Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 129 Accesses

Abstract

Pain is a common symptom in a variety of medical and neurologic diseases. Frequently, pain is due to tissue injury and serves to protect us from further harm, during which time healing can occur (1). This acute pain is often short-lived and can be effectively treated with analgesic medications such as opioids and nonsteroidal anti-inflammatory agents. In some instances, pain may persist as a consequence of a chronic process such as inflammation (2), invasion by tumor (3), or degeneration (4). Patients with these types of chronic pain consume large amounts of analgesics that are often ineffective for their pain, or which have undesirable, dose-related, side-effects. Chronic pain may also develop after damage to central or peripheral somatosensory pathways in humans (5). This neuropathic pain is often severe, persistent and resistant to treatment with any analgesic medication. Gene-based therapies for pain offer a potential alternative for the treatment of pain due to chronic disease or somatosensory injury. Using this approach, treatment can potentially be targeted to the site of injury, or within pain pathways, inducing analgesia without systemic side effects. Successful treatment with gene-based therapies for pain may also reduce the requirement for continuous or repeated administration of analgesics in patients with chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fields, H. L. (1987) Introduction, in Pain ( Fields, H. L., ed.), McGraw Hill, NY, p. 2.

    Google Scholar 

  2. Levine, J. D. and Taiwo Y. O. (1994) Inflammatory pain, In Textbook of Pain, 3rd ed. Wall P. D. and Melzack R. eds. Churchill-Livingston, London: pp. 45–56.

    Google Scholar 

  3. Cherny, N. I. and Portenoy, R. K. Cancer pain: principles of assessment and syndromes. In P. D. Wall and R. Melzack (eds): Textbook of Pain, 3th Edition. London: Churchill-Livingston: pp. 787–823.

    Google Scholar 

  4. Scadding, J. W. (19??) Peripheral neuropathies, In Textbook of Pain, 3rd ed. Wall P. D. and Melzack R. eds. Churchill-Livingston, London: pp. 667–683.

    Google Scholar 

  5. Davar, G. and Maciewicz, R. J. (1989) Deafferentation pain syndromes. Neurol. Clin. 7, 289–304.

    PubMed  CAS  Google Scholar 

  6. Dubuisson, D. and Dennis, S. G. (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4, 161–174.

    Article  PubMed  CAS  Google Scholar 

  7. Hunskaar, S. Fasmer, O. B., and Hole, K. (1985) Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods 14, 69–76.

    CAS  Google Scholar 

  8. Ruda, M. A., ladarola, M. J., Cohen, L. V., and Young WS 3d. (1988) In situ hybridization histochemistry and immunocytochemistry reveal an increased in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. PNAS 85, 622–626.

    CAS  Google Scholar 

  9. Iadarola, M. J., Douglass, J., Civelli, O., and Naranjo, J. R. (1988) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res. 455, 205–221.

    Article  PubMed  CAS  Google Scholar 

  10. Schaible, H. G. and Schmidt, R. F. (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J. Neurophys. 54, 1109–1122.

    CAS  Google Scholar 

  11. Coderre, T. J. and Wall, P. D. (1988). Ankle joint urate arthritis in rats provides a useful tool for the evaluation of analgesic and anti-arthritic agents. Pharmacol. Biochem. Behavior 29, 461–466.

    Article  CAS  Google Scholar 

  12. Sluka, K. A. and Westlund, K. N. (1993) Behavioral and immunohistochemical changes in an experimental arthritis model in rats. Pain 55, 367–377.

    Article  PubMed  CAS  Google Scholar 

  13. De Castro Costa, M., De Sutter, P., Gybels, J., and Van Hees, J. (1981) Adjuvant-induced arthritis in rats: a possible animal model of chronic pain. Pain 10, 173–185.

    Article  Google Scholar 

  14. Keffer, J., Probert, L., Cazlaris, H., Georgopoulos, S., Kaslaris, E., Kloussis, D., and Kollias, G. (1991) Transgenic mice expressing human tumor necrosis factor: a predictive genetic model of arthritis. EMBO 10, 4025–4031.

    CAS  Google Scholar 

  15. Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107.

    Article  PubMed  CAS  Google Scholar 

  16. Sommer, C. and Myers, R. R. (1994) Thalidomide inhibition of TNF reduces hyperalgesia in neuropathie rats, Abstrast of Scientific Paper presented at ASRA Annual Meeting, Session 1.

    Google Scholar 

  17. Wagner, R. and Myers, R. R. (1996a) Schwann cells produce tumor necrosis factor alpha expression in injured and non-injured nerves. Neurosci. Lett. 73, 625–629.

    Article  CAS  Google Scholar 

  18. Wagner, R. and Myers, R. R. (1996b) Endoneurial injection of TNF-alpha or its second nessenger ceramide results in nociceptive behaviors in the rat. Abstract presented at the 8th World Congress on Pain, 353.

    Google Scholar 

  19. Sommer, C. and Marziniak, M. (1996) Experimental painful neuropathy: inhibitors of TNF-a-production induce a decrease in hyperalgesia and an increase of spinal metenkephalin. Presented at the 26th Annual Meeting of the Society for Neuroscience, 208. 6.

    Google Scholar 

  20. Wall, P. D., Devor, M., Inbal, R., Scadding, J. W., Schonfeld, D., Seltzer, Z., and Tomkiewicz, M. M. (1979) Autotomy following peripheral nerve lesions:experimental aneasthesia dolorosa. Pain 7, 103–113.

    Article  PubMed  CAS  Google Scholar 

  21. Lombard, M. C., Nashold, B. S., and Albe-Fessard, D. (1979) Deafferentation hypersensitivity in the rat after dorsal rhizotomy: possible animal model for chronic pain. Pain 6, 163–174.

    Article  PubMed  CAS  Google Scholar 

  22. Coderre, T., Grimes, R. W., and Melzack, R. (1986) Deafferentation and chronic pain in animals: an evaluation of evidence suggesting autotomy is related to pain. Pain 26, 61–84.

    Article  PubMed  CAS  Google Scholar 

  23. Attal, N., Jazat, F., Kayser, V., and Guilbaud, G. (1990) Further evidence for “pain-related” behaviors in a model of unilateral peripheral mononeuropathy. Pain 41, 235–251.

    Article  PubMed  CAS  Google Scholar 

  24. Seltzer, Z., Dubner, R., and Shir, Y. (1990) A novel behavioral model of neuropathie pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218.

    Article  PubMed  CAS  Google Scholar 

  25. Kim, S. H. and Chung, J. M. (1992) An experimental model for peripheral neuropathy produced by segmental nerve ligation in the rat. Pain 50, 355–363.

    Article  PubMed  CAS  Google Scholar 

  26. Basbaum, A. I., Gautron, M., Jazat, F., Mayes, M., and Guilbaud, G. (1991) The spectrum of fiber loss in a model of neuropathie pain in the rat: an electron microscopic study. Pain 47, 359–367.

    Google Scholar 

  27. Munger, B. L., Bennett, G. J., and Kajander, K. C. (1992) An experimental painful peripheral neuropathy due to nerve constriction. I. Axonal pathology in the sciatic nerve. Exp. Neurol. 118, 204–214.

    Article  PubMed  CAS  Google Scholar 

  28. Clatworthy, A. L., Illich, P. A., Castro, G. A., and Walters, E. T. (1995) Role of periaxonal inflammation in the development of thermal hyperalgesia and guarding behavior in a rat model of neuropathie pain. Neurosci. Lett. 184, 5–8.

    Article  PubMed  CAS  Google Scholar 

  29. Devor, M. (1994) The pathophysiology of damaged peripheral nerves. In Textbook of Pain, 3rd ed. Wall P. D. and Melzack R., (eds.), Churchill-Livingston, London pp. 79–100.

    Google Scholar 

  30. Kajander, K. C., S. Wakisaka, and Bennett, G. J. (1992) Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci. Lett. 138, 225–228.

    Article  PubMed  CAS  Google Scholar 

  31. Study, R. E. and Kral, M. G. (1996) Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain 65, 235–242.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S. H., Na, H. S., Sheen, K., and Chung, J. M. (1993) Effects of sympathectomy on a rat model of peripheral neuropathy. Pain 55, 85–92.

    Article  PubMed  CAS  Google Scholar 

  33. Hattori, M., Buse, J. B., Jackson, R. A., et al. (1986) The NOD mouse: Recessive diabetogenic gene in the major histocompatibility complex, Science 14, v. 231, 733–735. 5.

    Google Scholar 

  34. Harada, M. and Makino, S. (1992) Biology of the NOD mouse, Ann. Report of the Shionogi Research Laboratories 42, 70–99.

    Google Scholar 

  35. Hattori, M., Matsumoto, E., and Itoh, N. (1994) Modifier gene for enhancing glomerulosclerosis in BC1 [(NODxMus spretus)F1xNOD] mice. Diabetes 43, 106A.

    Google Scholar 

  36. Karasik, A. and Hattori, M. (1994) Use of animal models in the study of diabetes. In Joslin’s Diabetes Mellitus, 13th ed. Weir G. and Kahn C. R. eds., Lea and Febiger, Philadelphia: pp. 318–350.

    Google Scholar 

  37. Davar, G., Waikar, S., Eisenberg, E., Hattori, M., and Thalhammer, J. G. (1995) Behavioral evidence of thermal hyperalgesia in non-obese diabetic mice with and without insulin-dependent diabetes. Neurosci. Lett. 190, 171–174.

    Google Scholar 

  38. Czech, K. A. and Sagen, J. (1995) Update on cellular transplantation into the CNS as a novel therapy for chronic pain. Progress Neurobiol. 46, 507–529.

    Article  CAS  Google Scholar 

  39. Wu, H. H., Wilcox, G. L., and McLoon, S. C. (1994) Implantation of AtT-20 or genetically modified AtT-20/hENK cells in the mouse spinal cord induced antinociception and opioid tolerance. J. Neurosci. 14, 4806–4814.

    PubMed  CAS  Google Scholar 

  40. Saitoh, Y., Taki, T., Arita, N., Ohnishi, T., and Hayakawa, T. (1995) Cell therapy with encapsulated xenogeneic tumor cells secreting B-endorphin for treatment of peripheral pain. Cell Transplantation 4, S 13-S 17.

    Google Scholar 

  41. Breakefield, X. O., Huang, Q., Andersen, J. K., Kramer, M. F., Bebrin, W., Davar, G., Vos, B., Garber, D. A., DiFiglia, M., and Coen, D. M. (1992) Gene transfer into neurons using recombinant herpes virus vectors. Fond. IPSEN Proc. In Gene Transfer and Therapy, ( Gage, R. H. and Christen, Y. eds.), Springer-Verlag, Berlin: pp. 118–132.

    Google Scholar 

  42. Leib, D. A. and Olivo, P. D. (1993) Gene delivery to neurons: is herpes simplex virus the right tool for the job? Bioessays 15, 547–554.

    Article  PubMed  CAS  Google Scholar 

  43. Ho, D. Y. and Mocarski, E. S. (1988) (3-Galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virology 167, 279–283.

    Google Scholar 

  44. Dobson, A. T., Sederati, F., Devi-Rao, G., Flanagan, W. M., Farrell, M. J., Stevens, J. G., Wagner, E. K., and Feldman, L. T. (1989) Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol. 63, 3844–3851.

    PubMed  CAS  Google Scholar 

  45. Dobson, A. T., Margolis, T. P., Sedarati, F., Stevens, J. G., and Feldman, L. T. (1990) A latent, nonpathogenic HSV-1-derived vector stably expresses (3-galactosidase in mouse neurons. Neuron 5, 353–360.

    Article  PubMed  CAS  Google Scholar 

  46. Davar, G., Kramer, M. F., Garber, D., Roca, A. L., Andersen, J. K., Bebrin, W., Coen, D. M., Kosz-Vnenchak, M., Knipe, D. M., Breakefield, X. O., and Isacson, O. (1994) Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J. Comp. Neurol. 3, 393–411.

    Google Scholar 

  47. Rock, D. L. and Fraser, N. W. (1983). Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 302, 523–525.

    Article  PubMed  CAS  Google Scholar 

  48. Efstathiou, S., Minson, A. C., Field, H. J., Anderson, J. R., and Wildy, P. (1986) Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans. J. Virol. 57, 446–455.

    PubMed  CAS  Google Scholar 

  49. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  50. Mellerick, D. M. and Fraser, N. W. (1987) Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virol. 158, 265–275.

    Article  CAS  Google Scholar 

  51. Coen, D. M., Kosz-Vnenchak, M., Jacobson, J. G., Leib, D. A., Bogard, C. L., Schaffer, P. A., Tyler, K. L., and Knipe, D. M. (1989) Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc. Natl. Acad. Sci. USA 86, 4736–4740.

    Article  PubMed  CAS  Google Scholar 

  52. Slobedman, B., Efstathiou, S., and Simmons, A. (1994) Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. J. Gen. Virol. 75, 2469–2474.

    Article  PubMed  CAS  Google Scholar 

  53. Davar, G., Bebrin, W. R., Dong, W., Breakefield, X. O., Coen, D. M., and Day, R. Opioid peptide gene delivery to mouse sensory neurons using herpes virus vectors. Neuroscience,in progress.

    Google Scholar 

  54. Hylden, J. L., Nahin, R. L., Traub, R. J., and Dubner, R. (1991) Effects of spinal kappa-opioid receptor agonists on the responsiveness of nociceptive superficial dorsal horn neurons. Pain 44, 187–193.

    Article  PubMed  CAS  Google Scholar 

  55. Milian, M. J. and Colpaert, F. C. (1991) Opioid systems in the response to inflammatory pain: sustained blockade suggests role of kappa-but not mu-opioid receptors in the modulation of nociception, behaviour and pathology. Neuroscience. 42, 541–553.

    Article  Google Scholar 

  56. Keita, H., Guilbaud, G., Kayser, V. (1994). Peripheral analgesic effect of a kappa opioid agonist which has limited access to CNS (ICI 204448) in rats with peripheral mononeuropathy. Eur. Neurosci. Abstr., in progress.

    Google Scholar 

  57. Wilson, S. P., Yeomans, D. C., Bender, M. A., and Glorioso, J. (1996) Delivery of enkephalins to mouse sensory neurons by a herpes virus encoding proenkephalin. [Abstract] Presented at the 26th Annual Meeting of the Society for Neuroscience, 540. 3.

    Google Scholar 

  58. Hargreaves, K. M., Dubner, R., Joris, J. (1988) Peripheral actions of opiates in the blockade of carrageenan-induced inflammation. In Proceedings of the Vth World Congress on Pain. ( Dubner, R., Gebhart, G. F., and Bond, M. R. eds), Elsevier, Amsterdam: pp. 55–60.

    Google Scholar 

  59. Stein, C., Millan, M. J., Shippenberg, T. S., and Herz, A. (1988). Peripheral effect of fentanyl upon nociception in inflamed tissue of the rat. Neurosci. Lett. 84, 225–228.

    Article  PubMed  CAS  Google Scholar 

  60. Dickenson, A. H. (1991). Mechanisms of the analgesic actions of opiates and opioids. Br. Med. Bull. 47, 690–702.

    PubMed  CAS  Google Scholar 

  61. Dray, A. (1995) Inflammatory mediators of pain. Br. J. Anaesth. 75, 125–131.

    Article  PubMed  CAS  Google Scholar 

  62. Bonica, J. and Butler, S. H. (1994) Local anesthetics and regional blocks. In Textbook of Pain, 3rd ed., ( Wall P. D. and Melzack, R. eds), Churchill-Livingston, London: pp. 997–1023.

    Google Scholar 

  63. McQuay, H. J. Epidural analgesics. In Textbook of Pain, 3rd ed. (Wall, P. D. and Melzack, R. eds), Churchill-Livingston, London: pp. 1025–1034.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davar, G. (1998). Gene Therapy for Pain. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics