Skip to main content

Part of the book series: Nutrition and Health ((NH))

Abstract

Iron is the fourth most abundant element in the world; this points to the general importance of this metal for life. Iron is an essential nutrient for cells because of its role as a cofactor for enzymes in the mitochondrial respiration chain and oxidative phosphorylation, in the citric acid cycle (aconitase), and in DNA synthesis (ribonucleotide reductase). Thus, proliferating organisms and cells have an increased need to acquire a sufficient amount of iron. Moreover, because it is a central component of hemoglobin and myoglobin, iron can reversibly bind and transport molecular oxygen, and, thus, its sufficient supply is a prerequisite for human life and growth (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Templeton D (ed.). Molecular and Cellular Iron Transport.. M. Decker Inc., New York, 2002.

    Google Scholar 

  2. Seligman PA, Kovar J, Gelfand EW. Lymphocyte proliferation is controlled both by iron availability and regulation of iron uptake pathways. Pathobiology 1992;60:19–26.

    Article  PubMed  CAS  Google Scholar 

  3. De Sousa M. Immune cell functions in iron overload. Clin Exp Immunol 1989;75:1–6.

    PubMed  Google Scholar 

  4. Weiss G, Wachter H, Fuchs D. Linkage of cellular immunity to iron metabolism. Immunol Today 1995;16:495–500.

    Article  PubMed  CAS  Google Scholar 

  5. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 88:482–488.

    Article  Google Scholar 

  6. Andrews NC, Levy JE. Iron is hot: update on the pathophysiology of hemochromatosis. Blood 1998;92:1845–1852.

    PubMed  CAS  Google Scholar 

  7. Donovan A, Brownlie A, Zhou Y, et al. Positional cloning of zebrafish ferroportin 1 identifies a con-served vertebrate iron exporter. Nature 2000;403:776–781.

    Article  PubMed  CAS  Google Scholar 

  8. McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000;5:299–309.

    Article  PubMed  CAS  Google Scholar 

  9. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabo-lism. J Biol Chem 2000;275:19906–19912.

    Article  PubMed  CAS  Google Scholar 

  10. Rouault TA, Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 1997;35:1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc Natl Acad Sci USA 1996;93:8175–8180.

    Article  PubMed  CAS  Google Scholar 

  12. Weiss G, Goossen B, Doppler W, et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 1993;12:3651–3657.

    PubMed  CAS  Google Scholar 

  13. Drapier JC, Hirling H, Wietzerbin H, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 1993;12:3643–3650.

    PubMed  CAS  Google Scholar 

  14. Pantopoulos K, Hentze MW. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 1995;14:2917–2924.

    PubMed  CAS  Google Scholar 

  15. Cairo G, Castrusini E, Minotti G, Bernelli-Zazzera A. Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: a protective stratagem against oxidative injury. FASEB J 1996;10:1326–1335.

    PubMed  CAS  Google Scholar 

  16. Keyna U, Nusslein I, Rohwer P, Kalden JR, Manger B. The role of the transferrin receptor for the activation of human lymphocytes. Cell Immunol 1991;132:411–422.

    Article  PubMed  CAS  Google Scholar 

  17. Brekelmans P, van Soest P, Leenen PJ, van Ewijk W. Inhibition of proliferation and differentiation during early T cell development by anti-transferrin receptor antibody. Eur J Immunol 1994;24:2896–2902.

    Article  PubMed  CAS  Google Scholar 

  18. Kuvibidila S, Dardenne M, Savino W, Lepault F. Influence of iron deficiency on selected thymus functions in mice: thymulin biological activity, T cells subsets and thymocyte proliferation. Am J Clin Nutr 1990;51:228–232.

    PubMed  CAS  Google Scholar 

  19. Mainou-Fowler T, Brock JH. Effect of iron deficiency on the response of mouse lymphocytes to con-canavalin A: importance of transferrin bound iron. Immunology 1985;54:325–332.

    PubMed  CAS  Google Scholar 

  20. Kumagai N, Benedict SH, Mills GB, Gelfand EW. Comparison of phorbol ester/calicum ionophore and phytohemagglutinin induced signaling in human T lymphocytes. Demonstration of interleukin-2 independent transferrin receptor gene expression. J Immunol 1988;140:37–43.

    PubMed  CAS  Google Scholar 

  21. De Sousa M, Reimao R, Porto G, Grady RW, Hilgartner MW, Giardina P. Iron and lymphocytes: reciprocal regulatory interactions. Curr Stud Hematol Blood Transfus 1992;58:171–177.

    Google Scholar 

  22. Farrar DJ, Asnagli H, Murphy KM. T helper subset development: roles of instruction, selection, and transcription. J Clin Invest 2002;109:431–435.

    PubMed  CAS  Google Scholar 

  23. Thorson JA, Smith KM, Gomez F, Naumann PW, Kemp JD. Role of iron in T cell activation: Th-1 clones differ from Th-2 clones in their sensitivity to inhibition for DNA synthesis caused by IGG MAbs against transferrin receptor and the iron chelator desferrioxamine. Cell Immunol 1991;134:126–127.

    Article  PubMed  CAS  Google Scholar 

  24. Weiss G. Iron acquisition by the reticuloendothelial system. In: Templeton D (ed.). Molecular and Cellular Iron Transport. M. Dekker Inc., New York, 2002, pp. 468–487.

    Google Scholar 

  25. Brock JH. Iron in infection, immunity, inflammation and neoplasia. In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds.). Iron Metabolism in Health and Disease. W.B. Saunders, Philadelphia, 1994, pp. 353–391.

    Google Scholar 

  26. Brock JH. The effect of iron and transferrin on the response of serum free cultures of mouse lymphocytes to concanavalin A and lipopolysaccharide. Immunology 1981;43:387–392.

    PubMed  CAS  Google Scholar 

  27. Seligman PA, Kovar J, Schleicher RB, Gelfand EW. Transferrin-independent iron uptake supports B lymphocyte growth. Blood 1991;78:1526–1531.

    PubMed  CAS  Google Scholar 

  28. Rothman-Sherman A, Lockwood JF. Impaired natural killer cell activity in iron deficient rat pups. J Nutr 1987;117:567–571.

    Google Scholar 

  29. Kaplan J, Sarnaik S, Gitlin J, Lusher J. Diminished helper/suppressor lymphocyte ratios and natural killer activity in recipients of repeated blood donations. Blood 1984;64:308–310.

    PubMed  CAS  Google Scholar 

  30. Anderson GJ, Faulk WP, Arosio P, Moss D, Powell LW, Halliday JW. Identification of H- and L-ferritin subunit binding sites on human T and B lymphoid cells. Br J Haematol 1989;73:260–264.

    Article  PubMed  CAS  Google Scholar 

  31. Konijn AM, Meyron-Holtz EG, Levy R, Ben-Bassat H, Matzner Y. Specific binding of placental acidic isoferritins to cells of the T-cell line HD-MAR. FEBS Lett 1990;263:229–234.

    Article  PubMed  CAS  Google Scholar 

  32. Gray CP, Arosio P, Hersey P. Heavy chain ferritin activates regulatory T cells by induction of changes in dendritic cells. Blood 2002;99:3326–3334.

    Article  PubMed  CAS  Google Scholar 

  33. Brock JH. Lactoferrin. A multifunctional immunoregulatory protein? Immunol Today 1995;16: 417–419.

    Article  PubMed  CAS  Google Scholar 

  34. Mincheva-Nilsson L, Hammarstrom S, Hammarstrom ML. Activated human gamma delta T-lymphocytes express functional lactoferrin receptors. Scand J Immunol 1997;46:609–618.

    Article  PubMed  CAS  Google Scholar 

  35. Shau H, Kim A, Golub SH. Modulation of natural killer and lymphokine activated killer cell cytotoxiciy by lactoferrin. J Leukoc Biol 1992;51:343–349.

    PubMed  CAS  Google Scholar 

  36. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J 1995;9:200–205.

    PubMed  CAS  Google Scholar 

  37. Forbes JR, Gros P. Divalent metal transport by NRAMP proteins at the interface to host-pathogen interaction. Trends Microbiol 2001;9:397–403.

    Article  PubMed  CAS  Google Scholar 

  38. Blackwell JM, Searle S, Goswami T, Miller EN. Understanding the multiple functions of NRAMP1. Microbes Infect 2000;2:317–321.

    Article  PubMed  CAS  Google Scholar 

  39. Baker ST, Barton CH, Biggs TE. A negative autoregulatory link between Nrampl function and expres-sion. J Leukoc Biol 2000;67:501–507.

    PubMed  CAS  Google Scholar 

  40. Kuhn DE, Baker BD, Lafuse WP, Zwilling BS. Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with NRAMP-1G1y169 or NRAMP 1 Asp 169. J Leukoc Biol 1999;66:113–119.

    PubMed  CAS  Google Scholar 

  41. Biggs TE, Baker ST, Bothman MS, Dhital A, Barton HC, Perry HV. Nrampl modulates iron homeostasis in vivo and in vitro: evidence for a role in cellular iron release involving de-acidification of intracellular vesicles. Eur J Immunol 2001;31:2060–2070.

    Article  PubMed  CAS  Google Scholar 

  42. Oria R, Alvarez-Hernandez X, Licega J, Brock JH. Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage cell line. Biochem J 1988;252:221–225.

    PubMed  CAS  Google Scholar 

  43. Olakamni O, Stokes JB, Britigan BE. Acquisition of iron bound to low molecular weight chelates by human monocyte derived macrophages. J Immunol 1994;153:2691–2703.

    Google Scholar 

  44. Wardrop SL, Richardson DR. Interferon-gamma and lipopolysaccharide regulate the expression of Nramp2 and increase the uptake of iron from low relative molecular mass complexes by macrophages. Eur J Biochem 2000;267:6586–6593.

    Article  PubMed  CAS  Google Scholar 

  45. Weiss G, Graziadei I, Urbanek M, Grünewald K, Vogel W. Divergent effects of αl-antitrypsin on the regulation of iron metabolism in human erythroleukemic (K562) and myelomonocytic (THP-1) cells. Biochem J 1996;319:897–902.

    PubMed  CAS  Google Scholar 

  46. Birgens HS, Kristenesen LO, Borregaard N, Karle H, Hansen NE. Lactoferrin-mediated transfer of iron to intracellular ferritin in human monocytes. Exp Hematol 1988;41:52–57.

    CAS  Google Scholar 

  47. Moura E, Noordermeer MA, Verhoeven N, Verheul AFM, Marx JJ. Iron release from human monocytes after erythrophagocytosis in vitro: an investigation in normal subjects and hereditary hemochromatosis patients. Blood 1998;92:2511–2519.

    PubMed  CAS  Google Scholar 

  48. Kanayasu-Toyoda T, Yamaguchi T, Uchida E, Hayakawa T. Commitment of neutrophilic differentiation and proliferation of HL-60 cells coincides with expression of transferrin receptor. Effect of granulocyte colony stimulating factor on differentiation and proliferation. J Biol Chem 1999;274: 25471–25480.

    Article  PubMed  CAS  Google Scholar 

  49. Clark RA, Pearson DW. Inactivation of transferrin iron binding capacity by the neutrophil myeloperoxidase system. J Biol Chem 1989;264:9240–9247.

    Google Scholar 

  50. Weiss G. Iron an immunity-a double-edged sword. Eur J Clin Invest 2002;32:s70-S78.

    Article  PubMed  CAS  Google Scholar 

  51. Means RT, Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 1992;80:1639–1647.

    PubMed  Google Scholar 

  52. Weiss G. Iron and the anemia of chronic disease. Kidney Intern 1999;55(Suppl 69):12–17.

    Article  Google Scholar 

  53. Weiss G, Fuchs D, Hausen A, et al. Iron modulates interferon-γ effects in the human myelomonocytic cell line THP-1. Exp Hematol 1992;20:605–610.

    PubMed  CAS  Google Scholar 

  54. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323–350.

    Article  PubMed  CAS  Google Scholar 

  55. Weiss G, Werner-Felmayer G, Werner ER, Grünewald K, Wachter H, Hentze MW. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969–976.

    Article  PubMed  CAS  Google Scholar 

  56. Mellilo G, Taylor LS, Brooks A, Musso T, Cox GW, Varesio L. Functional requirement of the hypoxia responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem 1997;272:12236–12242.

    Article  Google Scholar 

  57. Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regula-tion of murine inducible nitric oxide synthase expression. J Immunol 1999;162:6171–6177.

    PubMed  CAS  Google Scholar 

  58. Patruta SI, Edlinger R, Sunder-Plassmann G, Horl WH. Neutrophil impairment associated with iron therapy in hemodialysis patients with functional iron deficiency. J Am Soc Nephrol 1998;9:655–663.

    PubMed  CAS  Google Scholar 

  59. VanAsbeck BS, Marx JJ, Struyvenberg A, vanKats JH, Verhoef J. Deferoxamine enhances phagocytic function of human polymorphonuclear phagocytes. Blood 1984;64:714–720.

    Google Scholar 

  60. Omara FO, Blakley BR. The effects of iron deficiency and iron overload on cell mediated immunity in the mouse. Br J Nutr 1994;72:899–909.

    Article  PubMed  CAS  Google Scholar 

  61. Omara FO, Blakley BR, Huang HS. Effect of iron status on endotoxin induced mortality, phagocytosis and interleukin-1 alpha and tumor necrosis factor alpha production. Vet Hum Toxicol 1994;36:423–428.

    PubMed  CAS  Google Scholar 

  62. DeMaeyer E, Adiels-Tegman M. The prevalence of anaemia in the world. World Health Stat Q 1985;38:302–316.

    PubMed  CAS  Google Scholar 

  63. Kuwibila SR, Porretta C, Surenda B aliga B, Leiva LE. Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron deficient mice. Br J Nutr 2001;86:157–162.

    Article  Google Scholar 

  64. Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr 2001;131:S616-S633.

    Google Scholar 

  65. Jason J, Archibald LK, Nwanyanwu OC, et al. The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol 2001;126:466–473.

    Article  PubMed  CAS  Google Scholar 

  66. Weinberg ED. Iron loading and disease surveillance. Emerg Infect Dis 1999;5:346–350.

    Article  PubMed  CAS  Google Scholar 

  67. Gordeuk V, Thuma P, Brittenham G, et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med 1992;327:1473–1477.

    Article  PubMed  CAS  Google Scholar 

  68. Weiss G, Thuma PE, Mabeza F, et al. Modulatory potential of iron chelation therapy on nitric oxide formation in cerebral malaria. J Infect Dis 1997;175:226–230.

    Article  PubMed  CAS  Google Scholar 

  69. Fritsche G, Larcher C, Schennach H, Weiss G. Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. J Infect Dis 2001;183: 1388–1394.

    Article  PubMed  CAS  Google Scholar 

  70. Hershko C, Gordeuk VR, Thuma PE, et al. The antimalarial effect of iron chelators: studies in animal models and in humans with mild falciparum malaria. J Inorg Biochem 1992;47:267–277.

    Article  PubMed  CAS  Google Scholar 

  71. Weiss G, Umlauft F, Urbanek M, et al. Associations between cellular immune effector function, iron metabolism, and disease activity in patients with chronic hepatitis C virus infection. J Infect Dis 1999;180:1542–1548.

    Article  Google Scholar 

  72. Shedlofsky SI. Role of iron in the natural history and clinical course of hepatitis C disease. Hepatogastroenterology 1998;45:349–355.

    PubMed  CAS  Google Scholar 

  73. Gordeuk VR, McLaren CE, MacPhail AP, Deichsel G, Bothwell TH. Associations of iron overload in Africa with hepatocellular carcinoma and tuberculosis: Strachan’s 1929 thesis revisited. Blood 1996;87:3470–3476.

    Google Scholar 

  74. Gomes MS, Boelaert JR, Appelberg R. Role of iron in experimental Mycobacterium avium infection. J Clin Virol 2001;20:117–122.

    Article  PubMed  CAS  Google Scholar 

  75. Gordeuk VR, Delanghe JR, Langlois MR, Boelaert JR. Iron status and the outcome of HIV infection: an overview. J Clin Virol 2001;20:111–115.

    Article  PubMed  CAS  Google Scholar 

  76. Weinberg ED. The role of iron in cancer. Eur J Cancer Prey 1996;5:19–36.

    CAS  Google Scholar 

  77. Stevens RG, Jones DY, Micozzi MS, Taylor PR. Body iron stores and the risk of cancer. N Engl J Med 1988;319:1047–1052.

    Article  PubMed  CAS  Google Scholar 

  78. Gangaidzo IT, Gordeuk VR. Hepatocellular carcinoma and African iron overload. Gut 1995;37: 727–730.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiss, G. (2004). Iron. In: Hughes, D.A., Darlington, L.G., Bendich, A. (eds) Diet and Human Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-652-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-652-2_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-422-7

  • Online ISBN: 978-1-59259-652-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics