Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Almost two centuries ago, long before they were identified as infectious agents, viruses were used for therapeutic applications. In 1798, Jenner discovered that persons inoculated with less pathogenic cowpox (cowpox virus) were protected from subsequent infection with deadly smallpox (variola virus) (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenner, E. (1959) An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox, reprinted in Classics of Medicine and Surgery (Camac, L. N. B., ed.). Dover, New York, pp. 213–240.

    Google Scholar 

  2. Stevens, J. G. (1975) Latent herpes simplex virus and the nervous system. Curr. Top. Microbiol. Immunol. 70, 31–50.

    Article  PubMed  CAS  Google Scholar 

  3. Ward, P. L. and Roizman, B. (1994) Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet. 10, 267–274.

    Article  PubMed  CAS  Google Scholar 

  4. Mocarski, E. S., Post, L. E., and Roizman, B. (1980) Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22, 243–255.

    Article  PubMed  CAS  Google Scholar 

  5. Post, L. E. and Roizman, B. (1981) A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25, 2227–2232.

    Article  Google Scholar 

  6. Roizman, B. and Jenkins, F. J. (1985) Genetic engineering of novel genomes of large DNA viruses. Science 229, 1208–1214.

    Article  PubMed  CAS  Google Scholar 

  7. Meignier, B., Longnecker, R., and Roizman, B. (1988) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J. Inf. Dis. 158, 602–614.

    Article  CAS  Google Scholar 

  8. Breakefield, X. O., Kramm, C. M., Chiocca, E. A., and Pechan, P. A. (1995) Herpes simplex virus vectors for tumor therapy, in The Internet Book of Gene Therapy: Cancer Gene Therapeutics, ( Sobol, R. E., and Scanlon, K. J., eds.), Appleton and Lansing, New York, pp. 41–56.

    Google Scholar 

  9. Glorioso, J. C., Bender, M. A., Goins, W. F., DeLuca, N., and Fink, D. J. (1995) Herpes simplex virus as a gene-delivery vector for the central nervous system, in (Viral Vectors: Gene Therapy and Neuroscience Applications ( Kaplitt, M. G. and Loewy, A. D., eds). Academic, New York, pp. 1–23.

    Google Scholar 

  10. Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304.

    Article  PubMed  CAS  Google Scholar 

  11. Frenkel, N., Locker, H., Batterson, B., Hayward, G. S., and Roizman, B. (1976) Anatomy of herpes simplex virus. VI. Defective DNA originates from the S component. J. Virol. 20, 527–531.

    PubMed  CAS  Google Scholar 

  12. Gilbert, W. and Dressler, D. (1968) DNA replication: the rolling-circle model. Cold Spring Harbor Symp. Quant. Biol. 33, 473–484.

    Article  PubMed  CAS  Google Scholar 

  13. Locker, H. and Frenkel, N. (1979) Structure and origin of defective genomes contained in serially passaged herpes simplex virus type 1 (Justin). J. Virol. 29, 1065–1077.

    PubMed  CAS  Google Scholar 

  14. Frenkel, N., Locker, H., and Vlazny, D. A. (1980) Studies of defective herpes simplex viruses. Ann. NYAcad. Sci. 354, 347–370.

    Article  CAS  Google Scholar 

  15. Locker, H., Frenkel, N., and Halliburton, I. (1982) Structure and expression of class II defective herpes simplex virus genomes encoding infected cell polypeptide number 8. J. Virol. 43, 574–593.

    PubMed  CAS  Google Scholar 

  16. Stow, N. D. (1982) Localization of an origin of DNA replication in the TRs/IRs repeated region of the herpes simplex virus type 1 genome. EMBO J. 1, 863–867.

    PubMed  CAS  Google Scholar 

  17. Lockshon, D. and Galloway, D. A. (1988) Cloning and characterization of OriL2, a large palindromic replication origin of herpes simplex virus type 2. J. Virol. 58, 513–521.

    Google Scholar 

  18. von Magnus, P. (1954) Incomplete forms of influenza virus. Adv. Virus Res. 2, 59–78.

    Article  PubMed  CAS  Google Scholar 

  19. Frenkel, N. ed. (1981) Defective interfering herpes viruses in The Human Herpes Viruses: An Interdisciplinary Prospective. Ellsevier-North Holland, New York.

    Google Scholar 

  20. Kwong, A. D. and Frenkel, N. (1984) Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. J. Virol. 51, 595–603.

    PubMed  CAS  Google Scholar 

  21. Roizman, B. and Sears, A. E. (1996) Herpes simplex viruses and their replication in Fields Virology 3rd ed. (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.). Lippincott-Raven, Philadelphia, pp. 2231–2295.

    Google Scholar 

  22. Ho, D. Y. (1994) Amplicon-based herpes simplex virus vectors. Meth. Cell. Biol. 43, 191–210.

    Article  CAS  Google Scholar 

  23. Kwong, A. D. and Frenkel, N. (1985) Efficient expression of chimeric chicken ovalbumin gene amplified within defective virus genomes. Virology 142, 421–425.

    Article  PubMed  CAS  Google Scholar 

  24. Weller, S. K., Spadoro, A., Schaffer, J. E., Murray, A. W., Maxam, A. M., and Schaffer, P. A. (1985) Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol. Cell. Biol. 5, 930–942.

    PubMed  CAS  Google Scholar 

  25. Kwong, A. D. and Frenkel, N. (1995) Biology of herpes simplex virus (HSV) defective viruses and development of the amplicon system, in Viral Vectors: Gene Therapy and Neuroscience Applications ( Kaplitt, M. G. and Loewy, A. D., eds.). Academic, New York, pp. 25–42.

    Google Scholar 

  26. Stow, N. D. and McMonagle, E. C. (1983) Characterization of the TRs/IRs origin of DNA replication of herpes simplex virus type 1. Virology 130, 427–438.

    Article  PubMed  CAS  Google Scholar 

  27. Kaplitt, M. G., Pfaus, J. G., Kleopoulos, S. P., Hanlon, B. A., Rabkin, S. D., and Pfaff, D. W. (1991) Expression of a functional foreign gene in adult mammalian brain following in vivo transfer via herpes simplex virus type 1 defective viral vector. Mol. Cell. Neurosci. 2, 320–330.

    Article  PubMed  CAS  Google Scholar 

  28. Stern, S., Tanaka, M., and Herr, W. (1989) The Oct-1 homeo domain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 341, 624–630.

    Article  PubMed  CAS  Google Scholar 

  29. Wong, S. W. and Schaffer, P. A. (1991) Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function. J. Virol. 65, 2601–2611.

    PubMed  CAS  Google Scholar 

  30. Lu, B. and Federoff, H. J. (1995) Herpes simplex virus type 1 amplicon vectors with glucocorticoid-inducible gene expression. Hum. Gene Ther. 6, 419–428.

    Article  PubMed  CAS  Google Scholar 

  31. Deiss, L. P., Chou, J., and Frenkel, N. (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus. J. Virol. 59, 605–618.

    PubMed  CAS  Google Scholar 

  32. Davison, A. J. and Wilkie, N. M. (1981) Nucleotide sequence of the joint between the L and S segments of herpes simplex virus type 1 and 2. J. Gen. Virol. 55, 315–331.

    Article  PubMed  CAS  Google Scholar 

  33. Umene, K. (1993) Herpes simplex virus type 1 variant a sequence generated by recombination and breakage of the a sequence in defined regions, including the one involved in recombination. J. Virol. 67, 5685–5691.

    PubMed  CAS  Google Scholar 

  34. Linnik, M. D., Zahos, P., Geschwind, M. D., and Federoff, H. J. (1995) Expression of bc1–2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26, 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  35. Lawrence, M. S., Sun, G. H., Kunis, D. M., Saydam, T. C., Dash, R., Ho, D. Y., Sapolsky, R. M., and Steinberg, G. K. (1996) Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke. J. Cereb. Blood Flow Metab. 16, 181–185.

    Article  PubMed  CAS  Google Scholar 

  36. New, K. and Rabkin, S. (1996) Co-expression of two gene products in the CNS using double cassette defective herpes simplex virus vectors. Mol. Brain Res. 37, 317–323.

    Article  PubMed  CAS  Google Scholar 

  37. Pechan, P. A., Fotaki, M., Thompson, R. L., Dunn, R. J., Chase, M., Chiocca, E. A., and Breakefield, X. O. (1996) A novel “piggyback” packaging system for herpes simplex virus amplicon vectors. Hum. Gene Ther. 7, 2003–2013.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, R. L., Geller, A. I., Escudero, K. W., and Wilcox, C. L. (1995) Long term expression in sensory neurons in tissue culture from herpes simplex virus type 1 (HSV-1) promoters in an HSV-1 derived vector. J. Virol. 69, 4593–4599.

    PubMed  CAS  Google Scholar 

  39. Starr, P. A., Lim, F., Grant, F. D., Trask, L., Lang, P., Yu, L., and Geller, A. I. (1996) Longterm persistence of defective HSV-1 vectors in the rat brain is demonstrated by reactivation of vector gene expression. Gene Ther. 3, 615–623.

    PubMed  CAS  Google Scholar 

  40. Ho, D.Y., Mocarski, E. S., and Sapolsky, R. M. (1993) Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc. Acad. Natl. Sci. USA 90, 3655–3659.

    Article  CAS  Google Scholar 

  41. Kaplitt, M. G., Pfaus, J. G., Kleopoulos, S. P., Mobbs, C. V., Rabkin, S. D., and Pfaff, D. W. (1994) Preproenkephalin promoter yield region-specific and long-term expression in adult brain after in vivo gene transfer via a defective herpes simplex viral vector. Proc. Natl. Acad. Sci. USA 91, 8979–8983.

    Article  PubMed  CAS  Google Scholar 

  42. Fraefel, C., Wang, Y., Yu, L., Gussoni, E., Kunkel, L., and Geller, A. (1996) Recent progress on developing a helper virus-free vector system. 21st Int. Herpesvirus Workshop, DeKalb, Ill.

    Google Scholar 

  43. Oh, Y. J., Moffat, M., Song, S., Ullrey, D., Geller, A. I., and O’Malley, K. L. (1996) A herpes simplex virus type 1 vector containing the rat tyrosine hydroxylase promoter directs cell type-specific expression of beta-galactosidase in cultured rat peripheral neurons. Mol. Brain Res. 35, 227–236.

    Article  PubMed  CAS  Google Scholar 

  44. Jin, B. K., Belloni, M., Conti, B., Federoff, H. J., Starr, R., Son, J. H., Baker, H., and Joh, T. H. (1996) Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum. Gene Ther. 7, 2015–2024.

    Article  PubMed  CAS  Google Scholar 

  45. Lu, B., Gupta, S., and Federoff, H. J. (1995) Ex vivo hepatic gene transfer in mouse using a defective herpes simplex virus-1 vector. Hepatology 21, 752–759.

    CAS  Google Scholar 

  46. Jantzen, H. M., Strahle, U., Gloss, B., Stewart, F., Schmid, W., Boshart, M., Miksicek, R., and Schutz, G. (1987) Cooperativity of glucocorticoid response elements located upstream of the tyrosine aminotransferase gene. Cell 49, 29–38.

    Article  PubMed  CAS  Google Scholar 

  47. Jacoby, D. R., Breakefield, X. O., and Latchman, D. S. (1995) Construction of a HSV-1 amplicon with an inducible Oct-2 operon to modulate cytopathic effect. Int. Conf. Gene Therapy for CNS, Abstract 1. 31.

    Google Scholar 

  48. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  49. Lillycrop, K. A., Howard, M. K., Estridge, J. K., and Latchman, D. S. (1994) Inhibition of herpes simplex virus infection by ecotopic expression of neuronal splice variants of the Oct-2 transcription factor. Nucl. Acids Res. 22, 815–820.

    Article  PubMed  CAS  Google Scholar 

  50. Preston, C. (1979) Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild type or the temperature sensitive mutant tsK. J. Virol. 29, 257–284.

    Google Scholar 

  51. Preston, C. (1979) Abnormal properties of an immediate early polypeptide in cells infected with the herpes simplex virus type 1 mutant tsK. J. Virol. 32, 357–369.

    PubMed  CAS  Google Scholar 

  52. Geller, A. I. and Breakefield, X. O. (1988) Defective HSV-1 vector expresses Escherichia coli ß-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.

    Article  PubMed  CAS  Google Scholar 

  53. Geller, A. I., Keyomarski, K., Bryan, J., and Pardee, A. B. (1990) An efficient deletion mutant packaging system for defective HSV-1 vectors; potential applications to neuronal physiology and human gene therapy. Proc. Natl. Acad. Sci. USA 87, 8950–8954.

    Article  PubMed  CAS  Google Scholar 

  54. Paterson, T. and Everett, R. D. (1990) A prominent serin-rich region on Vmw175, the major regulatory protein of herpes simplex virus type 1 is not essential for virus growth in tissue culture. J. Gen. Virol. 71, 1775–1783.

    Article  PubMed  CAS  Google Scholar 

  55. Davidson, I. and Stow, N. D. (1985) Expression of an immediate early polypeptide and activation of a viral origin of DNA replication in cells containing a fragment of herpes simplex virus DNA. Virology 141, 77–88.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson, P. A., Miyanohara, A., Levine, F., Cahill, T., and Friedman, T. (1992) Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J. Virol. 66, 2952–2965.

    PubMed  CAS  Google Scholar 

  57. DeLuca, N. A. and Schaffer, P. A. (1987) Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucl. Acids. Res. 15, 4491–4511.

    Article  PubMed  CAS  Google Scholar 

  58. Lim, F., Hartley, D., Starr, P., Lang, P., Song, S., Yu, L., Wang, Y., and Geller, A. I. (1996) Generation of high-titer defective HSV-1 vectors using an 1E2 deletion mutant and quantitative study of expression in cultured cortical cells. Biotechniques 20, 458–469.

    Google Scholar 

  59. McCarthy, A. M., McMahan, L., and Schaffer, P. A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J. Virol. 63, 18–27.

    PubMed  CAS  Google Scholar 

  60. Smith, I. L., Hardwicke, M. A., and Sandri-Goldin, R. M. (1992) Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186, 74–86.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson, P. A., Yoshida, K., Gage, F. H., and Friedman, T. (1992) Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Mol. Brain Res. 12, 95–102.

    Article  PubMed  CAS  Google Scholar 

  62. Wood, M. J. A., Byrnes, A. P., Pfaff, D. W., Rabkin, S. D., and Charlton, H. M. (1994) Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors. Gene Ther. 1, 283–291.

    PubMed  CAS  Google Scholar 

  63. Ho, D. Y., Fink, S. L., Lawrence, M. S., Meier, T. J., Saydam, T. C., Dash, R., and Sapolski, R. M. (1995) Herpes simplex virus vector system: analysis of its in vivo and in vitro cytopathic effects. J. Neurosci. Methods 57, 205–215.

    Article  PubMed  CAS  Google Scholar 

  64. Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., Wild, P., and Geller, A. I. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70, 7190–7197.

    PubMed  CAS  Google Scholar 

  65. Mann, R., Mulligan, R. L., and Baltimore, D. (1983) Construction of retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.

    Article  PubMed  CAS  Google Scholar 

  66. Mavromara-Nazos, P. and Roizman, B. (1989) Activation of herpes simplex virus 1 y2 genes by viral DNA replication. Virology 161, 593–598.

    Article  Google Scholar 

  67. Cunningham, C. and Davison, A. J. (1993) A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197, 116–124.

    Article  PubMed  CAS  Google Scholar 

  68. Johnston, K. M., Jacoby, D., Pechan, P., Fraefel, C., Borghesani, P., Schuback, D., et al. (1997) HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. 8, 359–370.

    Article  PubMed  CAS  Google Scholar 

  69. Min, N., Joh, T. H., Kim, K. S., Peng, C., and Son, J. H. (1994) 5’ Upstream DNA sequence of the rat tyrosine hydroxylase gene directs high level and tissue specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Mol. Brain Res. 27, 281–289.

    Google Scholar 

  70. Ho, D. Y., Saydam, T. C., Fink, S. L., Lawrence, M. S., and Sapolsky, R. M. (1995) Defective herpes virus vectors expressing the rat brain glucose transporter protect cultured neurons from necrotic insults. J. Neurochem. 65, 842–850.

    Article  PubMed  CAS  Google Scholar 

  71. Dash, R., Lawrence, M. S., Ho, D. Y., and Sapolsky, R. M. (1996) A herpes virus vector overexpressing the glucose transporter gene protects the rat dentate gyrus from an antimetabolite toxin. Exp. Neurol. 137, 43–48.

    Article  PubMed  CAS  Google Scholar 

  72. Lawrence, M. S., Ho, D. Y., Dash, R., and Sapolsky, R. M. (1995) Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. Proc. Natl. Acad. Sci. USA 92, 7247–7251.

    Article  PubMed  CAS  Google Scholar 

  73. Wang, S. and Vos, J. (1996) A hybrid herpesvirus infectious vector based on Epstein-Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo. J. Virol. 70, 8422–8430.

    PubMed  CAS  Google Scholar 

  74. Samulski, R. J., Zhu, X., Xiao, X., Brook, J. D., Housman, D. E., Epstein, N., and Hunter, L. A. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10, 3941–3950.

    PubMed  CAS  Google Scholar 

  75. Berns, K. I. (1996) Parvoviridae: the viruses and their replication, in Fields Virology 3rd ed. (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.). Lippincott-Raven, Philadelphia, pp. 2173–2197.

    Google Scholar 

  76. Topp, K. S., Meade, L. B., and LaVail, J. H. (1994) Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J. Neurosci. 14, 318–325.

    PubMed  CAS  Google Scholar 

  77. Sodeik, B., Ebersold, M., and Helenius, A. (1996) Microtubule and dynein mediated transport of incoming HSV-1 capsids to the nucleus. 21st Int. Herpes Virus Workshop, DeKalb, Ill.

    Google Scholar 

  78. Chiocca, E. A., Choi, B. B., Cai, W., DeLuca, N. A., Schaffer, P. A., Difiglia, M., Breakefield, X. O., and Martuza, R. L. (1990) Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol. 2, 739–746.

    PubMed  CAS  Google Scholar 

  79. Fink, D. J., Lawrence, R., Sternberg, L. R., Weber, P. C., Marina, M., Goins, W. F., and Glorioso, J. C. (1992) In vivo expression of 13-galactosidase in hippocampal neurons by HSV-mediated gene transfer. Hum. Gene Ther. 3, 11–19.

    Article  PubMed  CAS  Google Scholar 

  80. Huang, Q., Vonsattel, J. P., Schaffer, P. A., Martuza, R., Breakefield, X. O., and Defiglia, M. (1992) Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: light and electron microscopic study. Exp. Neurol. 115, 303–316.

    Article  PubMed  CAS  Google Scholar 

  81. Wood, M., Byrnes, A., Kaplitt, M., Pfaff, D., Rabkin, S., and Charlton, H. (1994) Specific patterns of defective HSV-1 gene transfer in the adult central nervous system: implications for gene targeting. Exp. Neurol. 130, 127–140.

    Article  PubMed  CAS  Google Scholar 

  82. Neve, R. L., Ivins, K. J., Benowitz, L. I., During, M. J., and Geller, A. I. (1991) Molecular analysis of the function of the neuronal growth-associated protein GAP-43 by genetic intervention. Mol. Neurobiol. 5, 131–141.

    Article  PubMed  CAS  Google Scholar 

  83. Battleman, D., Geller, A. I., and Chao, M. V. (1993) HSV-1 vector-mediated gene transfer of the human nerve growth factor receptor p75 hNGFR defines high affinity NGF binding. J. Neurosci. 13, 941–951.

    PubMed  CAS  Google Scholar 

  84. Bahr, B., Neve, R., Sharp, J., Geller, A. I., and Lynch, G. (1994) Rapid and stable gene expression in hippocampal slice cultures from a defective HSV-1 vector. Mol. Brain Res. 26, 277–285.

    Article  PubMed  CAS  Google Scholar 

  85. Bergold, P. J., Casaccia-Bonnefil, P., Zeng, X. L., and Federoff, H. J. (1993) Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the G1uR6 subunit of the kainate receptor. Proc. Natl. Acad. Sci. USA 90, 6165–6169.

    Article  PubMed  CAS  Google Scholar 

  86. During, M. J., Naegele, J., O’Malley, K., and Geller, A. I. (1994) Long-term behavioral recovery in parkinsonian rats by an HSV-1 vector expressing tyrosine hydroxylase. Science 266, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  87. Stratford-Perricaudet, L. D., Levrero, M., Chasse, J.-F., Perricaudet, M., and Briand, P. (1990) Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum. Gene Ther. 1, 241–256.

    Article  PubMed  CAS  Google Scholar 

  88. Brooks, A. I., Muhkerjee, B., Panahian, N., Cory-Slechta, D., and Federoff, H. J. (1997) Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase. Nat. Biotech. 15, 57–62.

    Article  CAS  Google Scholar 

  89. Jaffe, A. H., Daniel, C., Longnecker, G., Metzger, M., Setoguchi, Y., Rosenfeld, M. A., et al. (1992) Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat. Genet. 1, 372–378.

    Article  PubMed  CAS  Google Scholar 

  90. Li, Q., Kay, M. A., Finegold, M., Stratford-Perricaudet, L. D., and Woo, S. L. C. (1993) Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4, 403–409.

    Article  PubMed  CAS  Google Scholar 

  91. Herz, J. and Gerard, R. D. (1993) Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl. Acad. Sci. USA 90, 2812–2816.

    Article  PubMed  CAS  Google Scholar 

  92. Hafenrichter, D. G., Wu, X., Rettinger, S. D., Kennedy, S. C., Flye, M. W., and Ponder, K. P. (1994) Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood 84, 3394–3404.

    PubMed  CAS  Google Scholar 

  93. Boyce, F. M. and Bucher, N. R. L. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 2348–2352.

    Article  PubMed  CAS  Google Scholar 

  94. Sandig, V., Hofman, C., Steinert, S., Jennings, G., Schlag, P., and Strauss, M. (1996) Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum. Gene Ther. 7, 1937–1945.

    Article  PubMed  CAS  Google Scholar 

  95. Miyanohara, A., Johnson, P. A., Elam, R. L., Dai, Y., Witztum, J. L., Verma, I. M., and Friedman, T. (1992) Direct gene transfer to the liver with herpes simplex virus type 1 vectors: transient production of physiologically relevant levels of circulating factor IX. New Biol. 4, 238–246.

    PubMed  CAS  Google Scholar 

  96. Fong, Y., Federoff, H. J., Brownlee, M., Blumberg, D., Blumgart, L. H., and Brennan, M. F. (1995) Rapid and efficient gene transfer in human hepatocytes by herpes viral vectors. Hepatology 22, 723–729.

    PubMed  CAS  Google Scholar 

  97. Tung, C., Federoff, H., Brownlee, M., Karpoff, H., Weigel, T., Brennan, M. F., and Fong, Y. (1996) Rapid production of interleukin-2-secreting tumor cells by herpes virus-mediated gene transfer: Implications for autologous vaccine production. Hum. Gene Ther. 7, 2217–2224.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fraefel, C., Breakefield, X.O., Jacoby, D.R. (1998). HSV-1 Amplicon. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics