Skip to main content

Monoamine Oxidase Inhibitors and Tricyclic Antidepressants

  • Chapter
Handbook of Drug Interactions

Part of the book series: Forensic Science and Medicine ((FSM))

  • 542 Accesses

Abstract

Depression is a disorder consisting, in varying degrees, of low mood, pessimism, lethargy, and loss of interest in former pleasures. Treatment of this disability frequently involves the use of drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), and, more recently, selective serotonin reuptake inhibitors (SSRIs). These drugs have multiple pharmacological and toxicological properties and are capable of producing severe effects independent of the antidepressant response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Paykel ES and Priest RG. Recognition and management of depression in general practice: consensus statement. Br Med J 305:1198–1202 (1992).

    CAS  Google Scholar 

  2. Owens D. New or old antidepressants: benefits of new drugs are exaggerated. Br Med J 309: 1281–1822 (1994).

    CAS  Google Scholar 

  3. Barbui C and Hotopf M. Amitriptyline v. the rest: still the leading antidepressant after 40 years of randomized controlled trials. Br J Psychiatry 178:129–144 (2001).

    PubMed  CAS  Google Scholar 

  4. Baker GB, Coutts RT, McKenna KF, and Sherry-McKenna RL. Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. J Psychiatry Neurosci 17:206–214 (1992).

    PubMed  CAS  Google Scholar 

  5. Linden CH, Rumack BH, and Strehlke C. Monoamine oxidase inhibitor overdose. Ann Emerg Med 13:1137–1144 (1984).

    PubMed  CAS  Google Scholar 

  6. Lichtenwalner MR, Tully RG, Cohn RD, and Pinder RD. Two fatalities involving phenelzine. J Anal Toxicol 19:265–266 (1995).

    PubMed  CAS  Google Scholar 

  7. Boniface PJ. Two cases of fatal intoxication due to tranylcypromine overdose. J Anal Toxicol 15:38–40 (1991).

    PubMed  CAS  Google Scholar 

  8. Gardner DM, Shulman KI, Walker SE, and Tailor SA. The making of a user friendly MAOI diet. J Clin Psychiatry 57:99–104 (1996).

    PubMed  CAS  Google Scholar 

  9. Shulman KI, Tailor SA, Walker SE, and Gardner DM. Tap (draft) beer and monoamine oxidase inhibitor dietary restrictions. Can J Psychiatry 42:310–312 (1997).

    PubMed  CAS  Google Scholar 

  10. Norman TR and Burrows GD. A risk-benefit assessment of moclobemide in the treatment of depressive disorders. Drug Saf 12:46–54 (1995).

    PubMed  CAS  Google Scholar 

  11. Antal EJ, Hendershot PE, Batts DH, Sheu WP, Hopkins NK, and Donaldson KM. Linezolid, a novel oxazolidinone antibiotic: assessment of monoamine oxidase inhibition using pressor response to oral tyramine. J Clin Pharmacol 41:552–562 (2001).

    PubMed  CAS  Google Scholar 

  12. Callingham BA. Drug interactions with reversible monoamine oxidase-A inhibitors. Clin Neuropharmacol 16(Suppl 2):S42-S50 (1993).

    PubMed  Google Scholar 

  13. Zimmer R. Relationship between tyramine potentiation and monoamine oxidase (MAO) inhibition comparison between moclobemide and other MAO inhbitors. Acta Psychiatr Scand Suppl 360:81–83 (1990).

    PubMed  CAS  Google Scholar 

  14. Dingemanse, J, Guentert T, Gieschke R, and Stabl M. Modification of the cardiovascular effects of ephedrine by the reversible monoamine oxidase A-inhibitor moclobemide. J Cardiovasc Pharmacol 28:856–861 (1996).

    PubMed  CAS  Google Scholar 

  15. Dawson JK, Earnshaw SM, and Graham CS. Dangerous monoamine oxidase inhibitor interactions are still occurring in the 1990s. J Accid Emerg Med 12:49–51 (1995).

    PubMed  CAS  Google Scholar 

  16. Ponto LB, Perry PJ, Liskow BI, and Seaba HH. Drug therapy reviews: tricyclic antidepressant and monoamine oxidase inhibitor combination therapy. Am J Hosp Pharm 34:954–961 (1977).

    PubMed  CAS  Google Scholar 

  17. Schmauss M, Kapfhammer HP, Meyr P, and Hoff P. Combined MAO-inhibitor and tri(tetra) cyclic antdepressant treatment in therapy resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 12:523–532 (1988).

    PubMed  CAS  Google Scholar 

  18. Berlanga C and Ortega-Soto HA. A 3-year follow up of a group of treatment-resistant depressed patients with a MAOI/tricyclic combination. J Affect Disord 34:187–193 (1995).

    PubMed  CAS  Google Scholar 

  19. Sporer KA. The serotonergic syndrome. Implicated drugs, pathophysiology and management. Drug Saf 13:94–104 (1995).

    PubMed  CAS  Google Scholar 

  20. Brubacher JR, Hoffman RS, and Lurin MJ. Serotonin syndrome from venlafaxine-tranylcypromine interaction. Vet Hum Toxicol 38:358–361 (1996).

    PubMed  CAS  Google Scholar 

  21. Meyer D and Halfin V. Toxicity secondary to meperidine in patients on monoamine oxidase inhibitors: a case report and critical review. J Clin Psychopharmacol 1:319–321 (1981).

    PubMed  CAS  Google Scholar 

  22. Nielson K. Hyperpyrexia following poisoning with a monoamine oxidase inhibitor. Ugeskr Laeger 151:774–775 (1989).

    Google Scholar 

  23. Verrilli MR, Sanglanger VD, Kozachuck WE, and Bennetts M. Phenelzine toxicity responsive to dantroline. Neurology 37:865–867 (1987).

    PubMed  CAS  Google Scholar 

  24. Lannas PA and Pachar JV. A fatal case of neuroleptic malignant syndrome. Med Sci Law 33:86–88 (1993).

    PubMed  CAS  Google Scholar 

  25. Hodgman MJ, Martin TG, and Krenzelok EP. Serotonin syndrome due to venlafaxine and maintenance tranylcypromine therapy. Hum Exp Toxicol 16:14–17 (1997).

    PubMed  CAS  Google Scholar 

  26. Brubacher JR, Hoffman RS, and Lurin MJ. Serotonin syndrome from venlafaxine-tranylcypromine interaction. Vet Hum Toxicol 38:358–361 (1996).

    PubMed  CAS  Google Scholar 

  27. Cagliesi Cingolani R and Benici A. 2 fatal cases of reaction to the combination of MAO inhibitors and tricyclic antidepressants. Medico-legal aspects. Riv Patol Nerv Ment 103: 21–31 (1982).

    Google Scholar 

  28. White K. Tricyclic overdose in a patient given combined tricyclic-MAOI treatment. Am J Psychiatry 135:1411 (1978).

    PubMed  CAS  Google Scholar 

  29. Stack CG, Rogers P, and Linter SPK. Monoamine oxidase inhibitors and anaesthesia. A review. Br J Anaesth 60:222–227 (1988).

    PubMed  CAS  Google Scholar 

  30. Browne B and Linter S. Monoamine oxidase inhibitors and narcotic analgesics. A critical review of the implications for treatment. Br J Psychiatry 151:210–212 (1987).

    PubMed  CAS  Google Scholar 

  31. Boden R, Botting R, Coulson P, and Spanswick G. Effect of nonselective and selective inhibitors of monoamine oxidases A and B on pethidine toxicity in mice. Br J Pharmacol 82:151–154 (1984).

    PubMed  CAS  Google Scholar 

  32. Gillman PK. Possible serotonin syndrome with moclobemide and pethidine. Med J Aust 162:554 (1995).

    PubMed  CAS  Google Scholar 

  33. Zimmer R, Gieschke R, Fischbach R, and Gasic S. Interaction studies with moclobemide. Acta Psychiatr Scand Suppl 360:84–86 (1990).

    PubMed  CAS  Google Scholar 

  34. Sedgwick JV, Lewis IH, and Linter SP. Anesthesia and mental illness. Int J Psychiatry Med 20:209–225 (1990).

    PubMed  CAS  Google Scholar 

  35. Blom-Peters L and Lamy M. Monoamine oxidase inhibitors and anesthesia: an updated literature review. Acta Anaesthesiol Belg 44:57–60 (1993).

    PubMed  CAS  Google Scholar 

  36. Pavy TJ, Kliffer AP, and Douglas MJ. Anaesthetic management of labour and delivery in a woman taking long-term MAOI. Can J Anaesth 42:618–620 (1995).

    PubMed  CAS  Google Scholar 

  37. Fischer SP, Mantin R, and Brocke-Utne JG. Ketorolac and propofol anaesthesia in a patient taking chronic monoamine oxidase inhibitors. J Clin Anesth 8:245–247 (1996).

    PubMed  CAS  Google Scholar 

  38. Ure DS, Gillies MA, and James KS. Safe use of remifentanil in a patient treated with the monoamine oxidase inhibitor phenelzine. Br J Anaesth 84:414–416 (2000).

    PubMed  CAS  Google Scholar 

  39. Rivers N and Horner B. Possible lethal reaction between nardil and dextromethorphan. Can Med Assoc J 103:85 (1970).

    PubMed  CAS  Google Scholar 

  40. Judd FK, Mijch AM, Cockram A, and Norman TR. Isoniazid and antidepressants: is there cause for concern. Int Clin Psychpharmacol 9:123–125 (1994).

    CAS  Google Scholar 

  41. DiMartini A. Isoniazid, tricyclics and the “Cheeze Reaction”. Psychopharmacol 10:197–198 (1995).

    CAS  Google Scholar 

  42. Desta Z, Soukhova NV, and Flockhart DA. Inhibition of cytochrome P450 (CYP450) by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 45: 382–392 (2001).

    PubMed  CAS  Google Scholar 

  43. Wen X, Wang JZ, Neuvonen PJ, and Backman JT. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 57:799–804 (2002).

    PubMed  Google Scholar 

  44. Amann B, Grunze H, Hoffmann J, Schafer M, and Kuss HJ. Non-fatal effect of highly toxic amitriptyline level after suicide attempt. A case report. Nervenarzt 72:52–55 (2001).

    CAS  Google Scholar 

  45. Shannon M, Merola J, and Lovejoy FH. Hypotension in severe tricyclic antidepressant overdose. Am J Emerg Med 6:439–442 (1988).

    PubMed  CAS  Google Scholar 

  46. Montgomery SA. Suicide and antidepressants. Ann NY Acad Sci 836:329–338 (1997).

    PubMed  CAS  Google Scholar 

  47. Goodwin FK. Anticonvulsant therapy and suicide risk in affective disorders. J Clin Psychiatry 60:89–93 (1999).

    PubMed  CAS  Google Scholar 

  48. Muller-Oerlinghaussen B. Arguments for the specificity of the antisuicidal effect of lithium. Eur Arch Psychiatry Clin Neurosci 251(Suppl 2):I172–1175 (2001).

    Google Scholar 

  49. Ostapowicz A, Zejmo M, Wrzesniewska J, Bialecka M, Gornik W, and GawronskaSzklarz B. Effect of therapeutic drug monitoring of amitriptyline and genotyping on efficacy and safety of depression therapy. Psychiatr Pol 34:595–605 (2000).

    PubMed  CAS  Google Scholar 

  50. Ohberg A, Vuori E, Klaukka T, and Lonnqvist J. Antidepressants and suicide mortality. J Affect Disord 50:225–233 (1998).

    PubMed  CAS  Google Scholar 

  51. Schreinzer FR, Stimpfl T, Vycudilik W, Berzlanovich A, and Kasper S. Suicide by antidepressant intoxication identified at autopsy in Vienna from 1991–1997: the favourable consequences of the increasing use of SSRIs. Eur Neuropsychopharmacol 10:133–142 (2000).

    PubMed  Google Scholar 

  52. Isacsson G, Holmgren P, Druid H, and Bergman U. The utilization of antidepressants—a key issue in the prevention of suicide: an analysis of 5281 suicides in Sweden during the period 1992–1994. Acta Psychiatr Scand 96:94–100 (1997).

    PubMed  CAS  Google Scholar 

  53. Henry JA. Epidemiology and relative toxicity of antidepressant drugs in overdose. Drug Saf 16:374–390 (1997).

    PubMed  CAS  Google Scholar 

  54. Battersby MW, O’Mahoney JJ, Beckwith AR, and Hunt JL. Antidepressant deaths by overdose. Aust N Z J Psychiatr 30:223–228 (1996).

    CAS  Google Scholar 

  55. Ghazi-Khansari M and Oreizi S. A prospective study of fatal outcome of poisonings in Tehran. Vet Hum Toxicol 37:449–452 (1995).

    PubMed  CAS  Google Scholar 

  56. Jick SS, Dean AD, and Jick H. Antidepressants and suicide. BMJ 310:215–218 (1995).

    PubMed  CAS  Google Scholar 

  57. Obafunwa JO and Busuttil A. Deaths from substance overdose in the Lothian and Borders region of Scotland (1983–1991). Hum Exp Toxicol 13:401–406 (1994).

    PubMed  CAS  Google Scholar 

  58. Shah R, Uren Z, Baker A, and Majeed A. Deaths from antidepressants in England and Wales 1993–1997: analysis of a new national database. Psychol Med 31:1203–1210 (2001).

    PubMed  CAS  Google Scholar 

  59. Buckley NA, Whyte IM, Dawson AH, McManus PR, and Ferguson NW. Self-poisoning in Newcastle, 1987–1992. Med J Austr 162:190–193 (1995).

    CAS  Google Scholar 

  60. Kerr GW, McGuffie AC, and Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J 18:236–241 (2001).

    PubMed  CAS  Google Scholar 

  61. Roberge RJ and Krenzelok EP. Prolonged coma and loss of brainstem reflexes following amitriptyline overdose. Vet Hum Toxicol 43:42–44 (2001).

    PubMed  CAS  Google Scholar 

  62. Pezzilli R, Melandri R, Barakat B, Broccoli BL, and Miglio F. Pancreatic involvement associated with tricyclic overdose. Ital J Gastroenterol Hepatol 30:418–420 (1998).

    PubMed  CAS  Google Scholar 

  63. Tobis JM, Aronow WS. Effect of amitriptyline antidotes on repetitive extrasystole threshold. Clin Pharmacol Ther 27:602–606 (1980).

    PubMed  CAS  Google Scholar 

  64. Singh N, Singh HK, and Fahn IA. Serial electrocardiographic changes as a predictor of cardiovascular toxicity in acute tricyclic antidepressant overdose. Am J Ther 9:75–79 (2002).

    PubMed  Google Scholar 

  65. Harrigan RA and Brady WJ. ECG abnormalities in tricyclic antidepressant ingestion. Am J Emerg Med 17:387–393 (1999).

    PubMed  CAS  Google Scholar 

  66. Jonasson B, Johnasson U, and Saldeen T. Among fatal poisonings dextropropoxyphene predominates in younger people, antidepressants in the middle aged and sedatives in the elderly. J Forensic Sci 45:7–10 (2000).

    PubMed  CAS  Google Scholar 

  67. Shu YZ, Hubbard JW, Cooper JK, McKay G, Korchinsky ED, Kumar R, and Midha KK. The identification of urinary metabolites of doxepin in patients. Drug Metab Dispos 18: 735–741 (1990).

    PubMed  CAS  Google Scholar 

  68. Yan JHI, Hubbard JW, McKay G, and Midha KK. Stereoselective in vivo and in vitro studies on the metabolism of doxepin and N-desmethyldoxepin. Xenobiotica 27:1245–1257 (1997).

    PubMed  CAS  Google Scholar 

  69. Baselt RC and Cravey RH. Disposition of toxic drugs and chemicals in man, 4th ed. Foster City, CA: Chemical Technology Institute, 1995.

    Google Scholar 

  70. Parfitt K, ed. Martindale. The complete drug reference, 32nd ed. Parfitt K, ed. London: Pharmaceutical Press, 1999.

    Google Scholar 

  71. Spiller HA, Winter ML, Mann KV, Borys DJ, Muir S, and Krenzelok EP. Five year retrospective review of cyclobenzaprine toxicity. J Emerg Med 13:781–785 (1995).

    PubMed  CAS  Google Scholar 

  72. Diamond S. Human metabolism of amitriptyline tagged with carbon 14. Curr Ther Res 7: 170–175 (1965).

    PubMed  CAS  Google Scholar 

  73. Crammer JL, Scott B, and Rolfe B. Metabolism of 14C-imipramine: II, Urinary metabolites in man. Pschopharmacology 15:207–225 (1969).

    CAS  Google Scholar 

  74. Kawahara K, Awajji T, Uda K, Sakai Y, and Hashimoto Y. Urinary excretion of conjugates of dothiepin and northiepin (mono-N-demethyl-dothiepin) after an oral dose of dothiepin to humans. Eur J Drug Met Pharmacokin 11:29–32 (1986).

    CAS  Google Scholar 

  75. Dusci LJ and Hackett LP. Gas chromatographic determination of doxepin in human urine following therapeutic doses. J Chrom 61:231–236 (1971).

    CAS  Google Scholar 

  76. Dubois J, Kung W, Theobald W, and Wirz B. Measurement of clomipramine, N-des-methylclomipramine, imipramine and dehydroimipramine in biological fluids by selective ion monitoring, and pharmacokinetics of clomipramine. Clin Chem 22:892–897 (1976)

    PubMed  CAS  Google Scholar 

  77. Mellstrom B and von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline and 10-hydroxyamitriptyline in human liver microsomes. Drug Metab Dispos 9: 565–568 (1981).

    PubMed  CAS  Google Scholar 

  78. Balant-Gorgia AE, Gex-Fabry M, and Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet 20:447–462 (1991).

    PubMed  CAS  Google Scholar 

  79. Ulrich S, Northoff G, Wurthman C, Partscht G, Pester U, Herscu H, and Meyer FP. Serum levels of amitriptyline and therapeutic effect in non-delusional moderately to severely depressed in-patients: a therapeutic window relationship. Pharmacopsyhiatry 34:33–40 (2001).

    CAS  Google Scholar 

  80. Breyer-Pfaff U, Geidke H, Gaertner HJ, and Nill K. Validation of a therapeutic plasma level in amitriptylene in treatment of depression. J Clin Psychopharmacol 9:116–121 (1989).

    PubMed  CAS  Google Scholar 

  81. Perel JM, Mendlewicz J, Shostak M, Kantor SJ, and Glassman AH. Plasma levels of imipramine in depression. Environmental and genetic factors. Neuropsychobiology 2:193–202 (1976).

    PubMed  CAS  Google Scholar 

  82. Preskorn SH, Burke MJ, and Fast GA. Therapeutic drug monitoring. Principles and practice. Psychiatr Clin North Am 16:611–645 (1993).

    PubMed  CAS  Google Scholar 

  83. Eilers R. Therapeutic drug monitoring for the treatment of psychiatric disorders. Clinical use and cost effectiveness. Clin Pharmacokinet 29:442–450 (1995).

    PubMed  CAS  Google Scholar 

  84. Preskorn SH and Fast GA. Tricyclic antidepressant-induced seizures and plasma drug concentrations. J Clin Psychiatry 53:160–162 (1992).

    PubMed  CAS  Google Scholar 

  85. Biggs JT, Spiker DG, Petit JM, and Ziegler VE. Tricyclic antidepressant overdose: incidence of symptoms. JAMA 238:135–138 (1977).

    PubMed  CAS  Google Scholar 

  86. Spiker DG, Weiss AN, Chang SS, Rutwitch JF, and Biggs JT. Tricyclic antidepressant overdose: clinical presentation and plasma levels. Clin Pharmacol Ther 18:539–546 (1975).

    PubMed  CAS  Google Scholar 

  87. Caravati EM and Bossart PJ. Demographic and electrocardiographic factors associated with severe tricyclic antidepressant toxicity. J Toxicol Clin Toxicol 29:31–34 (1991).

    PubMed  CAS  Google Scholar 

  88. Haddard LM. Managing tricyclic antidepressant overdose. Am Fam Physician 46:153–159 (1992).

    Google Scholar 

  89. Nordin C, Bertilsson L, Dahl ML, Resul B, Toresson G, and Sjoqvist F. Treatment of depression with E-10-hydroxynortriptyline—a pilot study on biochemical effects and pharmacokinetics. Psychopharmacology 103:287–290 (1991).

    PubMed  CAS  Google Scholar 

  90. Shimoda K, Yasuda S, Morita S, Shibasaki M, Someya T, Bertilsson L, and Takahashi S. Psychiatry Clin Neurosci 51:35–41 (1997).

    PubMed  CAS  Google Scholar 

  91. Pollock BG and Perel JM. Imipramine and 2-hydroxyimipramine: comparative cardiotoxicity and pharmacokinetics in swine. Psychopharmacology 109:57–62 (1992).

    PubMed  CAS  Google Scholar 

  92. Pollock BG, Everett G, and Perel JM. Comparative cardiotoxicity of nortryptyline and its isomeric 10-hydroxymetabolites. Neuropsychopharmacology 6:1–10 (1992).

    PubMed  CAS  Google Scholar 

  93. Dahl-Puustinen ML, Perry TJ Jr, Dumont E, von Bahr C, Nordin C, and Bertilsson L. Stereospecific disposition of racemic E-10-hydroxynortriptyline in human beings. Clin Pharmacol Ther 45:650–656 (1989).

    PubMed  CAS  Google Scholar 

  94. Melstrom B, Sawe J, Bertilsson L, and Sjoqvist F. Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin Pharmacol Ther 39:369–371 (1986).

    Google Scholar 

  95. Brosen K, Zeugin T, and Meyer UA. Role of P450IID6, the target of sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 49:609–617 (1991).

    PubMed  CAS  Google Scholar 

  96. Breyer-Pfaff U, Pfandl B, Nill K, Nusser E, Monney C, Jonzier-Perey M, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochropme P450 isozymes. Clin Pharmacol Ther 52:350–358 (1992).

    PubMed  CAS  Google Scholar 

  97. Petersen P and Brosen K. Severe nortriptyline poisoning in poor metabolisers of the sparteine type. Ugeskr Laeger 153:443–444 (1991).

    PubMed  CAS  Google Scholar 

  98. Dahl ML, Bertilsson L, and Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxymetabolite: relationship to the CYP2D6 genotype. Psycopharmacology (Berl) 123:315–319 (1996).

    CAS  Google Scholar 

  99. Lemoine A, Gautier JC, Azoulay D, Kiffel L, Belloc C, Guengerich FP, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A2 in human liver. Mol Pharmacol 43:827–832 (1993).

    PubMed  CAS  Google Scholar 

  100. Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, and Tucker GT. Cytochromes P450 mediating the demethylation of amitriptyline. Br J Clin Pharmacol 43:137–144 (1997).

    PubMed  CAS  Google Scholar 

  101. Koyama E, Chiba K, Tani M, and Ishizaki T. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 281:1199–1210 (1997).

    PubMed  CAS  Google Scholar 

  102. Olsen OV and Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isoenzymes. Drug Metab Dispos 25:740–744 (1997).

    Google Scholar 

  103. Venkatakrishnan K, Greenblatt DJ, von Moltke LL, Schmider J, Harmatz JS, and Shader RI. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 38:112–121 (1998).

    PubMed  CAS  Google Scholar 

  104. Venkatakrishnan K, Schmider J, Harmatz JS, Ehrenberg BL, von Moltke LL, Graf JA, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 41:1043–1054 (2001).

    PubMed  CAS  Google Scholar 

  105. Coutts RT, Bach MV, and Baker GB. Metabolism of amitriptyline with CYP2D6 expressed in a human cell line. Xenobiotica 27:33–47 (1997).

    PubMed  CAS  Google Scholar 

  106. Venkatakrishnan K, von Moltke LL, and Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme inducing drugs. J Clin Pharmacol 39:567–577 (1999).

    PubMed  CAS  Google Scholar 

  107. Haritos VS, Ghabrial H, Ahokas JT, and Ching MS. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 10:591–603 (2000).

    PubMed  CAS  Google Scholar 

  108. Ereshefsky AJ, Zarycranski W, Taylor K, Albano D, and Klockowski PM. Effect of venlafaxine vrs fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J Clin Pharmacol 41:443–451 (2001).

    PubMed  Google Scholar 

  109. Pelkonen O, Raunio H, Rautio A, and Lang M. Xenobiotic-metabolizing enzymes and cancer risk: correspondence between genotype and phenotype. In: Vineis P, ed. Metabolic polymorphisms and susceptibility to cancer: Lyon: International Agency for Cancer Research. 1999:77–88.

    Google Scholar 

  110. Mahgoub A, Idle JR, Dring LG, Lancaster R, and Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 2:584–586 (1997).

    Google Scholar 

  111. Eichelbaum M, Spanbrucker N, Steincke B, and Dengler HG. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 16:183–187 (1979).

    PubMed  CAS  Google Scholar 

  112. Daly AK, Armstrong M, Monkman SC, Idle ME, and Idle JR. Genetic and metabolic criteria for the assignment of debrisoquine 4-hydroxylation (cytochrome P4502D6) phenotypes. Pharmacogenetics 1:33–41 (1991).

    PubMed  CAS  Google Scholar 

  113. Kroemer HK and Eichelbaum M. Molecular basis and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci 56:2285–2298 (1995).

    PubMed  CAS  Google Scholar 

  114. Sachse C, Brockmoller J, Bauer S, and Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60: 284–295 (1997).

    PubMed  CAS  Google Scholar 

  115. Mayer UA and Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 37:269–296 (1997).

    Google Scholar 

  116. Nebert DW. Pharmacogenetics: 65 candles on the cake. Pharmacogenetics 7:435–440 (1997).

    Google Scholar 

  117. Ingelman-Sundberg M, Oscarson M, and McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends in Pharmacological Sciences 20:342–349 (1999).

    PubMed  CAS  Google Scholar 

  118. Tamminga WJ, Wemer J, Oosterhuis B, de Zeeuw RA, de Leij L, and Jonkman JH. The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur J Clin Pharmacol 57:717–722 (2001).

    PubMed  CAS  Google Scholar 

  119. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schroder T, et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C16 and 2C19 in the Turkish population. Clin Pharmacol Ther 66:185–192 (1999).

    PubMed  CAS  Google Scholar 

  120. Dandara C, Masimirembwa CM, Magimba A, Sayi J, Kaaya S, Sommers DK, et al. Genetic polymorphism of CYP2D6 and CYP2C19 in east- and southern African populations including psychiatric patients. Eur J Clin Pharmacol 57:11–17 (2001).

    PubMed  CAS  Google Scholar 

  121. Bathum L, Skejelbo E, Mutabingwa TK, Madsen H, Horder M, and Brosen K. Phenotypes and genotypes for CYP2D6 and CYP2C19 in a black Tanzanian population. Br J Clin Pharmacol 48:395–401 (1999).

    PubMed  CAS  Google Scholar 

  122. Yue QY, Zhong ZH, Tybring G, Dalen P, Dahl ML, Bertilsson L, and Sjoqvist F. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 64:384–390 (1998).

    PubMed  CAS  Google Scholar 

  123. Dahl ML, Iselius L, Alm C, Svensson JO, Lee D, Johansson I, and Ingelman-Sundberg M. Polymorphic 2-hydroxylation of desipramine. A population and family study. Eur J Clin Pharmacol 44:445–450 (1993).

    PubMed  CAS  Google Scholar 

  124. Skjelbo E, Brosen K, Hallas J, and Gram LF. The mephentoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 49: 18–23 (1991).

    PubMed  CAS  Google Scholar 

  125. Koyama E, Sohn D-R, Shin S-G, Chiba K, Shin J-G, Kim Y-H, et al. Metabolic distribution of imipramine in oriental subjects: relation to motoprolol a-hydroxylation and S-mephenytoin-4-hydroxylation phenotypes. J Pharmacol Exp Ther 271:860–867 (1994).

    PubMed  CAS  Google Scholar 

  126. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, and Branch RA. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther 38:402–408 (1985).

    PubMed  CAS  Google Scholar 

  127. Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou H-H, Zhou B-J, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 46:198–207 (1989).

    PubMed  CAS  Google Scholar 

  128. Morita S, Shimoda K, Someya T, Yoshimura Y, Kamijima K, and Kato N. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 20: 141–149 (2000).

    PubMed  CAS  Google Scholar 

  129. Shimoda K, Morita S, Hirokane G, Yokono A, Someya T, and Takahashi S. Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine. Pharmacol Toxicol 86:245–249 (2000).

    PubMed  CAS  Google Scholar 

  130. Crewe HK, Lennard MS, Tucker GT, Woods FR, and Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Brit J Clin Pharmacol 34:262–265 (1992).

    CAS  Google Scholar 

  131. Alfaro CL, Lam YW, Simpson J, and Ereshefsky L. J Clin Pharmacol 40:58–66 (2000).

    PubMed  CAS  Google Scholar 

  132. el-Yazigi A, Chaleby K, Gad A, and Raines DA. Steady-state kinetics of fluoxetine and amitriptyline in patients treated with a combination of these drugs as compared to those treated with amitriptyline alone. J Clin Pharmacol 35:17–21 (1995)

    PubMed  CAS  Google Scholar 

  133. Leuch S, Hackl HJ, Steimer W, Angersbach D, and Zimmer R. Effect of adjunctive paroxetine on serum levels and side effects of tricyclic antidepressants in depressive inpatients. Psychopharmacology 147:378–383 (2000).

    Google Scholar 

  134. Preskorn SH, Alderman J, Chung M, Harrison W, Messig M, and Harris S. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 14:90–98 (1994).

    PubMed  CAS  Google Scholar 

  135. Alderman J, Preskorn SH, Greenblatt J, Harrison W, Penenberg D, Allison J, and Chung M. Desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 17:284–291 (1997).

    PubMed  CAS  Google Scholar 

  136. Solai LK, Mulsant BH, Pollock BG, Sweet RA, Rosen J, Yu K, and Reynolds CF 3rd. Effects of sertraline on plasma nortriptyline levels in depressed elderly. J Clin Psychiatry 58:440–443 (1997).

    PubMed  CAS  Google Scholar 

  137. Brosen K and Naranjo CA. Review of pharmacokinetic and pharmacodynamic studies with citalopram. Eur Neuropsychopharmacol 11:275–283 (2001).

    PubMed  CAS  Google Scholar 

  138. Albers LJ, Reist C, Vu RL, Fujimoto K, Ozdemir V, Helmeste D, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 96:235–243 (2000).

    PubMed  CAS  Google Scholar 

  139. Brozen K, Hansen JG, Nielsen KK, Sindrup SH, and Gram LF. Inhibition by paroxetine of desipramine metabolismin extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 44:349–355 (1993).

    Google Scholar 

  140. Laine K, Tybring G, Harrter S, Andersson K, Svensson JO, Widen J, and Bertilsson L. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquine test. Clin Pharmacol Ther 70:327–335 (2001).

    PubMed  CAS  Google Scholar 

  141. Rasmussen BB, Nielsen TL, and Brosen K. Fluvoxamine inhibits the CYP2C19-catalyzed metabolism of proquanil in vitro. Eur J Clin Pharmacol 54:735–740 (1998).

    PubMed  CAS  Google Scholar 

  142. Spina F, Pollicino AM, Avenoso A, Campo GM, Perruca E, and Caputi AP. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 15:243–246 (1993).

    PubMed  CAS  Google Scholar 

  143. Xu ZH, Huang SL, and Shou HH. Inhibition of imipramine N-demethylation by fluvoxamine in chinese young men. Zhongguo Yao Li Xue Bao 17:399–402 (1996).

    PubMed  CAS  Google Scholar 

  144. Conus P, Bondolfi G, Eap CB, Macciardi F, and Baumann P. Pharmacokinetic fluvoxamine-clomipramine interaction with favorable therapeutic consequences in therapy-resistant depressive patient. Pharmacopsychiatry 29:108–110 (1996).

    PubMed  CAS  Google Scholar 

  145. Jerling M, Bertilsson L, and Sjoqvist F. The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Ther Drug Monit 16:1–12 (1994).

    PubMed  CAS  Google Scholar 

  146. Baumann P, Meyer JW, Amey M, Baettig D, Bryois C, Jonzier-Perey M, et al. Dextromethorphan and mephenytoin phenotying of patients treated with thioridazine or amitriptyline. Ther Drug Monit 14:1–8 (1992).

    PubMed  CAS  Google Scholar 

  147. Llerena A, Berecz R, de la Rubia A, Fernandez-Salguero P, and Dorado P. Effect of thioridazine dosage on the debrisoquine hydroxylation phenotype in psychiatric patients with different CYP2D6 genotypes. Ther Drug Monit 23:616–620 (2001).

    PubMed  CAS  Google Scholar 

  148. Maynard GL and Soni P. Thioridazine interferences with imipramine metabolism and measurement. Ther Drug Monit 18:729–731 (1996).

    PubMed  CAS  Google Scholar 

  149. Gury C, Canceil O, and Iaria P. Antipsychotic drugs and cardiovascular safety: current studies of prolonged QT interval and risk of ventricular arrhythmia. Encephale 26:62–72 (2000).

    PubMed  CAS  Google Scholar 

  150. Ray WA, Meredith S, Thapa PB, Meador KG, Hall K, and Murray KT. Antipsychotics and the risk of sudden cardiac death. Arch Gen Psychiatry 58:1161–1167 (2001).

    PubMed  CAS  Google Scholar 

  151. Buckley NA, Whyte IM, and Dawson AH. Cardiotoxicity more common in thioridazine overdose than with other neuroleptics. J Toxicol Clin Toxicol 33:199–204 (1995).

    PubMed  CAS  Google Scholar 

  152. Hartigan-Go K, Bateman DN, Nyberg G, Martensson E, and Thomas SH. Concentration related pharmacodynamic effects of thioridazine and its metabolites in humans. Clin Pharmacol Ther 60:543–553 (1996).

    PubMed  CAS  Google Scholar 

  153. Daniel WA, Syrek M, Haduch A, and Wojcikowski J. Pharmacokinetics and metabolism of thioridazine during coadministration of tricyclic antidepressants. Br J Pharmacol 131: 287–295 (2000).

    PubMed  CAS  Google Scholar 

  154. Donahue SR, Flockhart DA, Abernethy DR, and Ko JW. Ticlopidine inhibition of phenytoin metabolism mediated by potent inhibition of CYP2C19. Clin Pharmacol Ther 62: 572–577 (1997).

    PubMed  CAS  Google Scholar 

  155. Lopez-Aritzegui N, Ochoa M, Sanchez-Migallon MJ, Nevado C, and Martin M. Acute phenytoin poisoning secondary to and interaction with ticlopidine. Rev Neurol 26:1017–1018 (1998).

    Google Scholar 

  156. Ko JW, Desta Z, Soukhova NV, Tracy T, and Flockhart DA. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol 49:343–351 (2000).

    PubMed  CAS  Google Scholar 

  157. Ha-Duong NT, Dijols S, Macherey AC, Goldstein JA, Dansette PM, and Mansuy D. Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 40:12112–12122 (2001).

    PubMed  CAS  Google Scholar 

  158. Dietrich DE and Emrich HM. The use of anticonvulsants to augment antidepressant medication. J Clin Psychiatry 59(Suppl 5):57–58 (1998).

    Google Scholar 

  159. Leinonen E, Lillsunde P, Laukkanen V, and Ylitali P. Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol 11:313–318 (1991).

    PubMed  CAS  Google Scholar 

  160. Spina E, Pisani F, and Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet 31:198–214 (1996).

    PubMed  CAS  Google Scholar 

  161. Szymura-Oleksiak J, Wyska E, and Wasieczko A. Pharmacokinetic interaction between imipramine and carbamazepine in patients with major depression. Psychpharmacology 154: 38–42 (2001).

    CAS  Google Scholar 

  162. Parker AC, Pritchard P, Preston T, and Choonara I. Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Brit J Clin Pharmacol 45:176–178 (1998).

    CAS  Google Scholar 

  163. Dorian P, Sellers EM, Reed KL, Warsh JJ, Hamilton C, Kaplan HL, and Fan T. Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction. Eur J Clin Pharmacol 25:325–331 (1983).

    PubMed  CAS  Google Scholar 

  164. Basalt RC. Amitriptyline. In: Drug Effects on Psychomotor Performance. Foster City, CA: Biomedical Publications, 2001.

    Google Scholar 

  165. Power BM, Hackett LP, Dusci LJ, and Ilett KF. Antidepressant toxicity and the need for identification and concentration monitoring in overdose. Clin Pharmacokinet 29:154–171 (1995).

    PubMed  CAS  Google Scholar 

  166. Stolk LML and Geest S van der. Plasma concentrations after a clomipramine intoxication. J Anal Toxicol 22:612–613 (1998).

    PubMed  CAS  Google Scholar 

  167. Vermeulen T. Distribution of paroxetine in three postmortem cases. J Anal Toxicol 22: 541–544 (1998).

    PubMed  CAS  Google Scholar 

  168. Druid H, Holmgren P, Carlsson B, and Ahlner J. Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool of forensic toxicological results. Forensic Sci Int 99:25–34 (1999).

    PubMed  CAS  Google Scholar 

  169. Spigset O, Hedenmalm K, Dahl ML, Wilholm BE, and Dahlqvist R. Seizures and myoclonus associated with antidepressant treatment: assessment of potential risk factors, including CYP2D6 and CYP2C19 polymorphisms, and treatment with CYP2D6 inhibitors. Acta Psychiatr Scand 96:379–384 (1997).

    PubMed  CAS  Google Scholar 

  170. Vandel S, Bertschy G, Bonin B, Nezelof S, Fransois TH, Vandel B, et al. Tricyclic antidepressant plasma levels after fluoxetine addition. Neuropsychobiology 25:202–207 (1992).

    PubMed  CAS  Google Scholar 

  171. Bonin B, Bertschy G, Baumann P, Francois T, Vandel P, Vandel S, et al. Fluoxetine and tricyclic antidepressants: clinical tolerance in short-term combined administration. Encephale 22:221–227 (1996).

    PubMed  CAS  Google Scholar 

  172. Levitt AJ, Joffe RT, Kamil R, and McIntyre R. Do depressed subjects who have failed fluoxetine and a tricyclic antidepressant respond to the combination? J Clin Psychiatry 60: 613–616 (1999).

    PubMed  CAS  Google Scholar 

  173. Preskorn SH and Baker B. Fatality associated with combined fluoxetine-amitriptyline therapy. JAMA 277:1682 (1997).

    PubMed  CAS  Google Scholar 

  174. Chaturvedi AK, Hidding JT, Rao JT, Smith JT 2nd, and Bredehoeft SJ. Two tricyclic antidepressant poisonings: levels of amitriptyline, nortriptyline and desipramine in postmortem blood. Forensic Sci Int 33:93–101 (1987).

    PubMed  CAS  Google Scholar 

  175. September 11September 1 ins. J Anal Toxicol 13:303–304 (1989).

    Google Scholar 

  176. Musshoff F, Grellner W, and Madea B. Toxicological findings in suicide with doxepin and paroxetine. Arch Kriminol 204:28–32 (1999).

    PubMed  CAS  Google Scholar 

  177. Pounder DJ and Jones GR. Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int 45:253–263 (1990).

    PubMed  CAS  Google Scholar 

  178. Pounder DJ, Hartley AK, and Watmough PJ. Postmortem redistribution and degradation of dothiepin. Human case studies and an animal model. Am J Forensic Med Pathol 15:231–235 (1994).

    PubMed  CAS  Google Scholar 

  179. Hilberg T, Morland J, and Bjroneboe A. Postmortem release of amitriptyline from the lungs; a mechanism of post-mortem drug redistribution. Forensic Sci Int 64:47–55 (1994).

    PubMed  CAS  Google Scholar 

  180. Hilberg T, Rogde S, and Morland J. Post-mortem drug redistribution—human cases related to results in experimental animals. J Forensic Sci 44:3–9 (1999).

    PubMed  CAS  Google Scholar 

  181. Pounder DJ, Owen V, and Quigley C. Postmortem changes in blood amitriptyline concentration. Am J Forensic Med Pathol 15:224–230 (1994).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Danielson, T.J. (2004). Monoamine Oxidase Inhibitors and Tricyclic Antidepressants. In: Mozayani, A., Raymon, L.P. (eds) Handbook of Drug Interactions. Forensic Science and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-654-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-654-6_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-424-1

  • Online ISBN: 978-1-59259-654-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics