracture risk. In densitometry, other measures of risk are employed as well such as the fracture threshold, lifetime risk, and remaining lifetime fracture probability. These are quantitative measures of risk. Qualitative fracture risk assessments may also be useful. Although there is no question that a measurement of bone density can predict fracture risk, none of the measures used clinically to express fracture risk is ideal. A physician should ultimately use whichever expression of risk best conveys the implications for fracture based on the patient’s BMD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazess RB. Bone densitometry for clinical diagnosis and monitoring. In: DeLuca HF, Mazess R, eds. Osteoporosis: physiologic basis, assessment and treatment. New York: Elsevier Science Publishing Company, 1990:63–85.

    Google Scholar 

  2. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989;111:355–361.

    PubMed  CAS  Google Scholar 

  3. Gardsell P, Johnell 0, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 1991;49:90–94.

    Article  PubMed  CAS  Google Scholar 

  4. Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993;8:1227–1233.

    Article  PubMed  Google Scholar 

  5. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 1992;7:633–638.

    Article  PubMed  CAS  Google Scholar 

  6. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gvnecol 1985:153:745–751.

    CAS  Google Scholar 

  7. Huang C, Ross PD, Yates AJ, Wasnich RD. Prediction of vertebral fractures by radiographic absorptiometry. Abstract. J Bone Miner Res 1997;12:S496.

    Google Scholar 

  8. Huang C, Ross PD, Davis JW, Imose K, Emi K, Wasnich RD. Prediction of single and multiple vertebral fractures by metacarpal BMD using Poisson regression. Abstract. J Bone Miner Res 1997;12:S496.

    Google Scholar 

  9. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fracture. Lancet 1993;341:72–75.

    Article  PubMed  CAS  Google Scholar 

  10. MussolinoME,LookerAC,MadansJH,etal.Phalangealbonedensityandhipfracturerisk.ArchIntern Med 1997;157:433–438.

    Google Scholar 

  11. Black DM, Cummings SR, Melton JL. Appendicular bone mineral and a woman’s lifetime risk of hip fracture. J Bone Miner Res 1992;7:639–645.

    Article  PubMed  CAS  Google Scholar 

  12. Suman VJ, Atkinson EJ, O’Fallon WM, Black DM, Melton LJ. A nomogram for predicting lifetime hip fracture risk from radius bone mineral density and age. Bone 1993;14:843–846.

    Article  PubMed  CAS  Google Scholar 

  13. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA 2002;288:1889–1897.

    Article  PubMed  Google Scholar 

  14. Looker AC, Wahner HW, Dunn WL, et al. Proximal femur bone mineral levels of US adults. Osteoporos Int 1995;5:389–409.

    Article  PubMed  CAS  Google Scholar 

  15. Kanis JA, Johnell 0, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001;12:989–995.

    Article  PubMed  CAS  Google Scholar 

  16. Detection, evaluation, and treatment of high blood cholesterol in adults third report of the National Cholesterol Education program (NCEP) expert panel. Washington, D.C.: US Department of Public Health, May, 2001. (NIH publication no. 01–3670.)

    Google Scholar 

  17. Personal communication. KG Faulkner. PhD. Chief Scientist. GE Medical Systems Lunar.

    Google Scholar 

  18. Ross PD, Wasnich RD, MacLean CJ, Vogel JM. Prediction of individual lifetime fracture expectancy using bone mineral measurements. In: Christiansen C, Johansen JS, Riss BJ, eds. Osteoporosis 1987. Copenhagen, Denmark: Osteopress ApS, 1987:288–293.

    Google Scholar 

  19. Wasnich RD, Ross PD, Vogel JM, Davis JW. Osteoporosis: critique and practicum. Honolulu: Banyan Press, 1989.

    Google Scholar 

  20. Wasnich RD. Vertebral fracture epidemiology. Bone 1996;18:179S–183S.

    Article  Google Scholar 

  21. Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 1982;70:716–723.

    Article  PubMed  CAS  Google Scholar 

  22. Ross PD, Wasnich RD, Heilbrun LK, Vogel JM. Definition of a spine fracture threshold based upon prospective fracture risk. Bone 1987;8:271–278.

    Article  PubMed  CAS  Google Scholar 

  23. Vega E, Mautalen C, Gomez H, Garrido A, Melo L, Sahores AO. Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporos Int 1991;1:81–86.

    Article  PubMed  CAS  Google Scholar 

  24. Khan AA, Brown J, Faulkner K, et al. Standards and guidelines for performing central dual x-ray densitometry from the Canadian Panel of International Society for Clinical Densitometry. J Clin Densitom 2002;5:247–257.

    Article  PubMed  CAS  Google Scholar 

  25. Melton LJ, Orwoll ES, Wasnich RD. Does bone density predict fractures comparably im men and women? Osteoporos Int 2001;12:707–709.

    Article  PubMed  Google Scholar 

  26. MeltonLJ,AtkinsonEJ,O’ConnorMK,O’Fa11onWM,RiggsBL.Bonedensityandfractureriskinmen. J Bone Miner Res 1998;13:1915–1923.

    Article  Google Scholar 

  27. RossPD,LombardiA,FreedholmD.Theassessmentofbonemassinmen.In:OrwollES,ed.Osteoporosis in men. San Diego: Academic Press, 1999:505–525.

    Google Scholar 

  28. The European Osteoporosis Study (EPOS) Group. The relationship between bone density and incident vertebral fracture in men nd women. J Bone Miner Res 2002;17:2214–2221.

    Article  Google Scholar 

  29. De Laet CEDH, van Hout BA, Burger H, Weel AEAM, Hofman A, Pols HAP. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 1998;13:1587–1593.

    Article  PubMed  Google Scholar 

  30. De Laet CEDH, Van Der Klift M, Hofman A, Pols HAP. Osteoporosis in men and women: a story about bone mineral density thresholds and hip fracture risk. J Bone Miner Res 2002;17:2231–2236.

    Article  PubMed  Google Scholar 

  31. Kanis J, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 2000:11:192–202.

    Article  PubMed  CAS  Google Scholar 

  32. Binkley NC, Schmeer P, Wasnich RD, Lenchik L. What are the criteria by which a densitometric diagnosis of osteoporosis can be made in males and non-Caucasians? J Clin Densitom 2002;5: S 19–S27.

    Article  Google Scholar 

  33. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1991 ; 114:919–923.

    PubMed  CAS  Google Scholar 

  34. Nevitt MC, Ross PD, Palermo L, Muslinger T, Genant HK, Thompson DE. Association of prevalent vertebral fractures, bone density and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 1999;25:613–619.

    Article  PubMed  CAS  Google Scholar 

  35. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 1993;3: 120–126.

    Article  PubMed  CAS  Google Scholar 

  36. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Min Res 1999;14:821–828.

    Article  CAS  Google Scholar 

  37. Melton LJ, Atkinson EJ, Cooper C, O’Fallon WM, Riggs, BL. Vertebral fractures predict subsequent fractures. Osteoporos Int 1999;10:214–221.

    Article  PubMed  Google Scholar 

  38. Burger H, van Daele PLA, Algra D, et al. Vertebral deformities as predictors of non-vertebral fractures. BMJ 1994;309:991–992.

    Article  PubMed  CAS  Google Scholar 

  39. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J B one Miner Res 2000;15:721–739.

    Article  CAS  Google Scholar 

  40. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 1992;7:221–227.

    Article  PubMed  CAS  Google Scholar 

  41. Ensrud KE, Nevitt MC, Palermo L, et al. What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa? Abstract. J Bone Miner Res 1999;14:S 138.

    Article  Google Scholar 

  42. Genant HK, Wu CY, Van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993:8:1137–1148.

    Article  PubMed  CAS  Google Scholar 

  43. Fletcher H. Anterior vertebral wedging-frequency and significance. AJR 1947;57:232–238.

    CAS  Google Scholar 

  44. Barent E, Nordin BEC. The radiological diagnosis of osteoporosis: anew approach. Clin Radio11960;11: 166–174.

    Google Scholar 

  45. Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P. A new approach to defining normal vertebral dimensions. J Bone Miner Res 1991;6:883–892.

    Article  PubMed  CAS  Google Scholar 

  46. Melton LJ, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol 1989;129:1000–1011.

    PubMed  Google Scholar 

  47. Smith-Bindman R, Cummings SR, Steiger P, Genant HK. A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res 1991;6:25–34.

    Article  PubMed  CAS  Google Scholar 

  48. Ross PD, Davis JW, Epstein RS, Wasnich RD. Ability of vertebral dimensions from a single radiograph to identify fractures. Calcif Tissue Int 1992;51:95–99.

    Article  PubMed  CAS  Google Scholar 

  49. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ. Classification of vertebral fractures. J Bone Miner Res 1991;2:207–214.

    Google Scholar 

  50. McCloskey E, Spector TD, Eyres KS, et al. The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 1993;3:138–147.

    Article  PubMed  CAS  Google Scholar 

  51. McCloskey EV, Kanis JA. The assessment of vertebral deformity. In: Genant HK, Jergas M, Van Kuijk C, eds. Vertebral fracture in osteoporosis. University of California, San Francisco: Radiology Research and Education Foundation, 1995:215–233.

    Google Scholar 

  52. Sauer P, Leidig G, Minne HW, et al. Spine deformity index versus other objective procedures of vertebral identification in patients with osteoporosis: a comparative study. J Bone Miner Res 1991;6: 227–238.

    Article  PubMed  CAS  Google Scholar 

  53. Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR. Defining incident vertebral deformity: a prospective comparison of several approaches. J Bone Miner Res 1999;14:90–101.

    Article  PubMed  CAS  Google Scholar 

  54. Lunt M, Ismail AA, Felsenberg D, et al. Defining incident vertebral deformities in population studies: a comparison of morphometric criteria. Osteoporos Int 2002;13:809–815.

    Article  PubMed  CAS  Google Scholar 

  55. National Osteoporosis Foundation Working Group on Vertebral Fractures. Assessing vertebral fractures. J Bone Miner Res 1995;10:518–523.

    Google Scholar 

  56. Leidig-Bruckneer G, Genant HK, Minne HW, et al. Comparison of a semiquantitative and quantitative method for assessing vertebral fractures in osteoporosis. Osteoporos Int 1994;3:154–161.

    Article  Google Scholar 

  57. Genant HK, Jergas M, Palermo L, et al. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1996;11:984–996.

    Article  PubMed  CAS  Google Scholar 

  58. Grados F, Roux C, de Vernejoul MC, Utard G, Sebert JL, Fardellonne P. Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures. Osteoporos Int 2001;12:7166722.

    Google Scholar 

  59. Li J, Wu CY, Jergas H, Genant HK. Diagnosing prevalent vertebral fractures: a comparison between quantitative morphometry and a standardized visual (semiquantitative) approach. In: Genant HK, Jergas M, Van Kuijk C, eds. Vertebral fracture in osteoporosis. University of California, San Francisco: Radiology Research and Education Foundation, 1995:271–279.

    Google Scholar 

  60. Wu CY, Li J, Jergas M, Genant HK. Diagnosing incident vertebral fractures: a comparison between quantitative morphometry and a standardized visual (semiquantitative) approach. In: Genant HK, Jergas M, Van Kuijk C, eds. Vertebral fracture in osteoporosis. University of California, San Francisco: Radiology Research and Education Foundation, 1995:281–291.

    Google Scholar 

  61. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 2000;11:660–668.

    Article  PubMed  CAS  Google Scholar 

  62. Schousboe JT, DeBold CR, Bowles C, Glickstein S, Rubino RK. Prevalence of vertebral compression fracture deformity by X-ray absorptiometry of lateral thoracic and lumbar spines in a population referred for bone densitometry. J Clin Densitom 2002;5:239–246.

    Article  PubMed  Google Scholar 

  63. Davis JW, Grove JS, Wasnich RD, Ross PD. Spatial relationships between prevalent and incident spine fractures. Bone 1999;24:261–264.

    Article  PubMed  CAS  Google Scholar 

  64. Faulkner KG, Barden HS, Weynand L, Burke P. Frequency of spine fractures assessed with LVA in normal, osteopenic, and osteoporotic postmenopausal women. J Bone Miner Res 2002;17:S 110.

    Google Scholar 

  65. Ferrar L, Jiang G, Eastell R. Longitudinal evaluation of morphometric X-ray absorptiometry for the identification of vertebral deformities. Osteoporos Int 2001;12:661–671.

    Article  PubMed  CAS  Google Scholar 

  66. Rea JA, Chen MB, Li J, et al. Vertebral morphometry: a comparison of long-term precision of morphometric x-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 2001;12:158–166.

    Article  PubMed  CAS  Google Scholar 

  67. Faulkner KG, Cummings SR, Black D, Palermo L, Glüer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993; 8:1211–1217.

    Article  PubMed  CAS  Google Scholar 

  68. Faulkner KG, Mcclung M, Cummings SR. Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 1994;9:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  69. Duboeuf F, Hans D, Schott AM, et al. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS study. J Bone Miner Res 1997;12:1895–1902.

    Article  PubMed  CAS  Google Scholar 

  70. Center JR, Nguyen TV, Pocock NA, et al. Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos Int 1998;8:75–81.

    Article  PubMed  CAS  Google Scholar 

  71. Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD. Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 2002;13:542–550.

    Article  PubMed  CAS  Google Scholar 

  72. Cummings SR, Cauley JA, Palermo L, et al. Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Osteoporos Int 1994;4:226–229.

    Article  PubMed  CAS  Google Scholar 

  73. Nakamura T, Turner CH, Yoshikawa T, et al. Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 1994;9:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  74. Bonnick SL, Lewis LA. The precision of PA spine, dualfemur and single femur bone density studies on the GE Lunar Prodigy, a DXA fan-array device. J Clin Densitom 2002;5:S48.

    Google Scholar 

  75. Gomez Alonso C, Diaz Curiel M, Hawkins Carranza F, Perez Cano R, Diez Perez A. Femoral bone mineral density, neck shaft angle and mean femoral neck width as predictors of hip fractures in men and women. Osteoporos Int 2000;11:714–720.

    Article  Google Scholar 

  76. Gnudi S, Ripamnonti C, Gualtieri G, Malavolta N. Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 1999;72:729–733.

    PubMed  CAS  Google Scholar 

  77. Karlsson KM, Sernbo I, Obrant KJ, Redlund-Johnell I, Johnell O. Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone 1996;18:327–330.

    Article  PubMed  CAS  Google Scholar 

  78. Partanen J, Jämsa T, Jalovaara P. Influence of the upper femur and pelvic geometry on the risk and type of hp fractures. J Bone Miner Res 2001;16:1540–1546.

    Article  PubMed  CAS  Google Scholar 

  79. Peacock M, Turner CH, Liu G, et al. Better discrimination of hip fracture using bone density geometry and architecture. Osteoporos Int 1995;5:167–173.

    Article  PubMed  CAS  Google Scholar 

  80. Yoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 1994:9:1053–1064.

    Article  PubMed  CAS  Google Scholar 

  81. Crabtree NJ, Kroger H, Martin A, et al. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS Study. Osteoporos Int 2002;13: 48–54.

    Article  PubMed  CAS  Google Scholar 

  82. Leslie WD, Metge C, Salamon EA, Kin Yuen C. Bone mineral density testing in healthy postmenopausal women. The role of clinical risk factor assessment in determining fracture risk. J Clin Densitom 2002; 5:117–130.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L. (2004). Predicting Fracture Risk. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-659-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-659-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4662-4

  • Online ISBN: 978-1-59259-659-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics