Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Transfer of therapeutic genes into diseased cells using retroviral vectors is a promising approach for the treatment of certain, virtually incurable diseases. The rapid development of technology in human gene therapy has been facilitated by the use of retroviruses as gene delivery vectors. Most retroviral vectors have been derived from Moloney murine leukemia virus (MoMuLV) (1, 2). Several features of MoMuLV make it an ideal vector for use in gene therapy. Using an appropriate packaging cell line (i.e., ecotropic or amphotropic), a wide variety of cell types of both rodent and human origin can be infected with high efficiency (3–5). Viral integration is very efficient in that the structure of the viral genome is retained in the proviral DNA (the reverse transcribed DNA form of the virus) (6–8), facilitating the delivery and expression of a therapeutic gene(s). Furthermore, integration can only occur in host-cells in the process of replicating and synthesizing their own genomic DNA (an exception is in the human immunodeficiency virus [HIV] family of retroviruses), which allows the targeting of the virus to rapidly dividing cells and not postmitotic cells (9–11). The viral genes in the vector genome which encode the gag, pol, and env proteins are dispensable, provided they are replaced in trans by uniquely designed packaging cell lines; however, the iv packaging signal is needed for efficient packaging of the vector RNAs into the viral capsid. Removing these genes from the vector genome allows the production of replication-defective virus that can deliver a suitable gene to a target cell. Because the target cells lack the packaging cell functions, further spread of the virus to other tissues is effectively restricted.

Subjectively, to evolve must most often have amounted to suffering from a disease. And these diseases were of course molecular. The appearance of the concept of good and evil, interpreted by man as his painful expulsion from paradise, was probably a molecular disease that turned out to be evolution.

Zuckerkandl and Pauling, 1962

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albritton, L. M., Tseng, L., Scadden, D., and Cunningham, J. M. (1989) A putative murine ecotropic retrovirus receptor gene encodes a multipe membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666.

    PubMed  CAS  Google Scholar 

  2. Moloney, J. B. (1960) Biological studies on a Lymphoid-leukemia virus extracted from Sarcoma37. I. Origin and introductory investigations. J. Natl. Cancer Inst. 24, 933–951.

    PubMed  CAS  Google Scholar 

  3. Moloney, J. B. (1960) Properties of a leukemic virus. Natl. Cancer Inst. Monogr. 4, 7–38.

    PubMed  CAS  Google Scholar 

  4. Hartlet, J. W. and Rowe, W. P. (1976) Naturally occurring murine leukemia viruses in wild mice: Characterization of a new “amphotropic” class. J. Virol. 19, 19–25.

    Google Scholar 

  5. Luciw, P. A. and Leung, N. J. (1992) Mechanisms of retrovirus replication. in The Retroviridae, Plenum Press, New York.

    Google Scholar 

  6. Rasheed, S., Gardner, M. B., and Chan, E. (1976) Amphotropic host range of naturally occurring wild mouse leukemia virus. J. Virol. 19, 13–18.

    PubMed  CAS  Google Scholar 

  7. Coffin, J. M. (1984) Structure of the retroviral genome. in RNA Tumor Viruses ( Furmanski, P., Hager, J. C. and Rich, M. A., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  8. Grandgennett, D. P. and Mumm, S. R. (1990) Unraveling retrovirus integration. Cell 60, 3–4.

    Google Scholar 

  9. Varmus, H. and Swanstrom, R. (1984) Replication of retroviruses. in RNA Tumor Viruses ( Furmanski, P., Hager, J. C. and Rich, M. A., eds) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  10. Fritsch, E. and Temin, H. M. (1977) Inhibition of viral DNA synthesis in stationary chicken embryo fibroblasts infected with avian retroviruses. J. Virol. 24, 461–469.

    PubMed  CAS  Google Scholar 

  11. Humphries, E. H., Glover, C., and Reichmann, M. E. (1981) Rous sacoma virus infection of synchronized cells establishes proviral integration during S phase DNA synthesis prior to cell division. Proc. Natl. Acad. Sci. USA 78, 2601–2605.

    PubMed  CAS  Google Scholar 

  12. Varmus, H. E., Padgett, T., Heasley, S., Simon, G., and Bishop, J. M. (1977) Cellular functions are required for synthesis and integration of avian sarcoma virus-specific DNA. Cell 11, 307–319.

    PubMed  CAS  Google Scholar 

  13. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552.

    PubMed  CAS  Google Scholar 

  14. Ezzeddine, Z. D., Martuza, R. L., Platika, D., Short, M. P., Malick, A., Choi, B., and Breakefield, X. O. (1991) Selective killing of glioma cells in culture and in vivo by retro-virus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 3, 608–614.

    PubMed  CAS  Google Scholar 

  15. Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. I., and Coen, D. M. (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856.

    PubMed  CAS  Google Scholar 

  16. Ram, Z., Culver, K. W., Walbridge, S., Blaese, R. M., and Oldfield, E. H. (1993) In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Can. Res. 53, 83–88.

    CAS  Google Scholar 

  17. Short, M. P., Choi, B. C., Lee, J. K., Malick, A., Breakefield, X. O., and Martuza, R. L. (1990) Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J. Neurosci. Res. 27, 427–439.

    PubMed  CAS  Google Scholar 

  18. Takamiya, Y., Short, M., Ezzeddine, Z. D., Moolten, F. L., Breakefield, X. O., and Martuza, R. L. (1992) Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J. Neurosci. Res. 33, 493–503.

    PubMed  CAS  Google Scholar 

  19. Bi, W. L., Parysek, L. M., Warnick, R., and Stambrook, P. J. (1993) In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV-tk retro-viral gene therapy. Hum. Gene Ther. 4, 725–731.

    PubMed  CAS  Google Scholar 

  20. Freeman, S. M., Abboud, C. N., Wharenby, K. A., Packman, C. H., Koeplin, D. S., Moolten, F. L., and Abraham, G. N. (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Can. Res. 53, 5274–5283.

    CAS  Google Scholar 

  21. a.Cone, R. D., Reilly, E. B., Eisen, H. N., and Mulligan, R. C. (1987) Tissue-specific expression of functionally rearranged X1 Ig gene through a retrovirus vector. Science 236, 954–957.

    Google Scholar 

  22. Ram, Z., Walbridge, S., Shawker, T., Culver, K. W., Blaese, R. M., and Oldfield, E. H. (1994) The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats. J. Neurosurg. 81, 256–0 260.

    Google Scholar 

  23. Barba, D., Hardin, J., Sadelain, M., and Gage, F. H. (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348–4352.

    PubMed  CAS  Google Scholar 

  24. Breakefield, X. O. (1993) Gene delivery into the brain using virus vectors. Nature Genet 3, 187–189.

    PubMed  CAS  Google Scholar 

  25. Doering, L. C. (1994) Nervous system modification by transplants and gene transfer. Bioassays 16, 825–831.

    CAS  Google Scholar 

  26. Gage, F. H., Kawaja, M. D., and Fisher, L. J. (1991) Genetically modified cells: applications for intracerebral grafting. TINS 14, 328–333.

    PubMed  CAS  Google Scholar 

  27. Gage, F. H., Wolff, J. A., Rosenberg, M. B., Xu, L., Yee, J.-K., Shults, C., and Friedmann, T. (1987) Grafting genetically modified cells to the brain: possibilities for the future. Neuroscience 23, 795–807.

    PubMed  CAS  Google Scholar 

  28. Karpati, G., Lochmüller, H., Nalbantoglu, J., and Durham, H. (1996) The principles of gene therapy for the nervous system. TINS 19, 49–54.

    PubMed  CAS  Google Scholar 

  29. Weiss, R. (1984) Experimental biology and assay of RNA tumor viruses. in RNA Tumor Viruses ( Furmanski, P., Hager, J. C. and Rich, M. A., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  30. Delwart, E. L. and Panganiban, A. T. (1989) Role of reticuloendotheliosis virus envelope glycoprotein in superinfection interference. J. Virol. 63, 273–280.

    PubMed  CAS  Google Scholar 

  31. Baltimore, D. (1970) RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226, 1209–1211.

    PubMed  CAS  Google Scholar 

  32. Temin, H. M. and Mizutani, S. (1970) RNA-directed DP9A polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213.

    PubMed  CAS  Google Scholar 

  33. Brown, P. O., Bowerman, B., Varmus, H. E., and Bishop, J. M. (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 86, 2525–2529.

    PubMed  CAS  Google Scholar 

  34. Varmus, H. E., Shank, P. R., Hughes, S. E., Kung, H.-J., Heasley, S., Majors, J., Vogt, P. K., and Bishop, J. M. (1979) Synthesis, structure, and integration of the DNA of RNA tumor viruses. Cold Spring Harbor Symp. Quant. Biol. 43, 851–864.

    PubMed  CAS  Google Scholar 

  35. Shih, C.-C., Stoye, J. P., and Coffin, J. M. (1988) Highly preferred targets for retrovirus integration. Cell 53, 531–537.

    PubMed  CAS  Google Scholar 

  36. Mooslehner, K., Karls, U., and Harbers, K. (1990) Retroviral integration sites in transgene MOV mice frequently map in the vicinity of transcribed DNA regions. J. Virol. 64, 3056–3058.

    PubMed  CAS  Google Scholar 

  37. Xu, L., Yee, J.-K., Wolff, J. A., and Friedmann, T. (1989) Factors affecting long-term stability of Moloney murine leukemia virus-based vectors. Viology 171, 331–341.

    CAS  Google Scholar 

  38. Belmont, J. W., MacGregor, G. R., Wager-smith, K., Fletcher, F. A., Moore, K. A. H., Villalon, D., Chang, S. M. W., and Caskey, C. T. (1988) Expression of human adenosine deaminase in murine hematopoietic cells. Mol. Cell. Biol. 8, 5166–5125.

    Google Scholar 

  39. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M. (1987) Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J. Virol. 61, 336–343.

    PubMed  CAS  Google Scholar 

  40. Scherdin, U., Rhodes, K., and Breindl, M. (1990) Transcriptionally active genome regions are preferred integration sites for retrovirus integration. J. Virol. 64, 907–912.

    PubMed  CAS  Google Scholar 

  41. Weiss, R., Teich, N., Varmus, H., and Coffin, J. (1984–1985) in RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  42. Bender, M. A., Palmer, T. D., Gelinas, R. E., and Miller, A. D. (1987) Evidence that the packaging signal of moloney murine leukemia virus extends into the gag region. J. Virol. 61, 1639–1646.

    PubMed  CAS  Google Scholar 

  43. Jacks, R. and Varmus, H. E. (1985) Expression of the Rous sarcoma pol gene by ribosomal frameshifting. Science 230, 1237.

    PubMed  CAS  Google Scholar 

  44. Yoshinaka, Y., Katoh, I., Copeland, T. D., and Oroszlan, S. (1985) Murine leukemia protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc. Natl. Acad. Sci. USA 82, 1618–1622.

    PubMed  CAS  Google Scholar 

  45. Miller, A. D. (1992) Retroviral vectors. Curr. Top. Microbiol. Immunol. 158, 1–24.

    PubMed  CAS  Google Scholar 

  46. Chalita, P. and Kohn, D. (1994) Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Natl. Acad. Sci. USA 91, 2567–2571.

    Google Scholar 

  47. Frim, D. M., Short, M. P., Rosenberg, W. S., Simpson, J., Breakefield, X. O., and Isacson, O. (1993) Local protective effects of nerve growth factor-secreting fibroblasts against excitotoxic lesions in the rat striatum. J. Neurosurg. 78, 267–273.

    PubMed  CAS  Google Scholar 

  48. Hoeben, R. C., Migchielsen, A. A. J., van der Jagt, R. C. M., van Ormondt, H., and van der Eb, A. J. (1991) Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J. Virol. 65, 904–912.

    PubMed  CAS  Google Scholar 

  49. Palmer, T. D., Rosman, G. J., Osborne, W. R., and Miller, A. D. (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA 88, 1330–1340.

    PubMed  CAS  Google Scholar 

  50. Ramesh, T. D., Lau, S., Palmer, T. D., Storb, R., and Osborne, W. R. (1993) High level human adenosine deaminase expression in dog skin fibroblasts is not sustained following transplantation. Hum. Gene Ther. 4, 3–7.

    PubMed  CAS  Google Scholar 

  51. Schinstine, M., Rosenberg, M. B., Routledge-Ward, C., Friedmann, T., and Gage, F. H. (1992) Effects of choline and quiescence on Drosophila choline acetyltransferase expression and acetylcholine production by transduced rat fibroblasts. J. Neurochem. 58, 2019–2029.

    Google Scholar 

  52. Federspiel, M. D., Swing, D. A., Eagleson, B., Reid, S. W., and Hughes, S. H. (1996) Expression of transduced genes in mice generated by infecting blastocytes with avian leukosis virus-based retroviral vectors. Proc. Natl. Acad. Sci. USA 93, 4931–4936.

    PubMed  CAS  Google Scholar 

  53. Jaenisch, R. (1988) Transgenic animals. Science 240, 1468–1474.

    PubMed  CAS  Google Scholar 

  54. Jahner, D. and Jaenisch, R. (1985) Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity. Nature 315, 594–597.

    PubMed  CAS  Google Scholar 

  55. Richards, C. A. and Huber, B. E. (1993) Generation of a model for retrovirus-mediated gene therapy for heptocellular carcinoma is thwarted by the lack of transgene expression. Hum. Gene Ther. 4, 143–150.

    PubMed  CAS  Google Scholar 

  56. Soriano, P., Cone, R. D., Mulligan, R. C., and Jaenisch, R. (1986) Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses. Science 234, 1409–1413.

    PubMed  CAS  Google Scholar 

  57. Jolly, D. J., Willis, R. C., and Friedmann, T. (1986) Variable stability of a selectable provirus after retroviral vector gene transfer into human cells. Mol. Cell. Biol. 6, 1141–1147.

    PubMed  CAS  Google Scholar 

  58. Kaleko, M., Garcia, J. V., Osborne, W. R. A., and Miller, A. D. (1990) Expression of human adenosine deaminase in mice after transplantation of genetically-modified bone marrow. Blood 75, 1733–1741.

    PubMed  CAS  Google Scholar 

  59. Tamiya, T., Wei, M. X., Chase, M., Breakefield, X. O., and Chiocca, E. A. (1995) Transgene inheritance and retroviral infection contribute to the efficiency of gene expression in solid tumors inoculated with retrovirus vector producer cells. Gene Ther. 2, 531–538.

    PubMed  CAS  Google Scholar 

  60. Cepko, C., Roberts, B. E., and Mulligan, R. C. (1984) Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37, 1053–1062.

    PubMed  CAS  Google Scholar 

  61. Ghattas, I. R., Sanes, J. R., and Majors, J. E. (1991) The encephalomyocarditis virus internal ribosomal entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and embryos. Mol. Cell. Biol. 11, 5848–5859.

    PubMed  CAS  Google Scholar 

  62. Koo, H. M., Browa, A. M. C., Kaufman, R. J., Prorock, C. M., Ron, Y., and Dougherty, J. P. (1992) A spleen necrosis virus-based retroviral vector which expresses two genes from a dicistronic mRNA. Virology 186, 669–675.

    PubMed  CAS  Google Scholar 

  63. Levine, F., Yu, J. K., and Freidmann, T. (1991) Efficient gene expression in mammalian cells from a dicistronic transcriptional unit in an improved retroviral vector. Gene 108, 167–174.

    PubMed  CAS  Google Scholar 

  64. Morgan, R. A., Couture, L., Elroy-Stein, O., Ragheb, J., Moss, B., and Anderson, W. F. (1992) Retroviral vectors containing putative internal ribosomal entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acid Res. 20, 1293–1299.

    PubMed  CAS  Google Scholar 

  65. Artelt, P., Grannermann, R., Stocking, C., Fried, J., Bartsch, J., and Hauser, H. (1991) The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99, 249–254.

    PubMed  CAS  Google Scholar 

  66. Emerman, M. and Temin, H. M. (1986) Comparison of promoter suppression in avian and murine retrovirus vectors. Nucl. Acid Res. 14, 9381–9396.

    CAS  Google Scholar 

  67. Leiber, A., Sandig, V., Sommer, W., Bahring, S., and Strauss, M. (1993) Stable high-level gene expression in mammalian cells by T7 phage RNA. Methods Enzymol. 217, 47–66.

    Google Scholar 

  68. Sullenger, B. A., Lee, T. C., Smith, C. A., Ungers, G. E., and Gilboa, E. (1990) Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to moloney murine leukemia virus replication. Mol. Cell. Biol. 10, 6512–6523.

    PubMed  CAS  Google Scholar 

  69. Yee, J.-K., Moores, J. C., Jolly, D. J., Wolff, J. A., Respess, J. G., and Friedmann, T. (1987) Gene expression from transcriptionally disabled retrovrial vectors. Proc. Natl. Acad. Sci. USA 84, 5196–5201.

    Google Scholar 

  70. Yu, S. F., von Ruden, T., Kantoff, P. W., Garber, C., Seiberg, M., Ruther, U., Anderson, W. F., Wagner, E. F., and Gilboa, E. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198.

    PubMed  CAS  Google Scholar 

  71. Gilboa, E., Eglitis, M. A., Kantoff, P. W., and Anderson, W. F. (1986) Transfer and expression of cloned genes using retroviral vectors. Biotechnology 4, 504–512.

    CAS  Google Scholar 

  72. Hantzopoulos, P. A., Sullenger, B. A., Ungers, G., and Gilboz, E. (1989) Improved gene expression upon transfer of the adensoine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86, 3519–3523.

    PubMed  CAS  Google Scholar 

  73. Lee, T. C., Sullemger, B. A., Gallardo, H. F., Ungers, G. E., and Gilboa, E. (1992) Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol. 4, 66–74.

    PubMed  CAS  Google Scholar 

  74. Rosenthal, F. M., Cronin, K., Bannerji, R., Golde, D. W., and Gansbacher, B. (1994) Rosenthal FM. Cronin K. Bannerji R. Gansbacher B. Augmentation of antitumor immunity by tumor cells transduced with a retroviral vector carrying the interleukin-2 and interferon-gamma cDNAs. Blood 83, 1289–1298.

    PubMed  CAS  Google Scholar 

  75. Hoeben, R. C., Valeria, D., van der Eb, A. J., and van Ormondt, H. (1992) Gene therapy for human inherited disorders: techniques and status. Crit. Rev. Onco. & Hema. 13, 33–54.

    CAS  Google Scholar 

  76. Mann, R., Mulligan, R. C., and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.

    PubMed  CAS  Google Scholar 

  77. Miller, A. D., Trauber, D. R., and Buttimore, C. (1986) Factors involved in production of helper virus-free retrovirus vectors. Som. Cell Mol. Genet. 12, 175–183.

    CAS  Google Scholar 

  78. Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retoviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.

    PubMed  CAS  Google Scholar 

  79. Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6, 2895–2902.

    PubMed  CAS  Google Scholar 

  80. Greene, W. C. (1991) The molecular biology of the human immunodeficiency virus type 1 Infection. New England J. Med. 324, 308–316.

    CAS  Google Scholar 

  81. Lewis, P. F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516.

    PubMed  CAS  Google Scholar 

  82. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  83. Roe, T., Reynolds, T. C., Yu, G., and Brown, P. O. (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108.

    PubMed  CAS  Google Scholar 

  84. Lewis, P., Hensel, M., and Emerman, M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058.

    PubMed  CAS  Google Scholar 

  85. Weinberg, J. B., Matthews, T. J., Cullen, B. R., and Malim, M. H. (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477.

    PubMed  CAS  Google Scholar 

  86. Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.

    PubMed  CAS  Google Scholar 

  87. Gallay, P., Stitt, C., Mundy, C., Oettinger, M., and Trono, D. (1996) Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J. Virol. 70, 1027–1032.

    PubMed  CAS  Google Scholar 

  88. Gallay, P., Swingler, S., Aiken, C., and Trono, D. (1995) HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80, 379–388.

    PubMed  CAS  Google Scholar 

  89. Gallay, P., Swingler, S., Song, J., Bushman, F., and Trono, D. (1995) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83, 569–576.

    PubMed  CAS  Google Scholar 

  90. von Schwedler, U., Kornbluth, R. S., and Trono, D. (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA 91, 6992–6996.

    PubMed  CAS  Google Scholar 

  91. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996) In vivo delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    PubMed  CAS  Google Scholar 

  92. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J.-K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    PubMed  CAS  Google Scholar 

  93. Yee, J.-K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C., and Friedmann, T. (1994) A general method for the generation of high-titer, pantropic retroviral vectors: Highly efficient infection of primary hepatocytes. Proc. Natl. Acad. Sci. USA 91, 9564–9568.

    PubMed  CAS  Google Scholar 

  94. Hammer, R. E., Palmitter, R. D., and Brinster, R. L. (1984) Partial correction of murine hereditary growth hormone disorder by germ-line incorporation of a new gene. Nature 311, 65–76.

    PubMed  CAS  Google Scholar 

  95. Vile, R., Miller, N., Chernajovsky, Y., and Hart, I. (1994) A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL-2 genes. Gene Ther. 1, 307–316.

    PubMed  CAS  Google Scholar 

  96. Vile, R. G., Diaz, R. M., Miller, N., Mitchell, S., and Russell, S. J. (1995) Tissue-specific gene expression from Mo-MLV retroviral vectors with hybrid LTRs containing the murine tyrosinase enhancer/promoter. Virology 214, 307–313.

    PubMed  CAS  Google Scholar 

  97. Arbuthnot, P., Bralet, M.-P., Lejossic, C., Dedieu, J.-F., Perricaudet, M., Brechot, C., and Ferry, N. (1996) In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector. Hum. Gene Ther. 7, 1503–1514.

    PubMed  CAS  Google Scholar 

  98. Arbuthnot, P., Bralet, M.-P., Thomassin, H., Danan, J.-L., Brechot, C., and Ferry, N. (1995) Hepatoma cell-specific expression of a retrovirally transferred gene is achieved by a-fetoprotein but not insulin growth factor II regulatory sequences. Hepatology 22, 1788–1796.

    PubMed  CAS  Google Scholar 

  99. Ido, A., Nakata, K., Kato, Y., Nakao, K., Murata, K., Fujita, M., Ishii, N., Tamaoki, T., Shiku, H., and Nagataki, S. (1995) Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human a-fetoprotein gene promoter. Can. Res. 55, 3105–3109.

    CAS  Google Scholar 

  100. Nolan, G. P. (1997) PhoenixTM helper-free retrovirus producer lines. World Wide Web http://www-leland.stanford.edu/group/nolan/NL-Homepage.html.

    Google Scholar 

  101. Kanai, F., Shiratori, Y., Yoshida, Y., Wakinoto, H., Hamada, H., Kanegae, Y., Saito, I., Nakabayashi, H., Tamaoki, T., Tanaka, T., Lan, K.-H., Kato, N., Shiina, S., and Omata, M. (1996) Gene therapy for a-fetoprotein-producing human hepatoma cells by adenovirusmediated transfer of the herpes simplex thymidine kinase gene. Hepatology 23, 1359–1368.

    PubMed  CAS  Google Scholar 

  102. Harris, J. D., Gutierrez, A. A., Hurst, H. C., Sikora, K., and Lemoine, N. R. (1994) Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther. 1, 170–175.

    CAS  Google Scholar 

  103. Ferrari, G., Salvatori, G., Rossi, C., Cossu, G., and Mavilio, F. (1995) A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum. Gene Ther. 6, 733–742.

    PubMed  CAS  Google Scholar 

  104. Gossen, M., Bonin, A. L., and Bujard, H. (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. TIBS 18, 471–475.

    PubMed  CAS  Google Scholar 

  105. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    PubMed  CAS  Google Scholar 

  106. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    PubMed  CAS  Google Scholar 

  107. Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    PubMed  CAS  Google Scholar 

  108. Sadowski, I., MA, J., Triezenberg, S. J., and Ptashne, M. (1988) GAL4–VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.

    PubMed  CAS  Google Scholar 

  109. Lin, Y. S., Maldonado, E., Reinberg, D., and Green, M. R. (1991) Binding of general transcription factor TFIIB to an acidic activating region. Nature 353, 569–571.

    PubMed  CAS  Google Scholar 

  110. Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. T., and Greenblatt, J. (1991) Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351, 588–590.

    PubMed  CAS  Google Scholar 

  111. Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A., and Tjian, R. (1993) Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75, 519–530.

    PubMed  CAS  Google Scholar 

  112. Koh, G. Y., Kim, S.-J., Klug, M. G., Park, K., Soonpaa, M. H., and Field, L. J. (1995) Targeted expression of transforming growth factor 131 in intracardial grafts promotes vascular endothelial cell DNA synthesis. J. Clin. Invest. 95, 114–121.

    PubMed  CAS  Google Scholar 

  113. Lu, B. and Federoff, H. J. (1995) Herpes simplex virus type I amplicon vectors with glucocorticoid-inducible gene expression. Hum. Gene Ther. 6, 419–428.

    PubMed  CAS  Google Scholar 

  114. Ho, D. Y., Mclaughlin, J. R., and Sapolsky, R. M. (1996) Inducible gene expression from defective herpes simplex virus vectors using the tetracycline-responsive promoter system. Mol. Brain Res. 41, 200–209.

    PubMed  CAS  Google Scholar 

  115. Hofmann, A., Nolan, G. P., and Blau, H. M. (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    PubMed  CAS  Google Scholar 

  116. Hoshimaru, M., Jasodhara, R., Sah, J. R., and Gage, F. H. (1996) Differentiation of immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523.

    PubMed  CAS  Google Scholar 

  117. Kim, H.-J., Gatz, C., Hillen, W., and Jones, T. R. (1995) Tetracycline repressor-regulated gene expression in recombinant human cytomegalovirus. J. Virol. 69, 2565–2573.

    PubMed  CAS  Google Scholar 

  118. Maxwell, I. H., Spitzer, A. L., Long, C. J., and Maxwell, F. (1996) Autonomous parvovirus transduction of a gene under control of tissue-specific or inducible promoters. Gene Ther. 3, 28–36.

    PubMed  CAS  Google Scholar 

  119. Paulus, W., Baur, I., Breakefield, X. O., and Reeves, S. A. (1996) Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J. Virol. 70, 62–67.

    PubMed  CAS  Google Scholar 

  120. Yu, J. S., Sena-Esteves, M., Paulus, W., Breakefield, X. O., and Reeves, S. A. (1996) Retroviral delivery and tetracycline-dependent expression of IL-113-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumor cells. Cancer Res. 56, 5423–5427.

    PubMed  CAS  Google Scholar 

  121. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.

    PubMed  CAS  Google Scholar 

  122. Hallahan, D. E., Mauceri, H. J., Seung, L. P., Dunphy, E. J., Wayne, J. D., Hanna, N. N., Toledano, A., Hellman, S., Kufe, D. W., and Weichselbaum, R. R. (1995) Spatial and temporal control of gene therapy using ionizing radiation. Nature Medicine 1, 786–791.

    PubMed  CAS  Google Scholar 

  123. Larrick, J. W. and Wright, S. C. (1990) Cytoxic mechanism of tumour necrosis factor-a. FASEB J. 4, 3215–3223.

    PubMed  CAS  Google Scholar 

  124. Laster, S., Wood, J., and Gooding, L. (1988) TNF can induce apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634.

    PubMed  CAS  Google Scholar 

  125. Wright, S. C., and Larrick, J. W. (1992) Apoptosis and DNA fragmentation proceed TNFinduced cytolysis of U937 cells. J. Cell. Biochem. 48, 344–355.

    PubMed  CAS  Google Scholar 

  126. Old, L. J. (1985) Tumour necrosis factor. Science 230, 630–636.

    PubMed  CAS  Google Scholar 

  127. Sersa, G., Willingham, V., and Milas, L. (1988) Anti-tumour effects of tumour necrosis factor alone or in conbination with radiotherapy. Int. J. Cancer 42, 129–134.

    PubMed  CAS  Google Scholar 

  128. Datta, R., Rubin, E., Sukhatme, V., Qureshi, S., Hallahan, D., Weichselbaum, R. R., and Kufe, D. W. (1992) Ionizing radiation activates transcription of the Egr-1 gene via CArG elements. Proc. Natl. Acad. Sci. USA 89, 10149–10153.

    PubMed  CAS  Google Scholar 

  129. Hallahan, D. E., Gius, D., Kuchibhotla, J., Sukhatme, V., Kufe, D. W., and Weichselbaum, R. R. (1993) Radiation signaling mediated by Jun activation following dissociation from the Jun inhibitor. J. Biol. Chem. 268, 4903–4907.

    PubMed  CAS  Google Scholar 

  130. Hallahan, D. E., Sukhatme, V. P., Sherman, M. L., Virudachalam, S., Kufe, D., and Weichselbaum, R. R. (1991) Protein kinase-C mediates inducibility of nuclear signal transducers. egr-1 and c-jun. Proc. Natl. Acad. Sci. USA 88, 2152–2160.

    Google Scholar 

  131. Brach, M., Sherman, M., Gunji, H., Weichselbaum, R. R., and Kufe, D. (1991) Ionizing radiation stimulates NFkB binding activity in human myeloid leukemia cells. J. Clin. Invest. 88, 691–695.

    PubMed  CAS  Google Scholar 

  132. Wang, Y., O’Malley, B. W. J., Tsai, S. Y., and O’Malley, B. W. (1994) A regulatory system for use in gene therapy. Proc. Natl. Acad. Sci. USA 91, 8180–8184.

    PubMed  CAS  Google Scholar 

  133. Baulieu, E.-E. (1989) Contragestion and other clinical applications of RU 486, an antiprogesterone at the receptor. Science 245, 1351–1357.

    PubMed  CAS  Google Scholar 

  134. Keegan, L., Gill, G., and Ptashne, M. (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231, 699–704.

    PubMed  CAS  Google Scholar 

  135. Carey, M., Kakidani, H., Leatherwood, J., Mostashari, F., and Ptashne, M. (1989) An amino-terminal fragment of GAL4 binds DNA as a dimer. J. Mol. Biol. 2, 384–389.

    Google Scholar 

  136. Delort, J. P. and Capecchi, M. R. (1996) TAXI/UAS: A molecular switch to control expression of genes in vivo. Hum. Gene Ther. 7, 809–820.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reeves, S.A. (1998). Retrovirus Vectors and Regulatable Promoters. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics