Skip to main content

Strategies for the Analysis of the Structure and Function of Cell Surface Receptors

  • Chapter
Methods in Protein Sequence Analysis · 1986

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 14))

  • 62 Accesses

Abstract

Intercellular communication in multicellular organisms is accomplished through the interaction of secreted hormones and growth factors with specific receptors located on the surface of target cells. These receptors are complex integral membrane glycoproteins present in extremely low abundance in the target cell plasma membrane and require special strategies for isolation as well as analysis of their structure and function. The arrangement of these proteins in the plasma membrane is determined by the topological distribution of their hydrophobic and hydrophilic domains. The structural organization of these receptors can, therefore, be inferred from an analysis of the hydrophobicity of the amino acid residues once the primary structure is determined. The elucidation of the amino acid sequence of these cell surface receptors, however, proved to be a formidable task owing to their very low abundance (less than 1 picomole/mg of purified plasma membrane protein) and their enormous size and complexity. The receptors for insulin and insulin-like growth factor 1 (IGF-1) are both heterotetrameric structures composed of two alpha-subunits of apparent molecular weight 120,000 and two beta-subunits of apparent molecular weight 90,000, held together by disulfide bridges (1–5). The determination of the amino acid sequence of these molecules could not be undertaken until the advent of recombinant DNA techniques. During the past three years we and others have succeeded in elucidating the primary structures of several cell surface receptors present only in trace quantities, by using recombinant DNA methods. The strategies are based on the isolation of cDNA clones encoding the receptor precursor by hybridization screening of a suitable cDNA library with synthetic oligonucleotide probes designed from partial amino acid sequence of the purified receptor. The elucidation of sufficiently long amino-terminal amino acid sequences as well as internal sequences by microsequencing procedures using the intact polypeptide and fragments derived from the purified receptor has been crucial to the success of this approach. The strategies that led to the successful isolation of cDNA clones for the human insulin receptor (6), the human IGF-1 receptor (7), and turkey erythrocyte ß-adrenergic receptor (8) are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massague, J., Pilch, P. and Czech, M.P. (1980) Proc. Natl. Acad. Sci. USA 77, 7137–7141.

    Article  CAS  Google Scholar 

  2. Siegel, T., Ganguly, S., Jacobs, S., Rosen, O.M., and Rubin, C.S. (1981) J. Biol. Chem. 256, 9266–9273.

    PubMed  CAS  Google Scholar 

  3. Hedo, J., Kasuga, M., van Obberghen, E., Roth, J., and Kahn, C.R. (1981) Proc. Natl. Acad. Sci. USA 78, 4792–4795.

    Article  Google Scholar 

  4. Chernausek, S.D., Jacobs, S, and van Wyk, J.J. (1981) Biochemistry 20, 7345–7350.

    Article  PubMed  CAS  Google Scholar 

  5. Bhaumick, B., Bala, R.M., and Hollenberg, M.D. (1981) Proc. Natl. Acad. Sci. USA 78, 4279–4283.

    Article  CAS  Google Scholar 

  6. Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petrizzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J. (1985) Nature 313, 756–761.

    Article  PubMed  CAS  Google Scholar 

  7. Ullrich, A., Gray, A., Tam, A., Yang-Feng, T., Tsubokawa, M., Collins, C, Henzel, W., Lebon, T., Kathima, S. Chen, E., Jacobs, S., Francke, V., Ramachandran, J. and Fujita-Yamaguchi, Y. (1986) EMBO Journal (in press).

    Google Scholar 

  8. Yarden, Y., Rodriguez, H., Wong, S.K.-F., Brandt, D.R., May, D.C., Burnier, J., Harkins, R.N., Chen, E.Y., Ramachandran, J., Ullrich, A. and Ross, E.M. (1986) Proc. Natl. Acad. Sci. USA (in press).

    Google Scholar 

  9. Petrizzelli, L.M., Herrera, R., and Rosen, O.M. (1984) Proc. Nati. Acad. Sci. USA 81, 3327–3331.

    Article  Google Scholar 

  10. Smigel, M.D., Ross, E.M. and Gilman, A.G. (1984) Cell Membranes, Methods, and Reviews, v. 2 ( E.L. Elson, W.A. Frazier, and Glasen, eds.) Plenum Press, pp. 247–294.

    Google Scholar 

  11. Demouliou-Mason, C.D. and Barnard, E.A. (1984) FEBS Lett. 170, 378–382.

    Article  Google Scholar 

  12. Sigel, E., Stephenson, A., Mamalaki, C., and Barnard, E.A. (1983) J. Biol. Chem. 258, 6965–6971.

    PubMed  CAS  Google Scholar 

  13. Fujita-Yamaguchi, Y., Choi, S. Sakamoto, Y., and Itakura, K. (1983) J. Biol. Chem. 258, 5045–5049.

    PubMed  CAS  Google Scholar 

  14. LeBon, T.R., Jacobs, S., Cuatrecases, P., Kathuria, S. and Fujita-Yamaguchi, Y. (1985). J. Biol. Chem. 261, 7685–7689.

    Google Scholar 

  15. Brandt, D.R. and Ross, E.M. (1986) J. Biol. Chem. 261, 1656–1664.

    PubMed  CAS  Google Scholar 

  16. Wessel, D and Flugge, U.I. (1984) Anal. Biochem. 138, 141–143.

    Article  PubMed  CAS  Google Scholar 

  17. Hunkapiller, M.W., Lujan, E., Ostrander, F., and Hood, L.E. (1983) Methods in Enzymol. 91, 221–236.

    Google Scholar 

  18. Ronnett, G.V., Knutson, V.P., Kohansk, R.A., Simpson, T.L. and Lane M.D. (1984) J. Biol. Chem. 259, 4566–4575.

    PubMed  CAS  Google Scholar 

  19. Kyte, J. and Rodriguez, H. (1983) Anal. Biochem. 133, 515–522.

    Article  PubMed  CAS  Google Scholar 

  20. Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R., and Strader, C.D. (1986) Nature 321, 75–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramachandran, J., Rodriguez, H., Henzel, W., Tsubokawa, M. (1987). Strategies for the Analysis of the Structure and Function of Cell Surface Receptors. In: Walsh, K.A. (eds) Methods in Protein Sequence Analysis · 1986. Experimental Biology and Medicine, vol 14. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-480-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-480-1_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5826-9

  • Online ISBN: 978-1-59259-480-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics