Skip to main content

MPTP

A Dopaminergic Neurotoxin

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

1-Methyl–4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most selective neurotoxins. However, this is not the sole reason it has gained widespread recognition. Rather, the spectacular way that its biologic effects were first recognized, which was a direct result of the clandestine manufacture of illicit drugs (1), thrust this previously obscure compound squarely into the limelight. Although in retrospect at least one earlier case had been reported (2), a direct association between exposure to MPTP and central nervous system damage was not made until the early 1980s, when a group of young heroin abusers in northern California mysteriously developed parkinsonism after using a new “designer drug” known as China White. The cause of their clinical syndrome was eventually traced back to a contaminant of the “synthetic heroin,” which proved to be MPTP (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewin, R. (1984) Trail of ironies to Parkinson’s disease. Science 224, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  2. Davis, G. C., Williams, A. C., Markey, S. E, Ebert, M. H., Caine, E. D., Reichert, C. M., and Kopin, I. J. (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1, 249–254.

    Article  PubMed  CAS  Google Scholar 

  3. Langston, J. W., Ballard, P. A., Tetrud, J. W., and Irwin, I. (1983) Chronic parkinsonism in humans due to a product of meperidine analog synthesis. Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  4. Langston, J. W. and Ballard, P. A. (1984) Parkinsonism induced by 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease. Can. J. Neurol. Sci. 11, 160–165.

    PubMed  CAS  Google Scholar 

  5. Ballard, P. A., Tetrud, J. W., and Langston, J. W. (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology 35, 949–956.

    Article  PubMed  CAS  Google Scholar 

  6. Ruttenber, A. J., Garbe, P. L., Kalter, H. D., Castro, K. G., Tetrud, J. W., Porter, P., Irwin, I., and Langston, J. W. (1986) Meperidine analog exposure in California narcotics abusers: Initial epidemiologic findings, in MPTP: A Neurotoxin Producing a Parkinsonian Syndrome ( Markey, S. P., Castagnoli, N., Jr., Trevor, A. J., and Kopin, I. J., eds.), Academic, New York, pp. 339–353.

    Google Scholar 

  7. Tetrud, J. W. and Langston, J. W. (1992) Tremor in MPTP-induced parkinsonism. Neurology 42, 407–410.

    Article  PubMed  CAS  Google Scholar 

  8. Tetrud, J. W., Langston, J. W., Garbe, P. L., and Ruttenber, A. J. (1989) Mild parkinsonism in persons exposed to 1-methy1–4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurology 39, 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  9. Caine, D. B., Langston, J. W., Martin, W. R. W., Stoessl, A. J., Ruth, T. J., Adam, M. J., Pate, B. D., and Schulzer, M. (1985) Positron emission tomography after MPTP: observations relating to the cause of Parkinson’s disease. Nature 317, 246–248.

    Article  Google Scholar 

  10. Martin, W. R. W., Palmer, M. R., Patlak, C. S., and Caine, D. B. (1989) Nigrostriatal function in humans studied with positron emission tomography. Ann. Neurol. 26, 535–542.

    Article  PubMed  CAS  Google Scholar 

  11. Widner, H., Tetrud, J. W., Rehncrona, S., Brundin, P., Bjorklund, A., Lindvall, O., and Langston, J. W. (1993) Fifteen months follow-up on bilateral embryonic mesencephalic grafts in two cases of severe MPTP-induced parkinsonism, in Advances in Neurology, vol. 60, Parkinson’s Disease: From Basic Research to Treatment. Proceedings of the 10th International Symposium on Parkinson’s Disease ( Narabayashi, H., Nagatsu, T., Yanagisawa, N., and Mizuno, Y., eds.), Raven, New York, pp. 729–733.

    Google Scholar 

  12. Stern, Y. and Langston, J. W. (1985) Intellectual changes in patients with MPTP-induced parkinsonism. Neurology 35, 1506–1509.

    Article  PubMed  CAS  Google Scholar 

  13. Stern, Y., Tetrud, J. W., Martin, W. R. W., Kutner, S. J., and Langston, J. W. (1990) Cognitive change following MPTP exposure. Neurology 40, 261–264.

    Article  PubMed  CAS  Google Scholar 

  14. Weihmuller, F B., Hadjiconstantinou, M., and Bruno, J. P. (1988) Acute stress or neuroleptics elicit sensorimotor deficits in MPTP-treated mice. Neurosci. Lett. 85, 137–142.

    Article  PubMed  CAS  Google Scholar 

  15. Ricaurte, G. A., Langston, J. W., DeLanney, L. E., Irwin, I., Peroutka, S. J., and Forno, L. S. (1986) Fate of nigrostriatal neurons in young mature mice given 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine: A neurochemical and morphological reassessment. Brain Res. 376, 117–124.

    Article  PubMed  CAS  Google Scholar 

  16. Boyce, S., Kelly, E., Reavill, C., Jenner, P., and Marsden, C. D. (1984) Repeated administration of N-methyl-4-pheny1–1,2,5,6-tetrahydropyridine to rats is not toxic to striatal dopamine neurons. Biochem. Pharmacol. 33, 1747–1752.

    Article  PubMed  CAS  Google Scholar 

  17. Chiueh, C. C., Markey, S. P., Burns, R. S., Johannessen, J. N., Pert, A., and Kopin, I. J. (1984) Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-pheynl-1,2,3,6-tetrahydropyridine in the rat. Eur. J. Pharmacol. 100, 189–194.

    Article  PubMed  CAS  Google Scholar 

  18. Sahgal, A., Andrews, J. S., Biggins, J. A., Candy, J. M., Edwardson, J. A., Keith, A. B., Turner, J. D., and Wright, C. (1984) N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) affects locomotor activity without producing a nigrostriatal lesion in the rat. Neurosci. Lett. 48, 179–184.

    Article  PubMed  CAS  Google Scholar 

  19. Donnan, G. A., Kaczmarczyk, S. J., Solopotias, T., Rowe, P. J., Kalnins, R. M., Vajda, F. J. E., and Mendelsohn, F. A. O. (1986) The neurochemical and clinical effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in small animals. Clin. Exp. Neurol. 22, 155–164.

    PubMed  CAS  Google Scholar 

  20. Jarvis, M. F. and Wagner, G. C. (1990) 1-Methy1–4-phenyl-1,2,3,6-tetrahydropyridineinduced neurotoxicity in the rat: Characterization and age-dependent effects. Synapse 5, 104–112.

    Google Scholar 

  21. Heikkila, R. E., Manzino, L., Cabbat, F. S., and Duvoisin, R. C. (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-pheynl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311, 467–469.

    Article  PubMed  CAS  Google Scholar 

  22. Sonsalla, P. K. and Heikkila, R. E. (1988) Neurotoxic effects of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 12, 345–354.

    Article  PubMed  CAS  Google Scholar 

  23. Gupta, M., Gupta, B. K., Thomas, R., Bruemmer, V., Sladek, J. R., Jr., and Felten, D. L. (1986) Aged mice are more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine than young adults. Neurosci. Lett. 70, 326–331.

    Article  PubMed  CAS  Google Scholar 

  24. Mori, S., Fujitake, J., Kuno, S., and Sano, Y. (1988) Immunohistochemical evaluation of the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic nigrostriatal neurons of young adult mice using dopamine and tyrosine hydroxylase antibodies. Neurosci. Lett. 90, 57–62.

    Article  PubMed  CAS  Google Scholar 

  25. Seniuk, N. A., Tatton, W. G., and Greenwood, C. E. (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res. 527, 7–20.

    Article  PubMed  CAS  Google Scholar 

  26. Ricaurte, G. A., Irwin, I., Forno, L. S., DeLanney, L. E., Langston, E. B., and Langston, J. W. (1987) Aging and MPTP-induced degeneration of dopaminergic neurons in the substantia nigra. Brain Res. 403, 43–51.

    Article  PubMed  CAS  Google Scholar 

  27. Chan, P., Di Monte, D. A., Langston, J. W., and Janson, A. M. (1997) (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J. Pharmacol. Exp. Ther. 280, 439–446.

    Google Scholar 

  28. Irwin, I., DeLanney, L. E., Forno, L. S., Finnegan, K. T., Di Monte, D. A., and Langston, J. W. (1990) The evolution of nigrostriatal neurochemical changes in the MPTP-treated squirrel monkey. Brain Res. 531, 242–252.

    Article  PubMed  CAS  Google Scholar 

  29. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J. (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  30. Langston, J. W., Forno, L. S., Rebert, C. S., and Irwin, I. (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res. 292, 390–394.

    Article  PubMed  CAS  Google Scholar 

  31. Langston, J. W., Irwin, I., Langston, E. B., and Forno, L. S. (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225, 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen, G., Pasik, P., Cohen, B., Leist, A., Mytilineou, C., and Yahr, M. D. (1985) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur. J. Pharmacol. 106, 209–210.

    Article  Google Scholar 

  33. Jenner, P., Rose, S. P., Nomoto, M., and Marsden, C. D. (1986) MPTP-induced parkinsonism in the common marmoset: behavioral and biochemical effects. Adv. Neurol. 45, 183–186.

    Google Scholar 

  34. Di Monte, D. A. and Langston, J. W. (1993) MPTP-induced parkinsonism in nonhuman primates, in Current Concepts in Parkinson’s Disease Research ( Schneider, J. S. and Gupta, M., eds.), Hogrefe and Huber Publishers, Toronto, pp. 159–179.

    Google Scholar 

  35. Tetrud, J. W., Langston, J. W., Redmond, D. E., Jr., Roth, R. H., Sladek, J. R., Jr., and Angel, R. W. (1986) MPTP-induced tremor in human and non-human primates [Abstract]. Neurology 36 (Suppl. 1), 308.

    Google Scholar 

  36. Clarke, C. E., Boyce, S., Robertson, R. G., Sambrook, M. A., and Crossman, A. R. (1989) Drug-induced dyskinesia in primates rendered hemiparkinsonian by intracarotid administration of 1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine (MPTP). J. Neurol. Sci. 90, 307–314.

    Article  PubMed  CAS  Google Scholar 

  37. Schneider, J. S. (1989) Levodopa-induced dyskinesias in Parkinsonian monkeys: Relationship to extent of nigrostriatal damage. Pharmacol. Biochem. Behavior 34, 193–196.

    Article  CAS  Google Scholar 

  38. Schneider, J. S., Unguez, G. A., Yuwiler, A., Berg, S. C., and Markham, C. H. (1988) Deficits in operant behaviour in monkeys treated with N-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP). Brain 111, 1265–1285.

    Article  PubMed  Google Scholar 

  39. Schneider, J. S. (1990) Chronic exposure to low doses of MPTP. II. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Res. 534, 25–36.

    Article  PubMed  CAS  Google Scholar 

  40. Schneider, J. S. and Kovelowski, C. J., II (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res. 519, 122–128.

    Article  PubMed  CAS  Google Scholar 

  41. Kish, S. J., Shannak, K., and Hornykiewicz, 0. (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N. Engl. J. Med. 318 (14), 876–880.

    Article  PubMed  CAS  Google Scholar 

  42. Elsworth, J. D., Deutch, A. Y., Redmond, D. E., Jr., Sladek, J. R., Jr., and Roght, R. H. (1987) Differential responsiveness to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in subregions of the primate substantia nigra and striatum. Life Sci. 40, 193–202.

    Article  PubMed  CAS  Google Scholar 

  43. Pifl, C., Schingnitz, G., and Hornykiewicz, 0. (1988) The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson’s disease. Neurosci. Lett. 92, 228–233.

    Article  PubMed  CAS  Google Scholar 

  44. Moratalla, R., Quinn, B., DeLanney, L. E., Irwin, I., Langston, J. W., and Graybiel, A. M. (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 89, 3859–3863.

    Article  PubMed  CAS  Google Scholar 

  45. Wüllner, U., Pakzaban, P., Brownell, A.-L., Hantraye, P., Burns, L., Shoup, T., Elmaleh, D., et al. (1994) dopamine terminal loss and onset of motor symptoms in MPTP-treated monkeys. A positron emission tomography study with 11C-CFT. Exp. Neurol. 126, 305–309.

    Google Scholar 

  46. Goldman, J. E., Yen, S. H., Chiu, F. C., and Peress, N. S. (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221, 1082–1084.

    Article  PubMed  CAS  Google Scholar 

  47. Forno, L. S., Sternberger, L. A., Sternberger, N. H., Strefling, A. M., Swanson, K., and Eng, L. F. (1986) Reaction of Lewy bodies with antibodies to phosphorylated and nonphosphorylated neurofilaments. Neurosci. Lett. 64, 253–258.

    Google Scholar 

  48. Galloway, P. G., Grundke-Iqbal, I., Iqbal, K., and Perry, G. (1988) Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 47, 654–663.

    Article  PubMed  CAS  Google Scholar 

  49. Love, S., Saitoh, T., Saitoh, T., Quijada, S., Cole, G. M., and Terry, R. D. (1988) Alz-50, ubiquitin, and tau reactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J. Neuropathol. Exp. Neurol. 47, 393–405.

    Article  PubMed  CAS  Google Scholar 

  50. Bancher, C., Lassmann, H., Budka, H., Jellinger, K. A., Grundke-Iqbal, I., Iqbal, K., Wiche, G., Seitelberger, F., and Wisniewski, H. M. (1989) An antigenic profile of Lewy bodies: Immunocytochemical indication for protein phosphorylation and ubiquitination. J. Neuropathol. Exp. Neurol. 48, 81–93.

    Google Scholar 

  51. Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I., and Ricaurte, G. A. (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann. Neurol. 20, 449–455.

    Article  PubMed  CAS  Google Scholar 

  52. Forno, L. S., Langston, J. W., DeLanney, L. E., and Irwin, I. (1988) An electron microscopic study of MPTP-induced inclusion bodies in an old monkey. Brain Res. 448, 150–157.

    Article  PubMed  CAS  Google Scholar 

  53. Langston, J. W., Irwin, I., Langston, E. B., and Forno, L. S. (1984) 1-Methyl-4-phenylpyridinium ion (MPP+): Identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci. Lett. 48, 87–92.

    Google Scholar 

  54. Markey, S. P., Johannessen, J. N., Chiueh, C. C., Burns, R. S., and Herkenham, M. A. (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311, 464–467.

    Article  PubMed  CAS  Google Scholar 

  55. Irwin, I. and Langston, J. W. (1985) Selective accumulation of MPP+ in the substantia nigra: A key to neurotoxicity? Life Sci. 36, 207–212.

    Article  PubMed  CAS  Google Scholar 

  56. Riachi, N. J., Harik, S. I., Kalaria, R. N., and Sayre, L. M. (1988) On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. II. Susceptability among mammalian species correlates with the toxin’s metabolic patterns in brain microvessels and liver. J. Pharmacol. Exp. Ther. 244 (2), 443–448.

    PubMed  CAS  Google Scholar 

  57. Sayre, L. M., Arora, P. K., Iacofano, L. A., and Harik, S. I. (1986) Comparative toxicity of MPTP, MPP+ and 3,3-dimethyl-MPDP+ to dopaminergic neurons of the rat substantia nigra. Eur. J. Pharmacol. 124, 171–174.

    Article  PubMed  CAS  Google Scholar 

  58. Castagnoli, N., Jr., Chiba, K., and Trevor, A. J. (1985) Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci. 36 (3), 225–230.

    Article  PubMed  CAS  Google Scholar 

  59. Chiba, K., Peterson, L. A., Castagnoli, K. P., Trevor, A. J., and Castagnoli, N., Jr. (1985) Studies on the molecular mechanism of bioactivation of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Drug Metab. Dispos. 13, 342–347.

    PubMed  CAS  Google Scholar 

  60. Singer, T. P., Salach, J. I., Castagnoli, N., Jr., and Trevor, A. J. (1986) Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases. Biochem. J. 235, 785–789.

    PubMed  CAS  Google Scholar 

  61. Chiba, K., Trevor, A. J., and Castagnoli, N., Jr. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120, 574–578.

    Article  PubMed  CAS  Google Scholar 

  62. Mytilineou, C. and Cohen, G. (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine destroys dopamine neurons in explants of rat embryo mesencephalon. Science 225, 529–531.

    Google Scholar 

  63. Sanchez-Ramos, J. R., Barrett, J. N., Goldstein, M., Weiner, W. J., and Hefti, F. (1986) 1-Methyl-4-phenylpyridinium (MPP+) but not 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) selectively destroys dopaminergic neurons in cultures of dissociated rat mesencephalic neurons. Neurosci. Lett. 72 215–220.

    Google Scholar 

  64. Di Monte, D. A., Wu, E. Y., Irwin, I., DeLanney, L. E., and Langston, J. W. (1992) Production and disposition of 1-methyl-4-phenylpyridinium in primary cultures of mouse astrocytes. Glia 5, 48–55.

    Article  PubMed  Google Scholar 

  65. Bradbury, A. J., Costall, B., Domeney, A. M., Jenner, P., Kelly, M. E., Marsden, C. D., and Naylor, R. J. (1986) 1-Methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature 319, 56–57.

    Google Scholar 

  66. Irwin, I., Ricaurte, G. A., DeLanney, L. E., and Langston, J. W. (1988) The sensitivity of nigrostriatal dopamine neurons to MPP+ does not increase with age. Neurosci. Lett. 87, 51–56.

    Article  PubMed  CAS  Google Scholar 

  67. Fuller, R. W. and Hemrick-Luecke, S. K. (1985) Influence of selective, reversible inhibitors of monoamine oxidase on the prolonged depletion of striatal dopamine by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Life Sci. 37, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  68. Kalaria, R. N., Mitchell, M. J., and Hank, S. I. (1987) Correlation of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad. Sci. USA 84, 3521–3525.

    Article  PubMed  CAS  Google Scholar 

  69. Reinhard, J. F., Jr., Diliberto, E. J., Jr., Viveros, O. H., and Daniels, A. J. (1987) Sub-cellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 84, 8160–8164.

    Article  PubMed  CAS  Google Scholar 

  70. Reinhard, J. F., Jr., Carmichael, S. W., and Daniels, A. J. (1990) Mechanisms of toxicity and cellular resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4phenylpyridinium in adrenomedullary chromaffin cell cultures. J. Neurochem. 55, 311–320.

    Article  PubMed  CAS  Google Scholar 

  71. Reinhard, J. F., Jr., Daniels, A. J., and Viveros, O. H. (1988) Potentiation by reserpine and tetrabenazine of brain catecholamine depletions by MPTP (i-methyl-4-phenyl1,2,3,6-tetrahydropyridine) in the mouse: Evidence for subcellular sequestration as basis for cellular resistance to the toxicant. Neurosci. Lett. 90, 349–353.

    Article  PubMed  CAS  Google Scholar 

  72. Levitt, P., Pintar, J. E., and Breakefield, X. O. (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl. Acad. Sci. USA 79, 6385–6389.

    Article  PubMed  CAS  Google Scholar 

  73. Westlund, K. N., Denney, R. M., Kochersperger, L. M., Rose, R. M., and Abell, C. W. (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230, 181–183.

    Article  PubMed  CAS  Google Scholar 

  74. Chiba, K., Trevor, A. J., and Castagnoli, N., Jr. (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem. Biophys. Res. Commun. 128, 1229–1232.

    Article  Google Scholar 

  75. Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., and Snyder, S. H. (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82, 2173–2177.

    Article  PubMed  CAS  Google Scholar 

  76. Ransom, B. R., Kunis, D. M., Irwin, I., and Langston, J. W. (1987) Astrocytes convert the parkinsonism-inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323–328.

    Article  PubMed  CAS  Google Scholar 

  77. Schinelli, S., Zuddas, A., Kopin, I. J., Barker, J. L., and Di Porzio, U. (1988) 1-Methyl4-phenyl-1,2,3,6-tetrahydropyridine metabolism and 1-methyl-4-phenylpyridinium uptake in dissociated cell cultures from the embryonic mesencephalon. J. Neurochem. 50, 1900–1907.

    Google Scholar 

  78. Di Monte, D. A., Wu, E. Y., Irwin, I., DeLanney, L. E., and Langston, J. W. (1991) Biotransformation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in primary cultures of mouse astrocytes. J. Pharmacol. Exp. Ther. 258, 594–600.

    PubMed  Google Scholar 

  79. Scotcher, K. P., Irwin, I., DeLanney, L. E., Langston, J. W., and Di Monte, D. A. (1991) Mechanism of accumulation of the 1-methyl-4-phenylpyridinium species into mouse brain synaptosomes. J. Neurochem. 56, 1602–1607.

    Article  PubMed  CAS  Google Scholar 

  80. Reinhard, J. F., Daniels, A. J., and Painter, G. R. (1990) Carrier-independent entry of 1-methyl-4-phenylpyridinium (MPP+) into adrenal chromaffin cells as a consequence of charge delocalization. Biochem. Biophys. Res. Commun. 168, 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  81. Irwin, I., Langston, J. W., and DeLanney, L. E. (1987) 4-Phenylpyridine (4PP) and MPTP: The relationship between striatal MPP+ concentrations and neurotoxicity. Life Sci. 40, 731–740.

    Google Scholar 

  82. Riachi, N. J., Arora, P. K., Sayre, L. M., and Harik, S. I. (1988) Potent neurotoxic fluorinated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs as potential probes in models of Parkinson’s disease. J. Neurochem. 50, 1319–1321.

    Article  PubMed  CAS  Google Scholar 

  83. Cashman, J. R. and Ziegler, D. M. (1986) Contribution of N-oxygenation to the metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) by various liver preparations. Mol. Pharmacol. 29, 163–167.

    PubMed  CAS  Google Scholar 

  84. Arora, P. K., Riachi, N. J., Harik, S. I., and Sayre, L. M. (1988) Chemical oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its in vivo metabolism in rat brain and liver. Biochem. Biophys. Res. Commun. 152, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  85. Di Monte, D. A., Wu. E. Y., and Langston, J. W. (1992) Role of astrocytes in MPTP metabolism and toxicity. Ann. NY Acad. Sci. 648, 219–228.

    Article  Google Scholar 

  86. Melamed, E., Rosenthal, J., Globus, M., Cohen, O., and Uzzan, A. (1985) Suppression of MPTP-induced dopaminergic neurotoxicity in mice by nomifensine and L-dopa. Brain Res. 342, 401–404.

    Article  PubMed  CAS  Google Scholar 

  87. Ricaurte, G. A., Langston, J. W., DeLanney, L. E., Irwin, I., and Brooks, J. D. (1985) Dopamine uptake blockers protect against the dopamine depleting effects of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse striatum. Neurosci. Lett. 59, 259–264.

    Article  PubMed  CAS  Google Scholar 

  88. Sundstrom, E., Goldstein, M., and Jonsson, G. (1986) Uptake inhibition protects nigrostriatal dopamine neurons from the neurotoxicity of 1-methyl-4-phenylpyridine (MPP+) in mice. Eur. J. Pharmacol. 131, 289–292.

    Article  PubMed  CAS  Google Scholar 

  89. Mayer, R. A., Kindt, M. V., and Heikkila, R. E. (1986) Prevention of MPTP-induced neurotoxicity by dopamine uptake inhibitors, in MPTP; A Neurotoxin Producing a Parkinsonian Syndrome ( Markey, S. P., Castagnoli, N., Jr., Trevor, A. J., and Kopin, I. J., eds.), Academic, Orlando, FL, pp. 585–590.

    Google Scholar 

  90. Schultz, W., Scarnati, E., Sundstrom, E., Tsutsumi, T., and Jonsson, G. (1986) The catecholamine uptake blocker nomifensine protects against MPTP-induced parkinsonism in monkeys. Exp. Brain Res. 63, 216–220.

    Article  PubMed  CAS  Google Scholar 

  91. Schultz, W., Scarnati, E., Sundstrom, E., and Romo, R. (1989) Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism by the catecholamine uptake inhibitor nomifensine: Behavioral analysis in monkeys with partial striatal dopamine depletions. Neuroscience 31, 219–230.

    Article  PubMed  CAS  Google Scholar 

  92. Takada, M., Li, Z. K., and Hattori, T. (1990) Astroglial ablation prevents MPTP-induced nigrostriatal neuronal death. Brain Res. 509, 55–61.

    Article  PubMed  CAS  Google Scholar 

  93. Javitch, J. A., Uhl, G. R., and Snyder, S. H. (1984) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: characterization and localization of receptor binding sites in rat and human brain. Proc. Natl. Acad. Sci. USA 81, 4591–4595.

    Article  PubMed  CAS  Google Scholar 

  94. Santiago, M., Machado, A., and Cano, J. (1996) Nigral and striatal comparative study of the neurotoxic action of 1-methyl-4-phenylpyridinium ion: involvement of dopamine uptake system. J. Neurochem. 66, 1182–1190.

    Article  PubMed  CAS  Google Scholar 

  95. Mitchell, I. J., Cross, A. J., Sambrook, M. A., and Crossman, A. R. (1986) N-methyl-4phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism. J. Neural Transm. XX, 41–46.

    Google Scholar 

  96. Schneider, J. S., Yuwiler, A., and Markham, C. H. (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res. 411, 144–150.

    Article  PubMed  CAS  Google Scholar 

  97. German, D. C., Durach, A., Askari, S., Speciale, S. G., and Bowden, D. M. (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonien syndrome in macaca fascicularis: Which midbrain dopaminergic neurons are lost? Neuroscience 24, 161–174.

    Google Scholar 

  98. Parent, A., Lavoie, B., Smith, Y., and Bedard, P. J. (1990) The dopaminergic nigropallidal projection in primates: Distinct cellular origin and relative sparing in MPTPtreated monkeys. Adv. Neurol. 53, 111–116.

    PubMed  CAS  Google Scholar 

  99. D’Azur, V. (1786) Traite d’anatomie et de physiologie, cited by Marsden, C. D.: brain melanin in Pigments in Pathology, 1969, (Wolman, M., ed.), Academic, New York, pp. 395–420.

    Google Scholar 

  100. Graham, D. G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  101. Marsden, C. D. (1983) Neuromelanin and Parkinson’s disease. J. Neural Transm. Suppl. 19 121–141.

    Google Scholar 

  102. Forno, L. S. (1966) Pathology of parkinsonism-a preliminary report of 24 cases. J. Neurosurg. 24, 266–271.

    Google Scholar 

  103. Forno, L. S. and Alvord, E. C., Jr. (1974) Depigmentation in the nerve cells of the substantia nigra and locus coeruleus in parkinsonism. Adv. Neurol. 5, 195–202.

    PubMed  CAS  Google Scholar 

  104. Mann, D. M. A. and Yates, P. O. (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech. Age Dev. 21, 193–203.

    Google Scholar 

  105. Lindquist, N. G., Larsson, B. S., and Lyden-Sokolowski, A. (1987) Neuromelanin and its possible protective and destructive properties. Pigment Cell Res. 1, 133–136.

    Article  PubMed  CAS  Google Scholar 

  106. Commoner, B., Townsend, J., and Pake, G. E. (1954) Free radicals in biological materials. Nature 174, 689–691.

    Article  PubMed  CAS  Google Scholar 

  107. McGinness, J. and Proctor, P. (1973) The importance of the fact that melanin is black. J. Theor. Biol. 39, 677–680.

    Article  PubMed  CAS  Google Scholar 

  108. Gan, E. V., Haberman, H. F., and Menon, I. A. (1976) Electron transfer properties of melanin. Arch. Biochem. Biophys. 173, 666–672.

    Article  PubMed  CAS  Google Scholar 

  109. Lindquist, N. G. (1972) Accumulation in vitro of 35S-chlorpromazine in the neuromelanin of human substantia nigra and locus coeruleus. Arch. Int. Pharmacodyn. Ther. 200, 190–195.

    PubMed  CAS  Google Scholar 

  110. Salazar, M., Sokoloski, T. D., and Patil, P. N. (1978) Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules. Fed. Proc. 37, 2403–2407.

    PubMed  CAS  Google Scholar 

  111. Swartz, H. M., Sarna, T., and Zecca, L. (1992) Modulation by neuromelanin of the availability and reactivity of metal ions. Ann. Neurol. 32 Suppl., S69 - S75.

    Google Scholar 

  112. Youdim, M. B. H., Ben-Shachar, D., and Riederer, P. (1994) The enigma of neuromelanin in Parkinson’s disease substantia nigra. J. Neural Transm. Suppl. 43 113–122.

    Google Scholar 

  113. Marsden, C. D. (1969) Brain melanin, in Pigments in Pathology ( Wolman, M., ed.), Academic, New York, pp. 395–420.

    Google Scholar 

  114. Barden, H. and Levine, S. (1983) Histochemical observations on rodent brain neuromelanin. Brain Res. Bull. 10, 847–851.

    Article  PubMed  CAS  Google Scholar 

  115. Herrero, M. T., Hirsch, E. C., Kastner, A., Ruberg, M., Luquin, M. R., Laguna, J., Javoy-Agid, F., Obeso, J. A., and Agid, Y. (1993) Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP. Neuroscience 56, 499–511.

    Article  PubMed  CAS  Google Scholar 

  116. D’Amato, R. J., Lipman, Z. P., and Snyder, S. H. (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin Science 231, 987–989.

    Article  PubMed  Google Scholar 

  117. D’Amato, R. J., Benham, D. F., and Snyder, S. H. (1987) Characterization of the binding of N-methyl-4-phenylpyridine, the toxic metabolite of the parkinsonian neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to neuromelanin. J. Neurochem. 48, 653–658.

    Google Scholar 

  118. Lindquist, N. G., Lyden-Sokolowski, A., and Larsson, B. S. (1986) Accumulation of a parkinsonism-inducing neurotoxin in melanin-bearing neurons: Autoradiographic studies on 3H-MPTP. Acta Phamacol. Toxicol. 59, 161–164.

    Article  CAS  Google Scholar 

  119. D’Amato, R. J., Alexander, G. M., Schwartzman, R. J., Kitt, C. A., Price, D. L., and Snyder, S. H. (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327, 324–326.

    Article  PubMed  Google Scholar 

  120. Wu, E. Y., Chiba, K., Trevor, A. J., and Castagnoli, N., Jr. (1986) Interactions of the 1-methyl-4-phenyl-2,3-dihydropyridinium species with synthetic dopamine-melanin. Life Sci. 39, 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  121. Korytowski, W., Felix, C. C., and Kalyanaraman, B. (1987) Mechanism of oxidation of 1-methyl-4-phenyl-2,3,-dihydropyridinium (MPDP+). Biochem. Biophys. Res. Commun. 144 (2), 692–698.

    Article  PubMed  CAS  Google Scholar 

  122. Melamed, E., Soifer, D., Rosenthal, J., Pikarsky, E., and Reches, A. (1987) Effect of intrastriatal and intranigral administration of synthetic neuromelanin on the dopaminergic neurotoxicity of MPTP in rodents. Neurosci. Lett. 83, 41–46.

    Article  PubMed  CAS  Google Scholar 

  123. Pileblad, E., Nissbrandt, H., and Carlsson, A. (1984) Biochemical and functional evidence for a marked dopamine releasing action of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (NMPTP) in mouse brain. J. Neural Transm. 60, 199–203.

    Article  PubMed  CAS  Google Scholar 

  124. Chang, G. D. and Ramirez, V. D. (1986) The mechanism of action of MPTP and MPP+ on endogenous dopamine release from the rat corpus striatum superfused in vitro. Brain Res. 368, 134–140.

    Article  PubMed  CAS  Google Scholar 

  125. Sirinathsinghji, D. J. S., Heavens, R. P., and McBride, C. S. (1988) Dopamine-releasing action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4phenylpyridine (MPP+) in the neostriatum of the rat as demonstrated in vivo by the push-pull perfusion technique: Dependence on sodium but not calcium ions. Brain Res. 443, 101–116.

    Article  PubMed  CAS  Google Scholar 

  126. Huang, S.-J. and Chiueh, C. C. (1990) Calcium-dependent potentiation of potassium depolarization-evoked release of dopamine from nigrostriatal (A9) terminals by picomoles of MPP+. FASEB J. 4, A605 — A608.

    Google Scholar 

  127. Lang, K., Huang, S.-J., Miyake, H., and Chiueh, C. C. (1990) Calcium ion fluxes mediate sustained release of endogenous striatal dopamine by toxic doses of MPP+ in vivo. FASEB J. 4, A605.

    Google Scholar 

  128. Kupsch, A., Gerlack, M., Pupeter, S. C., et al. (1995) Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral but not at the striatal level in mice. Neuroreport 6, 621–625.

    Article  PubMed  CAS  Google Scholar 

  129. Schmidt, C. J., Matsuda, L. A., and Gibb, J. W. (1984) In vitro release of tritiated monoamines from rat CNS tissue by the neurotoxic compound 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine. Eur. J. Pharmacol. 103, 255–260.

    Article  PubMed  CAS  Google Scholar 

  130. Wilson, J. A., Lau, Y. S., Gleeson, J. G., and Wilson, J. S. (1991) The action of MPTP on synaptic transmission is affected by changes in Ca2+ concentrations. Brain Res. 541, 342–346.

    Article  PubMed  CAS  Google Scholar 

  131. Chiueh, C. C. and Huang, S.-J. (1991) MPP+ enhances potassium evoked striatal release through a S2,-conotoxin-insensitive, tetrodotoxin-and nimodipine-sensitive calcium dependent mechanism. Ann. NY Acad. Sci. 635, 393–396.

    Article  PubMed  CAS  Google Scholar 

  132. Wilson, J. A., Wilson, J. S., and Weight, F. F. (1986) MPTP causes a non-reversible depression of synaptic transmission in mouse neostriatal brain slice. Brain Res. 368, 357–360.

    Article  PubMed  CAS  Google Scholar 

  133. Mayer, R. A., Kindt, M. V., and Heikkila, R. E. (1986) Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport. J. Neurochem. 47, 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  134. Johnson, E. A., Wu, E. Y., Rollema, H., Booth, R. G., Trevor, A. J. and Castagnoli, N., Jr. (1989) 1-Methyl-4-phenylpyridinium (MPP+) analogs: In vivo neurotoxicity and inhibition of striatal synaptosomal dopamine uptake. Eur. J. Pharmacol. 166 65–74.

    Google Scholar 

  135. Athwal, N. S. S., Ramsden, D. B., Simpson, M., and Williams, A. C. (1996) Inhibition of dopamine uptake into PC-12 cells by analogues of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP). Parkinsonism and Related Disorders 2 (1), 1–6.

    Article  PubMed  CAS  Google Scholar 

  136. Berman, S. B., Zigmond, M. J., and Hastings, T. G. (1996) Dopamine transport function: modulation by oxidative stress, in Neurodegenerative Diseases 1995: Molecular and Cellular Mechanisms and Therapeutic Advances—XVth Washington International Symposium, Washington, DC ( Fiskum, G., ed.), Plenum, New York, p. 136.

    Google Scholar 

  137. Ramassamy, C., Girbe, R, Christen, Y., and Cosentin, J. (1995) Peroxidation of synaptosomes alters the dopamine uptake complex but spares the exocytotic release of dopamine. Neurodegeneration 4 (2), 155–160.

    Article  PubMed  CAS  Google Scholar 

  138. Drukarch, B., Schepens, H. T. W. J., Langeveld, C. H., and Stoof, J. C. (1996) The vesicular storage properties of the nigro-striatal dopaminergic projection are involved in its high sensitivity to reactive oxygen species, in Neurodegenerative Diseases 1995: Molecular and Cellular Mechanisms and Therapeutic Advances, XVth Washington International Symposium, Washington, DC ( Fiskum, G., ed.), Plenum, New York, p. 67.

    Google Scholar 

  139. Stern-Bach, Y., Keen, J. N., Bejerano, M., Steiner-Mordoch, S., Wallach, M., Findlay, J. B. C., and Schuldiner, S. (1992) Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 89, 9730–9733.

    Article  PubMed  CAS  Google Scholar 

  140. Vaccari, A., Del Zompo, M., Melis, F., Gessa, G. L., and Rossetti, Z. L. (1991) Interaction of 1-methyl-4-phenylpyridinium ion and tyramine with a site putatively involved in the striatal vesicular release of dopamine. Br. J. Pharmacol. 104, 573–574.

    Article  PubMed  CAS  Google Scholar 

  141. Schuldiner, S., Steiner-Mordoch, S., Yelin, R., Wall, S. C., and Rudnick, G. (1993) Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters. Mol. Pharmacol. 44, 1227–1231.

    PubMed  CAS  Google Scholar 

  142. Lesch, K. P., Heils, A., and Riederer, P. (1996) The role of neurotransporters in excitotoxicity, neuronal cell death, and other neurodegenerative processes. J. Mol. Med. 74, 365–378.

    Article  PubMed  CAS  Google Scholar 

  143. Liu, Y., Roghani, A., and Edwards, R. H. (1992) Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 89, 9074–9078.

    Article  PubMed  CAS  Google Scholar 

  144. Sundstrom, E. and Jonsson, G. (1985) Pharmacologoical interferance with the toxic action of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on central catecholamine neurons in the mouse. Eur. J. Pharmacol. 110, 293–299.

    Article  PubMed  CAS  Google Scholar 

  145. Pifl, C., Hornykiewicz, O., Giros, B., and Caron, M. G. (1996) Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. J. Pharmacol. Exp. Ther. 277 (3), 1437–1443.

    PubMed  CAS  Google Scholar 

  146. Mavridis, M., Degryse, A.-D., Lategan, A. J., Marien, M. R., and Colpaert, E. C. (1991) Effects of locus coeruleus lesions on Parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: A possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 41, 507–523.

    Article  PubMed  CAS  Google Scholar 

  147. Marien, M., Briley, M., and Colpaert, F. (1993) Noradrenaline depletion exacerbates MPTP-induced striatal dopamine loss in mice. Eur. J. Pharmacol. 236, 487–489.

    Article  PubMed  CAS  Google Scholar 

  148. Bing, G., Zhang, Y., Watanabe, Y., McEwen, B. S., and Stone, E. A. (1994) Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res. 668, 261–265.

    Article  PubMed  CAS  Google Scholar 

  149. Fornai, F., Alessandri, M. G., Fascetti, E, Vaglini, E, and Corsini, G. U. (1995) Clonidine suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced reductions of striatal dopamine and tyrosine hydroxylase activity in mice. J. Neurochem. 65, 704–709.

    Article  PubMed  CAS  Google Scholar 

  150. Chiueh, C. C. (1988) Dopamine in the extrapyramidal motor function: A study based upon the MPTP-induced primate model of parkinsonism. Ann. NY Acad. Sci. 515, 226–238.

    Article  PubMed  CAS  Google Scholar 

  151. Miyake, H. and Chiueh, C. C. (1989) Effects of MPP+ on the release of serotonin and 5-hydroxyindoleacetic acid from rat striatum in vivo. Eur. J. Pharmacol. 166, 49–55.

    Article  PubMed  CAS  Google Scholar 

  152. Pérez-Otaho, I., Herrero, M. T., Oset, C., de Ceballos, M. L., Luquin, M. R., Obeso, J. A., and Del R’o, J. (1991) Extensive loss of brain dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Res. 567, 127–132.

    Article  Google Scholar 

  153. Mitra, N., Mohanakumar, K. P., and Ganguly, D. K. (1992) Dissociation of serotoninergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine in mice. Brain Res. Bull. 28, 355–364.

    Article  PubMed  CAS  Google Scholar 

  154. Soubrie, P., Reisine, T. D., and Glowinski, J. (1984) Functional aspects of serotonin transmission in the basal ganglia: a review and in vivo approach using the push-pull cannula technique. J. Neurosci. 13, 605–625.

    Article  CAS  Google Scholar 

  155. Benloucif, S. and Galloway, M. P. (1991) Facilitation of dopamine release in vivo by serotonin agonists: pharmacological characterization. Eur. J. Pharmacol. 200, 1–8.

    Article  PubMed  CAS  Google Scholar 

  156. Bonhomme, N., de Deuwaerdere, P., Le Moal, M., and Spampinato, U. (1995) Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rats. Neuropharmacology 34, 269–279.

    Article  PubMed  CAS  Google Scholar 

  157. Andrews, D. W., Patrick, R. L., and Burchas, J. (1978) The effects of 5-hydroxytryptophan and 5-hydroxytryptamine on dopamine synthesis and release in rat brain striatal synaptosomes. J. Neurochem. 30, 465–470.

    Article  PubMed  CAS  Google Scholar 

  158. de Deuwaerdere, R, Bonhomme, N., Lucas, G., Le Moal, M., and Spampinato, U. (1996) Serotonin enhances striatal dopamine outflow in vivo through dopamine uptake sites. J. Neurochem. 66, 210–215.

    Article  Google Scholar 

  159. Melamed, E., Pikarski, E., Goldberg, A., Rosenthal, J., Uzzan, A., and Conforti, N. (1986) Effect of serotonergic, corticostriatal and kainic acid lesions on the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Brain Res. 399, 178–180.

    Article  PubMed  CAS  Google Scholar 

  160. Melamed, E., Rosenthal, J., Cohen, O., Globus, M., and Uzzan, A. (1985) Dopamine but not norepinephrine or serotonin uptake inhibitors protect mice against neurotoxicity of MPTP. Eur. J. Pharmacol. 116, 179–181.

    Article  PubMed  CAS  Google Scholar 

  161. Gaspar, P., Febvret, A., and Colombo, J. (1993) Serotonergic sprouting in primate MTP-induced hemiparkinsonism. Exp. Brain Res. 96, 100–106.

    PubMed  CAS  Google Scholar 

  162. Bus, J. S. and Gibson, J. E. (1984) Paraquat: model for oxidant-initiated toxicity. Environ. Health Perspect. 55, 37–46.

    Article  PubMed  CAS  Google Scholar 

  163. Frank, D. M., Arora, P. K., Blumer, J. L., and Sayre, L. M. (1987) Model study on the bioreduction of paraquat, MPP+, and analogs. Evidence against a “redox cycling” mechanism in MPTP neurotoxicity. Biochem. Biophys. Res. Commun. 147, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  164. Linkous, C. A., Schaich, K. M., Forman, A., and Borg, D. C. (1988) An electrochemical study of the neurotoxin 1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine and its oxidation products. Bioelectrochem. Bioenerget. 19, 477–490.

    Article  CAS  Google Scholar 

  165. Di Monte, D. A., Sandy, M. S., Ekstrom, G., and Smith, M. T. (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem. Biophys. Res. Commun. 137, 303–309.

    Article  PubMed  Google Scholar 

  166. Ekstrom, G., Di Monte, D. A., Sandy, M. S., and Smith, M. T. (1987) Comparative toxicity and antioxidant activity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its moanamine oxidase B-generated metabolites in isolated hepatocytes and liver microsomes. Arch. Biochem. Biophys. 255, 14–18.

    Article  PubMed  CAS  Google Scholar 

  167. Santiago, M., Rollema, H., De Vries, J. B., and Westerink, B. H. C. (1991) Acute effects of intranigral application of MPP+ on nigral and bilateral striatal release of dopamine simultaneously recorded by microdialysis. Brain Res. 538, 226–230.

    Article  PubMed  CAS  Google Scholar 

  168. Matsubara, K., Idzu, T., Kobayashi, Y., Gonda, T., Okunishi, H., and Kimura, K. (1996) Differences in dopamine efflux induced by MPP+ and b-carbolinium in the striatum of conscious rats. Eur. J. Pharmacol. 315, 145–151.

    Article  PubMed  CAS  Google Scholar 

  169. Spina, M. B. and Cohen, G. (1989) Dopamine turnover and glutathione oxidation: Implications for Parkinson disease. Proc. Natl. Acad. Sci. USA 86, 1398–1400.

    Article  PubMed  CAS  Google Scholar 

  170. Werner, R. and Cohen, G. (1991) Intramitochondrial formation of oxidized glutathione during the oxidation of benzylamine by monoamine oxidase. FEBS Lett. 280 (1), 44–46.

    Article  PubMed  CAS  Google Scholar 

  171. Chiueh, C. C., Miyake, H., and Peng, M.-T. (1993) Role of dopamine, autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism, in Advances in Neurology, vol. 60, Parkinson’s Disease: From Basic Research to Treatment. Proceedings of the 10th International Symposium on Parkinson’s Disease ( Narabayashi, H., Nagatsu, T., Yanagisawa, N., and Mizuno, Y., eds.), Raven, New York, pp. 251–258.

    Google Scholar 

  172. Irwin, I. and Langston, J. W. (1995) Endogenous toxins as potential etiologic agents in Parkinson’s disease, in Etiology of Parkinson’s Disease (Ellenberg, J. H., Koller, W. C., and Langston, J. W., eds.), Marcel Dekker, New York, pp. 153–201.

    Google Scholar 

  173. Barbeau, A., Poirier, J., Dallaire, L., Rucinska, E., Buu, N. T., and Donaldson, J. (1986) Studies on MPTP, MPP+ and paraquat in frogs and in vitro, in MPTP: A Neurotoxin Producing A Parkinsonian Syndrome ( Markey, S. P., Castagnoli, N., Jr., Trevor, A. J., and Kopin, I. J., eds.), Academic, Orlando, FL, pp. 85–103.

    Google Scholar 

  174. Tse, D. C. S., McCreery, R., and Adams, R. N. (1976) Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19 (1), 37–40.

    Article  PubMed  CAS  Google Scholar 

  175. Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., and Gutknecht, W. E (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    PubMed  CAS  Google Scholar 

  176. Hastings, T. G., Lewis, D. A., and Zigmond, M. J. (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. USA 93, 1956–1961.

    Article  PubMed  CAS  Google Scholar 

  177. Hornykiewicz, 0. (1974) The mechanisms of action of L-dopa in Parkinson’s disease. Life Sci. 15, 1249–1259.

    Google Scholar 

  178. Hefti, F., Melamed, E., Bhawan, J., and Wurtman, R. J. (1981) Long-term administration of L-dopa does not damage dopaminergic neurons in the mouse. Neurology 31, 1194–1195.

    Google Scholar 

  179. Perry, T. L., Yong, V. W., Ito, M., Foulks, J. G., Wall, R. A., Godin, D. V., and Clavier, R. M. (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-dopa and carbidopa chronically. J. Neurochem. 43, 990–993.

    Article  PubMed  CAS  Google Scholar 

  180. Tetrud, J. W. and Langston, J. W. (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245, 519–522.

    Article  PubMed  CAS  Google Scholar 

  181. Parkinson Study Group (1989) Effect of deprenyl on the progression of disabililty in early Parkinson’s disease. N. Engl. J. Med. 321, 1364–1371.

    Google Scholar 

  182. Myllyla, V. V., Sotaniemi, K. A., Vuorinen, J. A., and Heinonen, E. H. (1992) Selegiline as initial treatment in de novo parkinsonian patients. Neurology 42, 339–343.

    Article  PubMed  CAS  Google Scholar 

  183. Lichter, D., Kurlan, R., Miller, C., and Shoulson, I. (1988) Does pergolide slow the progression of Parkinson’s disease? A 7-year follow-up study [Abstract]. Neurology 38, 122.

    Article  Google Scholar 

  184. Zimmerman, T. and Sage, J. I. (1989) Long-term pergolide treatment and progression of Parkinson’s disease [Abstract]. Neurology 39, 200.

    Google Scholar 

  185. Zimmerman, T. and Sage, J. I. (1991) Comparison of combination pergolide and levodopa to levodopa alone after 63 months of treatment. Clin. Neuropharm. 14, 165–169.

    Article  CAS  Google Scholar 

  186. Knoll, J. (1988) Extension of life span of rats by long-term (-) deprenyl treatment. Mt. Sinai J. Med. 55 (1), 67–74.

    PubMed  CAS  Google Scholar 

  187. Felten, D. L., Felten, S. Y., Fuller, R. W., Romano, T. D., Smalstig, E. B., Wong, D. T., and Clemens, J. A. (1992) Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged-Fischer-344 rats. Neurobiol. Aging 13, 339–351.

    Article  PubMed  CAS  Google Scholar 

  188. Felten, D. L., Felten, S. Y., Steece-Collier, K., Date, I., and Clemens, J. A. (1992) Age-related decline in the dopaminergic nigrostriatal system: The oxidative hypothesis and protective strategies. Ann. Neurol. 32 Suppl., S133 - S136.

    Google Scholar 

  189. Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G. P., Hebenstreit, G., and Youdim, M. B. H. (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm. 74, 199–205.

    Article  PubMed  CAS  Google Scholar 

  190. Sofic, E., Paulus, W., Jellinger, K. A., Riederer, P., and Youdim, M. B. H. (1991) Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J. Neurochem. 56, 978–982.

    Article  PubMed  CAS  Google Scholar 

  191. Halliwell, B. and Gutteridge, J. M. C. (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89–193.

    Article  PubMed  CAS  Google Scholar 

  192. Mochizuki, H., Imai, H., Endo, K., Yokomizo, K., Murata, Y., Hattori, N., and Mizuno, Y. (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci. Lett. 168, 251–253.

    Article  PubMed  CAS  Google Scholar 

  193. Mash, D. C., Pablo, J., Buck, B. E., Sanchez-Ramos, J. R., and Weiner, W. J. (1991) Distribution and number of transferrin receptors in Parkinson’s disease and in MPTPtreated mice. Exp. Neurol. 114, 73–81.

    Article  PubMed  CAS  Google Scholar 

  194. Poirier, J., Donaldson, J., and Barbeau, A. (1985) The specific vulnerability of the substantia nigra to MPTP is related to the presence of transition metals. Biochem. Biophys. Res. Commun. 128, 25–33.

    Article  PubMed  CAS  Google Scholar 

  195. Di Monte, D. A., Schipper, H. M., Hetts, S., and Langston, J. W. (1995) Iron-mediated bioactivation of MPTP in glial cultures. Glia 15, 203–206.

    Article  PubMed  Google Scholar 

  196. Jenner, P., Dexter, D. T., Schapira, A. H. V., and Marsden, C. D. (1990) Free radical involvement and altered iron metabolism as a cause of Parkison’s disease, in The Assessment of Therapy of Parkinsonism ( Marsden, C. D. and Fahn, S., eds.), Parthenon, New Jersey, pp. 17–30.

    Google Scholar 

  197. Earle, K. M. (1968) Studies on Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J. Neuropathol. Exp. Neurol. 27 (1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  198. Dexter, D. T., Carter, C. J., Wells, R R., Agid, E J., Agid, Y., Lees, A. J., Jenner, P., and Marsden, C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  199. Hirsch, E. C., Brandel, J.-P., Galle, P., Agid, F. J., and Agid, Y. (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An x-ray microanalysis. J. Neurochem. 56, 446–451.

    Article  PubMed  CAS  Google Scholar 

  200. Schipper, H. M. (1991) Gomori-positive astrocytes: biological properties and implications for neurologic and neuroendocrine disorders. Glia 4, 365–377.

    Article  PubMed  CAS  Google Scholar 

  201. Dexter, D. T., Wells, F. R., Agid, F. J., Agid, Y., Lees, A. J., Jenner, P., and Marsden, C. D. (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2, 1219–1220.

    Article  PubMed  CAS  Google Scholar 

  202. Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K. A., and Youdim, M. B. H. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J. Neurochem. 52, 515–520.

    Article  PubMed  CAS  Google Scholar 

  203. Ryvlin, P., Broussolle, E., Piollet, H., Viallet, F., Khalfallah, Y., and Chazon, G. (1995) Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch. Neurol. 52 (6), 583–588.

    Article  PubMed  CAS  Google Scholar 

  204. Aisen, P. (1992) Entry of iron into cells: a new role for the transferrin receptor in modulating iron release from transferrin. Ann. Neurol. 32, s62 - s68.

    Article  PubMed  CAS  Google Scholar 

  205. Faucheux, B. A., Herrero, M. T., Villares, J., Levy, R., Javoy-Agid, E, Obeso, J. A., Hauw, J. J., Agid, Y., and Hirsch, E. C. (1995) Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res. 691, 115–124.

    Article  PubMed  CAS  Google Scholar 

  206. Connor, J. R., Snyder, B. S., Arosio, P., Loeffler, D. A., and LeWitt, P. A. (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem. 65, 717–724.

    Article  PubMed  CAS  Google Scholar 

  207. Leveugle, B., Faucheux, B. A., Bouras, C., Nillesse, N., Spik, G., Hirsch, E. C., Agid, Y., and Hof, P. R. (1996) Cellular distribution of the iron-binding protein lactotransferring in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol. 91, 566–572.

    Article  PubMed  CAS  Google Scholar 

  208. Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., Nguyen, H., Brickman, C. M., and LeWitt, P. A. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J. Neurochem. 65, 710–716.

    Article  PubMed  CAS  Google Scholar 

  209. Hill, J. M. (1989) Comments on “Putative biological mechanisms of the effect of iron deficiency on brain chemistry and behavior.” Am. J. Clin. Nutr. 50, 616–617.

    Google Scholar 

  210. Di Monte, D. A., Chan, P., and Sandy, M. S. (1992) Glutathione in Parkinson’s disease: A link between oxidative stress and mitochondrial damage. Ann. Neurol. 32 Suppl., S 111 — S115.

    Google Scholar 

  211. Starke, P. E. and Farber, J. L. (1985) Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss reaction. J. Biol. Chem. 260, 10,099–10, 104.

    Google Scholar 

  212. Rossetti, Z. L., Sotgiu, A., Sharp, D. E., Hadjiconstantinou, M., and Neff, N. H. (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem. Pharmacol. 37(23) 4573–4574.

    Google Scholar 

  213. Wu, R.-M., Chiueh, C. C., Pert, A., and Murphy, D. L. (1993) Apparent antioxidant effect of 1-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur. J. Pharmacol. 243, 241–247.

    Article  PubMed  CAS  Google Scholar 

  214. Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., and Minakami, S. (1990) 1-Methyl4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170, 1049–1055.

    Google Scholar 

  215. Cleeter, M. W. J., Cooper, J. M., and Schapira, A. H. V. (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: Evidence for free radical involvement. J. Neurochem. 58, 786–789.

    Article  PubMed  CAS  Google Scholar 

  216. Poirier, J. and Barbeau, A. (1985) A catalyst function for MPTP in superoxide formation. Biochem. Biophys. Res. Commun. 131 (3), 1284–1289.

    Article  PubMed  CAS  Google Scholar 

  217. Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C. J., and Cadet, J. L. (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  218. Rojas, P. and Rios, C. (1993) Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharmacol Toxicol. 72, 364–368.

    Article  PubMed  CAS  Google Scholar 

  219. Desole, M. S., Miele, M., Esposito, G., Fresu, L. G., Migheli, R., Zangani, D., Sircana, S., Grella, G., and Miele, E. (1995) Neuronal antioxidant system and MPTP-induced oxidative stress in the striatum and brain stem of the rat. Pharmacol. Biochem. Behay. 51 (4), 581–592.

    Article  CAS  Google Scholar 

  220. Desole, M. S., Esposito, G., Fresu, L., Migheli, R., Sircana, S., Delogu, R., Miele, M., and Miele, E. (1996) Further investigation of allopurinol effects of MPTP-induced oxidative stress in the striatum and brain stem of the rat. Pharmacol. Biochem. Behay. 54 (2), 377–383.

    Article  CAS  Google Scholar 

  221. Marttila, R. J., Lorentz, H., and Rinne, U. K. (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J. Neurol. Sci. 86, 321–331.

    Article  PubMed  CAS  Google Scholar 

  222. Hirsch, E. C., Graybiel, A. M., and Agid, Y. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348.

    Article  PubMed  CAS  Google Scholar 

  223. Ceballos, I., Lafon, M., Javoy-agid, F., et al. (1990) Superoxide dismutase and Parkinson’s disease. Lancet 335, 1035–1036.

    Article  PubMed  CAS  Google Scholar 

  224. Kish, S. J., Morito, C., and Hornykiewicz, O. (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci. Lett. 58, 343–346.

    Article  PubMed  CAS  Google Scholar 

  225. Perry, T. L., Godin, D. V., and Hansen, S. (1982) Parkinson’s disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.

    Article  PubMed  CAS  Google Scholar 

  226. Perry, T. L., Yong, V. W., Clavier, R. M., Jones, K., Wright, J. M., Foulks, J. G., and Wall, R. A. (1985) Partial protection from the dopaminergic neurotoxin N-methyl-4phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neurosci. Lett. 60, 109–114.

    Google Scholar 

  227. Saggu, H., Cooksey, J., Dexter, D. T., Wells, E. R., Lees, A. J., Jenner, P., and Marsden, C. D. (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53, 692–697.

    Article  PubMed  CAS  Google Scholar 

  228. Poirier, J. Dea, D., Baccichet, A., and Thiffault, C. (1994) Superoxide dismutase expression in Parkinson’s disease. Ann. NY Acad. Sci. 738 116–120.

    Google Scholar 

  229. Parboosingh, J. S., Rousseau, M., Rogan, F., Amit, Z., Chertkow, H., Johnson, W. G., Manganaro, E, Schipper, H. N., Curran, T. J., Stoessl, A. J., and Rouleau, G. A. (1995) Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson’s disease. Arch. Neurol. 52, 1160–1163.

    Google Scholar 

  230. Poirier, J. and Thiffault, C. (1993) Are free radicals involved in the pathogenesis of idiopathic Parkinson’s disease? Eux Neurol. 33 (Suppl 1), 38–43.

    Google Scholar 

  231. Perry, T. L. and Yong, V. W. (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra. Neurosci. Lett. 67, 269–274.

    Article  PubMed  CAS  Google Scholar 

  232. Sershen, H., Reith, M. E. A., Hashim, A., and Lajtha, A. (1985) Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity by the antioxidant ascorbic acid. Neuropharmacology 24 (12), 1257–1259.

    Article  PubMed  CAS  Google Scholar 

  233. Wagner, G. C., Jarvis, M. F., and Carelli, R. M. (1985) Ascorbic acid reduces the dopamine depletion induced by MPTP. Neuropharmacology 24 (12), 1261–1262.

    Article  PubMed  CAS  Google Scholar 

  234. Martinovits, G., Melamed, E., Cohen, O., Rosenthal, J., and Uzzan, A. (1986) Systemic administration of antioxidants does not protect mice against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurosci. Lett. 69, 192–197.

    Article  PubMed  CAS  Google Scholar 

  235. Di Monte, D. A., Sandy, M. S., and Smith, M. T. (1987) Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP). Biochem. Biophys. Res. Commun. 148, 153–160.

    Article  PubMed  Google Scholar 

  236. Sershen, H., Debler, E. A., and Lajtha, A. (1987) Effect of ascorbic acid on the synaptosomal uptake of [3H1MPP+, [3H]dopamine, and [14C]GABA. J Neurosci Res, 17, 298–301.

    Article  PubMed  CAS  Google Scholar 

  237. Irwin, I., Wu, E. Y., DeLanney, L. E., Trevor, A. J., and Langston, J. W. (1987) The effect of diethyldithiocarbamate (DDC) on the biodisposition of MPTP: An explanation for enhanced neurotoxicity. Eur. J. of Pharmacol. 141, 209–217.

    Article  CAS  Google Scholar 

  238. Nicklas, W. J., Vyas, I., and Heikkila, R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci. 36, 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  239. Poirier, J. and Barbeau, A. (1985) 1-Methyl-4-phenyl-pyridinium-induced inhibition of nicotinamide adenosine dinucleotide cytochrome c reductase. Neurosci. Lett. 62, 7–11.

    Google Scholar 

  240. Ramsay, R. R., Krueger, M. J., Youngster, S. K., Gluck, M. R., Casida, J. E., and Singer, T. P. (1991) Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem. 56, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  241. Di Monte, D. A. (1991) Mitochondrial DNA and Parkinson’s disease. Neurology 41 Suppl. 2, 38–42.

    Google Scholar 

  242. Wu, E. Y., Smith, M. T., Bellomo, G., and Di Monte, D. A. (1990) Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes. Arch. Biochem. Biophys. 282 (2), 358–362.

    Article  PubMed  CAS  Google Scholar 

  243. Di Monte, D. A., Jewell, S. A., Ekstrom, G., Sandy, M. S., and Smith, M. T. (1986) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) cause rapid ATP depletion in isolated hepatocytes. Biochem. Biophys. Res. Commun. 137(1) 310–315.

    Google Scholar 

  244. Mizuno, Y., Suzuki, K., Sone, N., and Saitoh, T. (1987) Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Neurosci. Lett. 81, 204–208.

    Article  PubMed  CAS  Google Scholar 

  245. Kutty, R. K., Santostasi, G., Horng, J., and Krishna, G. (1991) MPTP-induced ATP depletion and cell death in neuroblastoma x glioma hybrid NG 108–15 cells: Protection by glucose and sensitization by tetraphenylborate. Toxicol. Appl. Pharmacol. 107, 377–388.

    Article  PubMed  CAS  Google Scholar 

  246. Di Monte, D. A., Sandy, M. S., Blank, L., and Smith, M. T. (1988) Fructose prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced ATP depletion and toxicity in isolated hepatocytes. Biochem. Biophys. Res. Commun. 153, 734–740.

    Article  PubMed  Google Scholar 

  247. Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W., and Di Monte, D. A. (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J. Neurochem. 57, 348–351.

    Article  PubMed  CAS  Google Scholar 

  248. Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W., and Di Monte, D. A. (1992) MPTP-induced ATP loss in mouse brain. Ann. NYAcad. Sci. 648, 306–308.

    Article  CAS  Google Scholar 

  249. Storey, E., Hyman, B. T., Jenkins, B., Brouillet, E., Miller, J. M., Rosen, B. R., and Beal, M. F. (1992) 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J. Neurochem. 58, 1975–1978.

    Google Scholar 

  250. Chan, P., Langston, J. W., Irwin, I., DeLanney, L. E., and Di Monte, D. A. (1993) 2-Deoxyglucose enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced ATP loss in the mouse brain. J. Neurochem. 61, 610–616.

    Google Scholar 

  251. Mizuno, Y., Saitoh, T., and Sone, N. (1987) Inhibition of mitochondrial alphaketoglutarate dehydrogenase by 1-methyl-4-phenylpyridinium ion. Biochem. Biophys. Res. Commun. 143 (3), 971–976.

    Article  PubMed  CAS  Google Scholar 

  252. Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S. (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann. Neurol. 35, 204–210.

    Article  PubMed  CAS  Google Scholar 

  253. Hornsby, P. J. (1989) Parkinson’s disease, vitamin E, and mitochondrial energy metabolism. Arch. Neurol. 46, 840–841.

    Google Scholar 

  254. Bindoff, L. A., Birch-Machin, M. A., Cartlidge, N. E. R, Parker, W. D., Jr., and Turnbull, D. M. (1991) Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J. Neurol. Sci. 104, 203–208.

    Article  PubMed  CAS  Google Scholar 

  255. Hattori, K., Tanaka, M., Sugiyama, S., Obayashi, T., Ito, T., Satake, T., Hanaki, Y., Asai, J., Nagano, M., and Ozawa, T. (1991) Age-dependent increase in deleted mitochondrial DNA in the human heart: Possible contributory factor to presbycardia. Am. Heart J. 121, 1735–1742.

    Article  PubMed  CAS  Google Scholar 

  256. Boyson, S. J. (1991) Parkinson’s disease and the electron transport chain. Ann. Neurol. 30, 330–331.

    Article  PubMed  CAS  Google Scholar 

  257. Parker, W. D., Jr. (1991) Preclinical detection of Parkinson’s disease: Biochemical approaches. Neurology 41 Suppl. 2, 34–36.

    Google Scholar 

  258. Krige, D., Carroll, M. T., Cooper, J. M., Marsden, C. D., and Schapira, A. H. V. (1992) Platelet mitochondrial function in Parkinson’s disease. Ann. Neurol. 32, 782–788.

    Article  PubMed  CAS  Google Scholar 

  259. Nakagawa-Hattori, Y., Yoshino, H., Kondo, T., Mizuno, Y., and Horai, S. (1992) Is Parkinson’s disease a mitochondrial disorder. J. Neurol. Sci. 107, 29–33.

    Article  PubMed  CAS  Google Scholar 

  260. Schapira, A. H. V., Mann, V. M., Cooper, J. M., Drige, D., Jenner, P. J., and Marsden, C. D. (1992) Mitochondrial function in Parkinson’s disease. Ann. Neruol. 32, 5116 — S124.

    Google Scholar 

  261. Shoffner, J. M. and Wallace, D. C. (1992) Heart disease and mitochondrial DNA mutations. Heart Dis. Stroke 1, 235–241.

    PubMed  CAS  Google Scholar 

  262. Wallace, D. C., Shoffner, J. M., Watts, R. L., Juncos, J. L., and Torroni, A. (1992) Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann. Neurol. 32, 113, 114.

    Google Scholar 

  263. Yoshino, H., Nakagawa-Hattori, Y., Kondo, T., and Mizuno, Y. (1992) Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 4, 27–34.

    Article  PubMed  CAS  Google Scholar 

  264. Benecke, R., Strümper, P., and Weiss, H. (1993) Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116, 1451–1463.

    Article  PubMed  Google Scholar 

  265. Cardellach, F., Marti, M. J., Fernandez-Sola, J., Marin, C., Hoek, J. B., Tolosa, E., and Urbano-Marquez, A. (1993) Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson’s disease. Neurology 43, 2258–2262.

    Article  PubMed  CAS  Google Scholar 

  266. Blin, O., Desnuelle, C., Rascol, O., Borg, M., Peyro Saint Paul, H., Azulay, J. P., Bill, F., Figarella, D., Coulom, F., Pellissier, J. F., Montastruc, J. L., Chatel, M., and Serra-trice, G. (1994) Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J. Neurol. Sci. 125, 95–101.

    Article  PubMed  CAS  Google Scholar 

  267. Haas, R. H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., and Shults, C. W. (1995) Low platelet mitochondrial Complex I and Complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol. 37, 714–722.

    Article  PubMed  CAS  Google Scholar 

  268. Burkhardt, C., Kelly, J. P., Lim, Y. H., Filley, C. M., and Parker, W. D., Jr. (1993) Neuroleptic medications inhibit complex I of the electron transport chain. Ann. Neurol. 33, 512–517.

    Article  PubMed  CAS  Google Scholar 

  269. Przedborski, S., Jackson-Lewis, V., Muthane, U., Jiang, H., Ferreira, M., Naini, A. B., and Fahn, S. (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann. Neurol. 34, 715–723.

    Article  PubMed  CAS  Google Scholar 

  270. Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hattori, K., Kondo, T., Mizuno, Y., and Ozawa, T. (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun. 170, 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  271. Lestienne, P., Nelson, J., Riederer, P., Jellinger, K. A., and Reichmann, H. (1990) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J. Neurochem. 55, 1810–1812.

    Article  PubMed  CAS  Google Scholar 

  272. Cortopassi, G. A. and Arnheim, N. (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18 (23), 6927–6933.

    Article  PubMed  CAS  Google Scholar 

  273. Ozawa, T., Tanaka, M., Ino, H., Ohno, K., Sano, T., Wada, Y., Yoneda, M., Tanno, Y., Miyatake, T., Tanaka, T., Itoyama, S., Ikebe, S., Hattori, N., and Mizuno, Y. (1991) Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson’s disease. Biochem. Biophys. Res. Commun. 176, 938–946.

    Google Scholar 

  274. Ikebe, S., Tanaka, M., and Ozawa, T. (1995) Point mutations of mitochondrial genome in Parkinson’s disease. Mol. Brain Res. 28, 281–295.

    Article  PubMed  CAS  Google Scholar 

  275. Lucking, C. B., Kosel, S., Mehraein, P., and Graeber, M. B. (1995) Absence of the mitochondria] A7237T mutation in Parkinson’s disease. Biochem. Biophys. Res. Commun. 211 (2), 700–704.

    Article  PubMed  CAS  Google Scholar 

  276. Swerdlow, R. H., Parks, J. K., Miller, S. W., Tuttle, J. B., Trimmer, P. A., Sheehan, J. P, Bennett, J. P., Jr., Davis, R. E., and Parker, W. D., Jr. (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40, 663–671.

    Article  PubMed  CAS  Google Scholar 

  277. Chien, K. R., Pfau, R. G., and Farber, J. L. (1979) Ischemic myocardial cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am. J. Pathol. 97, 505–530.

    PubMed  CAS  Google Scholar 

  278. Kass, G. E. N., Wright, J. M., Nicotera, P., and Orrenius, S. (1988) The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch. Biochem. Biophys. 260, 789–797.

    Article  PubMed  CAS  Google Scholar 

  279. Sun, C. J., Johannessen, J. N., Gessner, W., Namura, I., Singhaniyom, W., Brossi, A., and Chiueh, C. C. (1988) Neurotoxic damage to the nigrostriatal system in rats following intranigral administration of MPDP+ and MPP+. J. Neural Transm. 74, 75–86.

    Google Scholar 

  280. Cappelletti, G., Brambilla, E., Maci, R., and Camatini, M. (1991) N-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) induced cytoskeletal alterations on “Swiss 3T3” mouse fibroblasts. Neurosci. Lett. 129, 149–152.

    Article  PubMed  CAS  Google Scholar 

  281. Urani, C., Brambilla, E., Santagostino, A., and Camatini, M. (1994) 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) affects the actin cytoskeleton and calcium level of Swiss 3T3 mouse fibroblasts. Toxicology 91, 117–126.

    Google Scholar 

  282. Yamada, T., McGeer, P. L., Baimbridge, K. G., and McGeer, E. G. (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307.

    Article  PubMed  CAS  Google Scholar 

  283. German, D. C., Manaye, K. F., Sonsalla, P. K., and Brooks, B. A. (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced Parkinsonism: Sparing of calbindin-D28k-containing cells. Ann. NYAcad. Sci. 648, 42–62.

    Article  CAS  Google Scholar 

  284. Hirsch, E. C., Mouatt, A., Thomasset, M., Javoy-Agid, F., Agid, Y., and Graybiel, A. M. (1992) Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups of the human midbrain: normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1, 83–93.

    Google Scholar 

  285. Sonsalla, P. K., Nicklas, W. J., and Heikkila, R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243, 398–400.

    Article  PubMed  CAS  Google Scholar 

  286. Finnegan, K. T., Skratt, J. J., Irwin, I., and Langston, J. W. (1990) The N-methyl-Daspartate (NMDA) receptor antagonist, dextrorphan, prevents the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Neurosci. Lett. 105, 300–306.

    Article  Google Scholar 

  287. Whetsell, W. O., Jr. (1997) Current concepts of excitotoxicity. J. Neuropathol. Exp. Neurol. 55, 1–13.

    Article  Google Scholar 

  288. Sonsalla, P. K., Zeevalk, G. D., Manzino, L., Giovanni, A., and Nicklas, W. J. (1992) MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4phenylpyridinium in rats. J. Neurochem. 58, 1979–1982.

    Article  PubMed  CAS  Google Scholar 

  289. Carboni, S., Melis, F., Pani, L., Hadjiconstantinou, M., and Rossetti, Z. L. (1990) The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP+). Neurosci. Lett. 117, 129–133.

    Article  PubMed  CAS  Google Scholar 

  290. Turski, L., Bressler, K., Rettig, K.-J., Ls’ schmann, P.-A., and Wachtel, H. (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349, 414–418.

    Article  PubMed  CAS  Google Scholar 

  291. Zuddas, A., Vaglini, E, Fornai, F., Fascetti, E, and Corsini, G. U. (1991) MK-801 prevents MPTP-induced nigrostriatal neuronal death in monkeys and mice [Abstract]. Soc. Neurosci. 17 (1), 716.

    Google Scholar 

  292. Srivastava, R., Brouillet, E., Beal, M. F., Storey, E., and Hyman, B. T. (1993) Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: A stereological estimate of neuronal loss. Neurobiol. Aging 14, 295–301.

    Article  PubMed  CAS  Google Scholar 

  293. Tabatabaei, A., Perry, T. L., Hansen, S., and Krieger, C. (1992) Partial protective effect of MK-801 on MPTP-induced reduction of striatal dopamine in mice. Neurosci. Lett. 141, 192–194.

    Article  PubMed  CAS  Google Scholar 

  294. Brouillet, E. and Beal, M. E (1993) NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport 4, 387–390.

    Article  PubMed  CAS  Google Scholar 

  295. Sawada, H., Shimohama, S., Tamura, Y., Kawamura, T., Akaike, A., and Kimura, J. (1996) Methylphenylpyridinium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultured rat mesencephalon. J. Neurosci. Res. 43, 55–62.

    Article  PubMed  CAS  Google Scholar 

  296. Kupsch, A., Ls schmann, P.-A., Sauer, H., Arnold, G., Renner, P., Pufal, D., Burg, M., Wachtel, H., Ten Bruggencate, G., and Oertel, W. H. (1992) Do NMDA receptor antagonists protect against MPTP—toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res. 592, 74–83.

    Article  PubMed  CAS  Google Scholar 

  297. Michel, P. P. and Agid, Y. (1992) The glutamate antagonist, MK-801, does not prevent dopaminergic cell death induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures. Brain Res. 597, 233–240.

    Article  PubMed  CAS  Google Scholar 

  298. Finiels-Marlier, F., Marini, A. M., Williams, P., and Paul, S. M. (1993) The N-methyl-D-aspartate antagonist MK-801 fails to protect dopaminergic neurons from 1-methyl-4-phenylpyridinium toxicity in vitro. J. Neurochem. 60, 1968–1971.

    Article  PubMed  CAS  Google Scholar 

  299. Chan, P., Di Monte, D. A., and Langston, J. W. (1994) Effects of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) on levels of glutamate and aspartate in the mouse brain. Brain Res. 647, 249–254.

    Article  PubMed  CAS  Google Scholar 

  300. Chan, P., Langston, J. W., and Di Monte, D. A. (1993) MK-801 temporarily prevents MPTP-induced acute dopamine depletion and MPP+ elimination in the mouse striatum. J. Pharmacol. Exp. Ther. 267, 1515–1520.

    PubMed  CAS  Google Scholar 

  301. Clarke, P. B. S. and Reuben, M. (1995) Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. BE J. Pharmacol. 114, 315–322.

    Article  CAS  Google Scholar 

  302. Vaglini, F., Fascetti, F., Fornai, F., Maggio, R., and Corsini, G. U. (1994) (+)MK-801 prevents the DDC-induced enhancement of MPTP toxicity in mice. Brain Res. 668, 194–203.

    Google Scholar 

  303. Jarvis, M. F. and Wagner, G. C. (1985) Age-dependent effects of l-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 24, 581–583.

    Article  PubMed  CAS  Google Scholar 

  304. Irwin, I., Finnegan, K. T., DeLanney, L. E., Di Monte, D. A., and Langston, J. W. (1992) The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: A critical reassessment. Brain Res. 572, 224–231.

    Article  PubMed  CAS  Google Scholar 

  305. Date, I., Felten, D. L., and Felten, S. Y. (1990) Long-term effect of MPTP in the mouse brain in relation to aging: Neurochemical and immunocytochemical analysis. Brain Res. 519, 266–276.

    Article  PubMed  CAS  Google Scholar 

  306. Hornykiewicz, O. (1982) Imbalance of brain monoamines and clinical disorders, in Progress in Brain Research, vol. 55, Chemical Transmission in the Brain: The Role of Amines, Amino Acids and Peptides (Buijs, R. M., Pevet, P., and Swaab, D. F., eds.), Elsevier Biomedical, Amsterdam, pp. 419–429.

    Google Scholar 

  307. Benedetti, M. S. and Keane, P. E. (1980) Differential changes in monoamine oxidase A and B activity in the aging rat brain. J. Neurochem. 35, 1026–1032.

    Article  PubMed  CAS  Google Scholar 

  308. Langston, J. W., Irwin, I., and DeLanney, L. E. (1987) The biotransformation of MPTP and disposition of MPP+: The effects of aging. Life Sci. 40, 749–754.

    Article  PubMed  CAS  Google Scholar 

  309. Irwin, I., Delanney, L. E., and Langston, J. W. (1992) Studies in the C57BL/6 mouse, in Advances in Neurology, vol. 60, Parkinson’s Disease: From Basic Research to Treatment. Proceedings of the 10th International Symposium on Parkinson’s Disease (Narabayashi, H., Nagatsu, T., Yanagisawa, N., and Mizuno, Y., eds.), ( Raven, New York, pp. 197–206.

    Google Scholar 

  310. Irwin, I., DeLanney, L. E., McNeill, T. H., Chan, P., Forno, L. S., Murphy, G. M., Jr., Di Monte, D. A., Sandy, M. S., and Langston, J. W. (1994) Aging and the nigrostriatal dopamine system: a non-human primate study. Neurodegeneration 3, 251–265.

    PubMed  CAS  Google Scholar 

  311. Rose, S. P., Nomoto, M., Jackson, E. A., Gibb, W. R. G., Jaehnig, P., Jenner, P., and Marsden, C. D. (1993) Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur. J. Pharmacol. 230, 177–185.

    Google Scholar 

  312. Langston, J. W., Irwin, I., Forno, L. S., and DeLanney, L. E. (1987) Parkinson’s disease, aging, and MPTP: clinical and experimental observations, in Recent Developments in Parkinson’s Disease ( Fahn, S., Marsden, C. D., Goldstein, M., and Calne, D. B., eds.), MacMillan Healthcare Information, Florham Park, NJ, pp. 59–74.

    Google Scholar 

  313. Irwin, I. DeLanney, L. E., Chan, P., Sandy, M. S., Di Monte, D. A., and Langston, J. W. (1997) Nigrostriatal monoamine oxidase A and B in aging squirrel monkeys and C57BL/6 mice. Neurobiol. Aging in press.

    Google Scholar 

  314. Fowler, C. J., Wilberg, A., Oreland, L., Marcusson, J., and Winblad, B. (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J. Neural Transm. 49, 1–20.

    Article  PubMed  CAS  Google Scholar 

  315. Gottfries, C. G. (1987) Pharmacology of mental aging and dementia disorders. Clin. Neuropharm. 10 (4), 313–329.

    Article  CAS  Google Scholar 

  316. Gottfries, C. G. (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J. Neurosci. Res. 27, 541–547.

    Article  PubMed  CAS  Google Scholar 

  317. Robinson, D. S., Davis, J. M., Nies, A., Ravaris, C. L., and Sylwester, D. (1971) Relation of sex and aging to monoamine oxidase activity of human Brain plasma, and platelets. Arch. Gen. Psychiatry 24, 536–539.

    Article  PubMed  CAS  Google Scholar 

  318. Grote, S. S., Moses, S. G., Robins, E., Hudgens, R. W., and Croninger, A. B. (1974) A stuy of selected catecholamine metabolizing enzymes: a comparison of depressive suicides and alcoholic suicides with controls. J. Neurochem. 23, 791–802.

    Article  PubMed  CAS  Google Scholar 

  319. Shih, J. C. (1975) Multiple forms of monoamine oxidase and aging, in: Aging, vol. 1, ( Brody, H., Harman, D., and Ordy, J. M., eds.), Raven, New York, pp. 191–198.

    Google Scholar 

  320. Cote, L. J. and Kremzner, L. T. (1983) Biochemical changes in normal aging in human brain, in The Dementias ( Mayeux, R. and Rosen, W. G., eds.), Raven, New York, pp. 19–30.

    Google Scholar 

  321. Samorajski, T. and Rolsten, C. (1973) Age and regional differences in the chemical composition of brains of mice, monkeys and humans, in Progress in Brain Research, vol. 40, (Ford, D. H., eds.), Elsevier Science Publishing, Amsterdam, pp. 253–265.

    Google Scholar 

  322. Fowler, J. S., MacGregor, R. R., Wolf, A. P., Arnett, C. D., Dewey, S. L., Schlyer, D., Christman, D., Logan, J., Smith, M., Sachs, H., Aquilonius, S. M., Bjurling, P., Halldin, C., Hartvig, P., Leenders, K. L., Lundquist, H., Oreland, L., Stalnacke, C. G., and Langstrom, B. (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235, 481–485.

    Article  PubMed  CAS  Google Scholar 

  323. Fowler, J. S., Volkow, N. D., Wang, G. J., Pappas, N., Logan, J., MacGregor, R., Alex-off, D., Shea, C., Schlyer, D., Wolf, A. P., Warner, D., Zezulkova, I., and Cilento, R. (1996) Inhibition of monoamine oxidase in the brains of smokers. Nature 379, 733–736.

    Article  PubMed  CAS  Google Scholar 

  324. Ricaurte, G. A., DeLanney, L. E., Irwin, I. and Langston, J. W. (1987) Older dopaminergic neurons do not recover from the effects of MPTP. Neuropharmacology 26(1) 97–99.

    Google Scholar 

  325. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. 91, 10,771–10, 778.

    Google Scholar 

  326. Desai, V. G., Feuers, R. J., Hart, R. W., and Ali, S. F. (1996) MPP+-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of elctron transport. Brain Res. 715, 1–8.

    Article  PubMed  CAS  Google Scholar 

  327. Stuehr, D. J., Kwon, N. S., Nathan, C. F., and Griffith, O. W. (1991) Nw-hydroxy-Larginine is an intermedite in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem. 266, 6259–6263.

    Google Scholar 

  328. Marietta, M. A. (1993) Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268(17), 12,231–12, 234.

    Google Scholar 

  329. Bredt, D. S. and Snyder, S. H. (1990) Isolation ofnitric oxide synthetase, a calmodulinrequiring enzyme. Proc. Natl. Acad. Sci. USA 87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  330. Babbedge, R. C., Bland-Ward, P. A., Hart, S. L., and Moore, R. K. (1993) Inhibition of rat cerebellar nitric oxide synthase by 7-nitro indazole and related substituted indazoles. Br. J. Pharmacol. 110, 225–228.

    Article  PubMed  CAS  Google Scholar 

  331. Schulz, J. B., Matthews, R. T., Muqit, M. M. K., Browne, S. E., and Beal, M. F. (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTPinduced neurotoxicity in mice. J. Neurochem. 64, 936–939.

    Article  PubMed  CAS  Google Scholar 

  332. Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. (1996) Role of neuronal nitric oxide in 1-methy1–4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93, 4565–4571.

    Article  PubMed  CAS  Google Scholar 

  333. Hantraye, P., Brouillet, E., Ferrante, R. J., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. E (1996) inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Med. 2, 1017–1021.

    Google Scholar 

  334. Cassina, A. and Radi, R. (1996) Differential inhibitory action of nitric oxide and peroxynitrite onb mitochondrial electron transport. Arch. Biochem. Biophys. 328, 309–316.

    Article  PubMed  CAS  Google Scholar 

  335. Lizasoain, I., Moro, M. A., Knowles, R. G., Darley-Usmar, V., and Moncada, S. (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 314, 877–880.

    PubMed  CAS  Google Scholar 

  336. Stadler, J., Billiar, T. R., Curran, R. D., Stuehr, D. J., Ochoa, J. B., and Simmons, R. L. (1991) Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am. J. Physiol. 260, C910–0916.

    PubMed  CAS  Google Scholar 

  337. Radi, R., Rodriguez, M., Castro, L., and Telleri, R. (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308 (1), 89–95.

    Article  PubMed  CAS  Google Scholar 

  338. Huie, R. E. and Padmaja, S. (1993) The reaction of NO with superoxide. Free Radical Res. Commun. 18, 195–199.

    Article  CAS  Google Scholar 

  339. Castagnoli, K., Palmer, S., Anderson, A., Bueters, T., and Castagnoli, N., Jr. (1997) The neuronal nitric oxide synthase inhibitor 7-nitroindazole also inhibits the monoamine oxidase-B catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Chem. Res. Toxicol. 10, 364–368.

    Article  PubMed  CAS  Google Scholar 

  340. b. Di Monte, D. A., Royland, J. E., Anderson, A., Castagnoli, K., Castagnoli, N., Jr., and Langston, J. W. (1997) Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J. Neurochem. in press.

    Google Scholar 

  341. Oppenheim, R. W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci. 14, 453–501.

    Article  PubMed  CAS  Google Scholar 

  342. McDonald, H. R. and Lees, R. K. (1990) Programmed cell death of autoreactive thymocytes. Nature 343, 642–644.

    Article  Google Scholar 

  343. Mochizuki, H., Goto, K., Mori, H., and Mizuno, Y. (1996) Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137, 120–123.

    Article  PubMed  CAS  Google Scholar 

  344. Mochizuki, H., Nakamura, N., Nishi, K., and Mizuno, Y. (1994) Apoptosis is induced by 1-methyl-4-phenylpyridinium ion (MPP+) in ventral mesencephalic-striatal co-culture in rat. Neurosci. Lett. 170, 191–194.

    Article  PubMed  CAS  Google Scholar 

  345. Dipasquale, B., Marini, A. M., and Youle, R. J. (1991) Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem. Biophys. Res. Commun. 181, 1442–1448.

    Google Scholar 

  346. Jackson-Lewis, V., Jakowec, M. W., Burke, R. E., and Przedborski, S. (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257–269.

    Article  PubMed  CAS  Google Scholar 

  347. Janson, A. M. (1996) Neuronal cell death by apoptosis in vivo in the 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD). Soc. Neurosci. Abstracts 22, 721.

    Google Scholar 

  348. Mochizuki, H., Goto, K., Mori, H., and Mizuno, Y., (1996) Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137, 120–123.

    Article  PubMed  CAS  Google Scholar 

  349. Dragunow, M., Faull, L. M., Lawlor, P., Beilharz, E. J., Singleton, K., Walker, E. B., and Mee, E. (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum amd Alzheimer’s disease temporal lobe. Neuroreport 6, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  350. Levi-Montalci, R. (1987) The nerve growth factor 35 years later. Science 237, 1154–1162.

    Article  Google Scholar 

  351. Knusel, B., Michel, P. P., Schwaber, J. S., and Hefti, F. (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci. 10 (2), 558–570.

    PubMed  CAS  Google Scholar 

  352. Knusel, B., Winslow, W., Rosenthal, A., Burton., L. E., Seid, D. D., Nickolics, K., and Hefti, F. (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain derived neurotrophic factor but not neurotrophin-3. Proc. Natl. Acad. Sci. USA 88, 961–965.

    PubMed  CAS  Google Scholar 

  353. Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., and Lindsay, R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  354. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C. (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. J. Neurochem. 59, 99–106.

    Article  PubMed  CAS  Google Scholar 

  355. Garcia, E., Rios, C., and Sotelo, J. (1992) Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem. Res. 17, 979–982.

    Article  PubMed  CAS  Google Scholar 

  356. Glass, D. J. and Yancopoulos, G. D. (1993) The neurotrophins and their receptors. Trends Cell. Biol. 3, 262–268.

    Article  PubMed  CAS  Google Scholar 

  357. Beck, K. D., Knusel, B., and Hefti, F. (1993) The nature of the trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience 52 (4), 855–866.

    Article  PubMed  CAS  Google Scholar 

  358. Frim, D. M., Uhler, T. A., Galpern, W. R., Beal, M. F., Breakefield, X. O., and Isacson, O. (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl. Acad. Sci. USA 91, 5104–5108.

    Article  PubMed  CAS  Google Scholar 

  359. Tsukahara, T., Takeda, M., Shimohama, S., Ohara, O., and Hashimoto, N. (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induce parkinsonsim in monkeys. Neurosurgery 37 (4), 733–741.

    Article  PubMed  CAS  Google Scholar 

  360. Hyman, C., Juhasz, M., Jackson, C., Radziejewski, C., and Linsay, R. M. (1991) Effects of BDNF and NT-3 on dopaminergic and GABAergic neurons of the ventral mesencephalon. Soc. Neurosci. Abstracts 17, 908.

    Google Scholar 

  361. Hyman, C., Juhasz, M., Jackson, C., Wright, P., Ip, N. Y., and Lindsay, R. M. (1994) Overlapping and distinct actions of the neurotrophins, BDNF, NT-3, and NT-4/5, on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.

    PubMed  CAS  Google Scholar 

  362. Kirschner, P. B., Jenkins, B. G., Schulz, J. B., Finkelstein, S. P., Matthews, R. T., Rosen, B. R., and Beal, M. E (1996) NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res. 713, 178–185.

    Article  PubMed  CAS  Google Scholar 

  363. Jackson, G. R., Apffel, L., Werrbach-Perez, K., and Perez-Polo, J. R. (1990) Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J. Neurosci. Res. 25, 360–368.

    Article  PubMed  CAS  Google Scholar 

  364. Pan, Z. and Perez-Polo, J. R. (1993) Role of nerve growth factor in oxidant homeostasis: glutathione metabolism. J. Neurochem. 61, 1713–1721.

    Article  PubMed  CAS  Google Scholar 

  365. Nistico, G., Cirolo, M. R., Fishkin, K., Iannone, M., De Martino, A., and Rotilio, G. (1992) NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats. Free Radical Biol. Med. 12, 177–181.

    Article  CAS  Google Scholar 

  366. Hung, H. C. and Lee, E. H. Y. (1996) The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression. Mol. Brain Res. 41, 16–26.

    Article  CAS  Google Scholar 

  367. Ferrari, G., Minozzi, M. C., Toffano, G., Leon, A., and Skaper, S. D. (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev. Biol. 133, 140–147.

    Article  PubMed  CAS  Google Scholar 

  368. Mayer, E., Dunnett, S. B., Pellitteri, R., and Fawcett, J. W. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons I. Effects in vitro. Neuroscience 56, 379–388.

    Article  CAS  Google Scholar 

  369. Engele, J. and Bohn, M. C. (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J. Neurosci. 11, 3070–3078.

    PubMed  CAS  Google Scholar 

  370. Unsicker, K., Reichert-Preibsch, H., and Wewetzer, K. (1992) Stimulation of neuron-survival by basic FGF and CNTF is a direct effect and not mediated by non-neuronal cells: evidence from single cells cultures. Dev. Brain Res. 65, 285–288.

    Article  CAS  Google Scholar 

  371. Date, I., Notter, M. E. D., Felten, S. Y., and Felten, D. L. (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res. 526, 156–160.

    Article  PubMed  CAS  Google Scholar 

  372. Otto, D. and Unsicker, K. (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J. Neurosci. 10, 1912–1921.

    PubMed  CAS  Google Scholar 

  373. Farris, T. W., DiStefano, L., and Schneider, J. S. (1994) Intranigral infusion of CNTF, but not bFGF, EGF or TGFbl, restores striatal DOPAC but not dopamine levels in MPTP-treated mice. Soc. Neurosci. Abstracts 20, 1646.

    Google Scholar 

  374. Jin, B. K. and Iacovitti, L. (1996) Dopamine differentiation factors increase striatal dopaminergic function on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mice. J. Neurosci. Res. 43, 331–334.

    Article  PubMed  CAS  Google Scholar 

  375. Du, X. Y., Stull, N. D., and Iacovitti, L. (1994) Novel expression of the tyrosine hydroxylase gene requires both acidic fibroblast growth factor and an activator. J. Neurosci. 14, 7688–7694.

    PubMed  CAS  Google Scholar 

  376. Hoffer, B. J., Hoffmann, A., Bowenkamp, K., Huettl, R, Hudson, J., Martin, D., Lin, L. F. H., and Gerhardt, G. A. (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111.

    Article  PubMed  CAS  Google Scholar 

  377. Tomac, A., Lindqvist, E., Lin, L. F. H., Ogren, S. O., Young, D., Hoffer, B. J., and Olson, L. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.

    Article  PubMed  CAS  Google Scholar 

  378. Hou, J. G. G., Lin, L. F. H., and Mytilineou, C. (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in itro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J. Neurochem. 66, 74–82.

    Google Scholar 

  379. Zeng, B. Y., Jenner, P., and Marsden, C. D. (1996) Altered motor function and graft survival produced by basic fibroblast growth factor in rats with 6-OHDA lesions and fetal ventral mesencephalic grafts are associated with glial proliferation. Exp. Neurol. 139, 214–226.

    Article  PubMed  CAS  Google Scholar 

  380. Wang, J., Bankiewicz, K. S., Plunkett, R. J., and Oldfield, E. H. (1994) Intrastriatal implantation of interleukin-1 Reduction of parkinsonism in rats by enhancing neuronal sprouting from residual dopaminergic neurons in the ventral tegmental area of the midbrain. J. Neurosurg. 80, 484–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Royland, J.E., Langston, J.W. (1998). MPTP. In: Kostrzewa, R.M. (eds) Highly Selective Neurotoxins. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-477-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-477-1_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-047-2

  • Online ISBN: 978-1-59259-477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics