Skip to main content

Antiepileptic Drugs

  • Chapter
  • 477 Accesses

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

Epilepsy is a chronic neurologic disorder characterized by recurrent seizures. Estimates indicate that approximately 120 in 100,000 people in the United States seek medical attention each year as the result of experiencing a seizure. Though not every patient that has a seizure has epilepsy, approximately 125,000 new cases of epilepsy are diagnosed every year (1–3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Hauser WA. Seizure disorders: the changes with age. Epilepsia 33(Suppl 4):S6-S14 (1992).

    Article  Google Scholar 

  2. Hauser WA. The prevalence and incidence of convulsive disorders in children. Epilepsia 35(Suppl 2):S1-S6 (1994).

    Article  Google Scholar 

  3. Leppik IE. Contemporary diagnosis and management of the patient with epilepsy, 1st ed. Newtown, PA: Handbooks in Health Care, 1993.

    Google Scholar 

  4. Dichter MA. Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia 35(Suppl 4):S51-S57 (1994).

    Article  Google Scholar 

  5. Garnett WR. Antiepileptics. In: Schumacher GE, ed. Therapeutic drug monitoring. Norwalk, CT: Appleton & Lange, 1995:345–395.

    Google Scholar 

  6. Schmidt D and Haenel F. Therapeutic plasma levels ofphenytoin, phenobarbital, and carbamazepine: individual variation in relation to seizure frequency and type. Neurology 34:1252–1255 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt D, Einicke I, and Haenel F. The influence of seizure type on the efficacy of plasma concentrations of phenytoin, phenobarbital, and carbamazepine. Arch Neurol 43:263–265 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. Juul-Jensen P. Frequency of recurrence after discontinuance of anticonvulsant therapy in patients with epileptic seizures: a new follow-up study after 5 years. Epilepsia 9:11–16 (1968).

    Article  PubMed  CAS  Google Scholar 

  9. Camfield P and Camfield C. Acute and chronic toxicity of antiepileptic medications: a selective review. Can J Neurol Sci 21:S7-S11 (1994).

    Google Scholar 

  10. Bowden CL. Role of newer medications for bipolar disorder. J Clin Psychopharmacol 16: 485–555 (1996).

    Article  Google Scholar 

  11. McNamara JO. Drugs effective in the therapy of the epilepsies. In: Goodman LS, Gilman A, Hardman JG, Limbird LE, and Gilman AG, eds. Goodman & Gilman’s the pharmacological basis of therapeutics, 10th ed. New York: McGraw-Hill, 2001:xxvii, 2148.

    Google Scholar 

  12. Browne T and LeDuc B. Phenytoin: chemistry and biotransformation. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995: 283–300.

    Google Scholar 

  13. Browne TR, Kugler AR, and Eldon MA. Pharmacology and pharmacokinetics of fosphenytoin. Neurology 46:53–57 (1996).

    Article  CAS  Google Scholar 

  14. McLean MJ and Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 227:779–789 (1983).

    PubMed  CAS  Google Scholar 

  15. Treiman D and Woodbury D. Phenytoin: absorption, distribution, and excretion. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995:301–314.

    Google Scholar 

  16. Kostenbauder HB, Rapp RP, McGovren JP, Foster TS, Perrier DG, Blacker HM, et al. Bioavailability and single-dose pharmacokinetics of intramuscular phenytoin. Clin Pharmacol Ther 18:449–456 (1975).

    PubMed  CAS  Google Scholar 

  17. Vajda F, Williams FM, Davidson S, Falconer MA, and Breckenridge A. Human brain, cerebrospinal fluid, and plasma concentrations of diphenylhydantoin and phenobarbital. Clin Pharmacol Ther 15:597–603 (1974).

    PubMed  CAS  Google Scholar 

  18. Wallace S and Brodie MJ. Decreased drug binding in serum from patients with chronic hepatic disease. Eur J Clin Pharmacol 9:429–432 (1976).

    Article  CAS  Google Scholar 

  19. Spielberg SP, Gordon GB, Blake DA, Mellits ED, and Bross DS. Anticonvulsant toxicity in vitro: possible role of arene oxides. J Pharmacol Exp Ther 217:386–389 (1981).

    PubMed  CAS  Google Scholar 

  20. Tozer TN and Winter ME. Phenytoin. In: Evans WE, Schentag JJ, and Jusko WJ, eds. Applied pharmacokinetics: principles of therapeutic drug monitoring, 3rd ed. Vancouver, WA: Applied Therapeutics, 1992:25.1–25.44.

    Google Scholar 

  21. Kaneko S, Battino D, Andermann E, Wada K, Kan R, Takeda A, et al. Congenital malformations due to antiepileptic drugs. Epilepsy Res 33:145–158 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. Mattson RH. Parenteral antiepileptic/anticonvulsant drugs. Neurology 46:58–513 (1996).

    Article  Google Scholar 

  23. Liponi DF, Winter ME, and Tozer TN. Renal function and therapeutic concentrations of phenytoin. Neurology 34:395–397 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. Olsen KM, Hiller FC, Ackerman BH, and McCabe BJ. Effect of enteral feedings on oral phenytoin absorption. Nutr Clin Pract 4:176–178 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. Berg MJ, Fincham RW, Ebert BE, and Schottelius DD. Decrease of serum folates in healthy male volunteers taking phenytoin. Epilepsia 29:67–73 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. Kutt H. Carbamazepine: chemistry and methods of determination. Adv Neurol 11:249–261 (1975).

    PubMed  CAS  Google Scholar 

  27. Grant SM and Faulds D. Oxcarbazepine. A review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 43:873–888 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. MacDonald R. Carbamazepine. Mechanisms of action. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989:447–455.

    Google Scholar 

  29. Waldmeier PC, Baumann PA, Wicki P, Feldtrauer JJ, Stierlin C, and Schmutz M. Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. McLean MJ, Schmutz M, Wamil AW, Olpe HR, Portet C, and Feldmann KF. Oxcarbazepine: mechanisms of action. Epilepsia 35(Suppl 3):S5-S9 (1994).

    Article  Google Scholar 

  31. Schmutz M, Brugger F, Gentsch C, McLean MJ, and Olpe HR. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. [see comments.]. Epilepsia 35 (Suppl 5):S47-S50 (1994).

    Article  Google Scholar 

  32. Morselli P. Carbamazepine: absorption, distribution, and excretion. In: Levy RH, ed. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989:473–490.

    Google Scholar 

  33. Meinardi H. CBZ. In: Woodbury DM, Penry JK, and Schmidt RP, eds. Antiepileptic drugs. New York: Raven Press, 1972:487–496.

    Google Scholar 

  34. Bell WL, Crawford IL, and Shiu GK. Reduced bioavailability of moisture-exposed carbamazepine resulting in status epilepticus. Epilepsia 34:1102–1104 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. Riad LE, Chan KK, Wagner WE Jr, and Sawchuk RJ. Simultaneous first- and zero-order absorption of carbamazepine tablets in humans. J Pharm Sci 75:897–900 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. Morselli PL and Frigerio A. Metabolism and pharmacokinetics of carbamazepine. Drug Metab Rev 4:97–113 (1975).

    Article  PubMed  CAS  Google Scholar 

  37. Morselli PL, Baruzzi A, Gerna M, Bossi L, and Porta M. Carbamazepine and carbamazepine-10, 11-epoxide concentrations in human brain. Br J Clin Pharmacol 4:535–540 (1977).

    Article  PubMed  CAS  Google Scholar 

  38. Wisner KL and Perel JM. Serum levels of valproate and carbamazepine in breastfeeding mother-infant pairs. J Clin Psychopharmacol 18:167–169 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. Kerr B and Levy R. Carbamazepine: carbamazepine and carbamazepine-epoxide. In: Levy RH, ed. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989:505–520.

    Google Scholar 

  40. Hundt HK, Aucamp AK, Muller FO, and Potgieter MA. Carbamazepine and its major metabolites in plasma: a summary of eight years of therapeutic drug monitoring. Ther Drug Monit 5:427–435 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. Lloyd P, Flesch G, and Dieterle W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 35(Suppl 3):S10–513 (1994).

    Article  Google Scholar 

  42. Zakrzewska JM and Patsalos PN. Oxcarbazepine: a new drug in the management of intractable trigeminal neuralgia. J Neurol Neurosurg Psychiatry 52:472–476 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. Bertilsson L and Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide>. An update. Clin Pharmacokinet 11:177–198 (1986).

    Article  CAS  Google Scholar 

  44. Bertilsson L, Hojer B, Tybring G, Osterloh J, and Rane A. Autoinduction of carbamazepine metabolism in children examined by a stable isotope technique. Clin Pharmacol Ther 27:83–88 (1980).

    Article  PubMed  CAS  Google Scholar 

  45. Bertilsson L, Tomson T, and Tybring G. Pharmacokinetics: time-dependent changes—autoinduction of carbamazepine epoxidation. J Clin Pharmacol 26:459–462 (1986).

    Article  PubMed  CAS  Google Scholar 

  46. Konishi T, Naganuma Y, Hongo K, Murakami M, Yamatani M, and Okada T. Carbamazepine-induced skin rash in children with epilepsy. Eur J Pediatr 152:605–608 (1993).

    Article  PubMed  CAS  Google Scholar 

  47. Van Amelsvoort T, Bakshi R, Devaux CB, and Schwabe S. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 35:181–188 (1994).

    Article  PubMed  Google Scholar 

  48. Lander CM and Eadie MJ. Antiepileptic drug intake during pregnancy and malformed offspring. Epilepsy Res 7:77–82 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. Messenheimer JA. Lamotrigine. Epilepsia 36(Suppl 2):S87-S94 (1995).

    Article  Google Scholar 

  50. Goa KL, Ross SR, and Chrisp P. Lamotrigine. A review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 46:152–176 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. Rambeck B and Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 25: 433–443 (1993).

    Article  PubMed  CAS  Google Scholar 

  52. Richens A. Safety of lamotrigine. Epilepsia 35(Suppl 5):S37-S40 (1994).

    Article  Google Scholar 

  53. Messenheimer J, Mullens EL, Giorgi L, and Young F. Safety review of adult clinical trial experience with lamotrigine. Drug Saf 18:281–296 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. Davis R, Peters DH, and McTavish D. Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47:332–372 (1994).

    Article  PubMed  CAS  Google Scholar 

  55. Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, and Menander KB. Valproic acid hepatic fatalities: a retrospective review. Neurology 37:379–385 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. May RB and Sunder TR. Hematologic manifestations of long-term valproate therapy. Epilepsia 34:1098–1101 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. Bjerkedal T, Czeizel A, Goujard J, Kallen B, Mastroiacova P, Nevin N, et al. Valproic acid and spina bifida. Lancet 2:1096 (1982).

    Article  PubMed  CAS  Google Scholar 

  58. Pisani F, Narbone M, and Trunfio C. Ethosuximide: chemistry and biotransformation. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995:655–658.

    Google Scholar 

  59. Glauser T. Ethosuximide. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Baltimore: Williams & Wilkins, 2001:881–891.

    Google Scholar 

  60. Homing MG, Brown L, Nowlin J, Lertratanangkoon K, Kellaway P, and Zion TE. Use of saliva in therapeutic drug monitoring. Clin Chem 23:157–164 (1977).

    Google Scholar 

  61. Yamamoto T, Pipo JR, Akaboshi S, and Narai S. Forced normalization induced by ethosuximide therapy in a patient with intractable myoclonic epilepsy. Brain Dev 23:62–64 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. Gibaldi M. Adverse drug effect-reactive metabolites and idiosyncratic drug reactions: part I. Ann Pharmacother 26:416–421 (1992).

    PubMed  CAS  Google Scholar 

  63. Dreifuss F. Ethosuximide: toxicity. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995:675–679.

    Google Scholar 

  64. Schmidt B. Potential new antiepileptic drugs: gabapentin. In: Levy RH, Mattson RH, and Meldrum BS, eds. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989:925–935.

    Google Scholar 

  65. Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249 (1998).

    Article  PubMed  CAS  Google Scholar 

  66. McLean MJ. Gabapentin. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001:915–932.

    Google Scholar 

  67. Wong MO, Eldon MA, Keane WF, Turck D, Bockbrader HN, Underwood BA, et al. Disposition of gabapentin in anuric subjects on hemodialysis. J Clin Pharmacol 35:622–626 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. Goa KL and Sorkin EM. Gabapentin. A review of its pharmacological properties and clinical potential in epilepsy. Drugs 46:409–427 (1993).

    Article  PubMed  CAS  Google Scholar 

  69. (March 1998). Package insert: topamax. Ortho-McNeil Pharmaceuticals, Raritan, NJ.

    Google Scholar 

  70. Privitera M, Ficker D, and Welty T. Topiramate. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001:939–945.

    Google Scholar 

  71. DeLorenzo RJ, Sombati S, and Coulter D. Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 41(Suppl 1):S40-S44 (2000).

    Article  Google Scholar 

  72. Doose DR, Walker SA, Gisclon LG, and Nayak RK. Single-dose pharmacokinetics and effect of food on the bioavailability of topiramate, a novel antiepileptic drug. J Clin Pharmacol 36:884–891 (1996).

    Article  PubMed  CAS  Google Scholar 

  73. Sachdeo RC, Sachdeo SK, Walker SA, Kramer LD, Nayak RK, and Doose DR. Steadystate pharmacokinetics of topiramate and carbamazepine in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia 37:774–780 (1996).

    Article  PubMed  CAS  Google Scholar 

  74. Walker MC and Sander JW. Topiramate: a new antiepileptic drug for refractory epilepsy. Seizure 5:199–203 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. Bourgeois BF. Drug interaction profile of topiramate. Epilepsia 37(Suppl 2):514–517 (1996).

    Google Scholar 

  76. Schachter S. Tiagabine. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001: 930–938.

    Google Scholar 

  77. Schachter SC. A review of the antiepileptic drug tiagabine. Clin Neuropharmacol 22:312–317 (1999).

    PubMed  CAS  Google Scholar 

  78. Mengel H. Tiagabine. Epilepsia 35(Suppl 5):S81-S84 (1994).

    Article  Google Scholar 

  79. Gustayson LE and Mengel HB. Pharmacokinetics of tiagabine, a gamma-aminobutyric acid-uptake inhibitor, in healthy subjects after single and multiple doses. Epilepsia 36: 605–611 (1995).

    Article  Google Scholar 

  80. Gustayson LE, Mengel HB. Pharmacokinetics of tiagabine, a gamma-aminobutyric aciduptake inhibitor, in healthy subjects after single and m ultiple doses. Epilepsia 36(6):605–611 (1995).

    Article  Google Scholar 

  81. Leppik IE. Tiagabine: the safety landscape. Epilepsia 36(Suppl 6):S10–513 (1995).

    Article  Google Scholar 

  82. Faught E. Felbamate. In: Wyllie E, ed. The treatment of epilepsy: principles and practice 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001:953–960, 1188.

    Google Scholar 

  83. White HS, Wolf HH, Swinyard EA, Skeen GA, and Sofia RD. A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia 33:564–572 (1992).

    Article  PubMed  CAS  Google Scholar 

  84. Adusumalli VE, Wichmann JK, Kucharczyk N, Kamin M, Sofia RD, French J, et al. Drug concentrations in human brain tissue samples from epileptic patients treated with felbamate. Drug Metab Disp 22:168–170 (1994).

    CAS  Google Scholar 

  85. Wilensky AJ, Friel PN, Ojemann LM, Kupferberg HJ, and Levy RH. Pharmacokinetics of W-554 (ADD 03055) in epileptic patients. Epilepsia 26:602–606 (1985).

    Article  PubMed  CAS  Google Scholar 

  86. Graves NM. Felbamate. Ann Pharmacother 27:1073–1081 (1993).

    PubMed  CAS  Google Scholar 

  87. McGee JH, Butler WH, Erikson DJ, and Sofia RD. Oncogenic studies with felbamate (2-pheny1–1,3-propanediol dicarbamate). Toxicol Sci 45:146–151 (1998).

    Article  PubMed  CAS  Google Scholar 

  88. Kaufman DW, Kelly JP, Anderson T, Harmon DC, and Shapiro S. Evaluation of case reports of aplastic anemia among patients treated with felbamate. [see comments.]. Epilepsia 38: 1265–1269 (1997).

    Article  PubMed  CAS  Google Scholar 

  89. Wagner ML, Remmel RP, Graves NM, and Leppik IE. Effect of felbamate on carbamazepine and its major metabolites. Clin Pharmacol Ther 53:536–543 (1993).

    Article  PubMed  CAS  Google Scholar 

  90. Ben-Menachem E. Vigabatrin. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001:961–968.

    Google Scholar 

  91. Durham SL, Hoke JF, and Chen TM. Pharmacokinetics and metabolism of vigabatrin following a single oral dose of [14C]vigabatrin in healthy male volunteers. Drug Metab Dispos 21:480–484 (1993).

    PubMed  CAS  Google Scholar 

  92. Grant SM and Heel RC. Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. [erratum appears in Drugs 1991 Aug;42(2):330.]. Drugs 41:889–926 (1991).

    Article  PubMed  CAS  Google Scholar 

  93. (March 2000). Package insert: keppra. UCB Pharma, Smyrna, GA.

    Google Scholar 

  94. Delanty N and French J. Newer antiepileptic drugs. In: Wyllie E, ed. The treatment of epilepsy: principles and practice, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001: 977–983.

    Google Scholar 

  95. Patsalos PN. Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther 85:77–85 (2000).

    Article  PubMed  CAS  Google Scholar 

  96. (May 2000). Package insert: zonegran. Elan pharmaceuticals, San Francisco, CA.

    Google Scholar 

  97. Perucca E and Bialer M. The clinical pharmacokinetics of the newer antiepileptic drugs. Focus on topiramate, zonisamide and tiagabine. Clin Pharmacokinet 31:29–46 (1996).

    Article  PubMed  CAS  Google Scholar 

  98. Mimaki T. Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 20:593–597 (1998).

    Article  PubMed  CAS  Google Scholar 

  99. Gidal BE, Garnett WR, and Graves NM. Epilepsy. In: DiPiro JT, ed. Pharmacotherapy: a pathophysiologic approach, 5th ed. New York: McGraw-Hill, 1999:1031–1060.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanous, N.L., Gidal, B.E. (2004). Antiepileptic Drugs. In: Mozayani, A., Raymon, L.P. (eds) Handbook of Drug Interactions. Forensic Science and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-654-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-654-6_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-424-1

  • Online ISBN: 978-1-59259-654-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics