Skip to main content

Neurotoxiciy of NMDA Receptor Antagonists

  • Chapter
Highly Selective Neurotoxins

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Glutamate, the major excitatory neurotransmitter in the mammalian nervous system, is also suggested to be the primary mediator of neurodegeneration in several neuropathological conditions ranging from acute stroke and epilepsy to chronic disorders, e.g., Alzheimer’s disease and Huntington’s chorea (1–3). These neurotoxic effects of glutamate are thought to be mediated via the activation of N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors. In the presence of excessive amounts of glutamate, the NMDA channel remains open and allows extracellular calcium to enter the cells (4). Increased intracellular free calcium in turn triggers a broad spectrum of metabolic and ionic events, which, if uncontrolled, result in irreversible neuronal injury and death (5). Therefore, it is important to develop strategies to block the excessive activation of NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothman, S. M. and Olney, J. W. (1986) Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann. Neurol. 19, 105–111.

    Article  PubMed  CAS  Google Scholar 

  2. Olney, J. W. (1989) Excitatory amino acids and neuropsychiatric disorders. Biol. Psychiatr. 26, 505–525.

    Article  CAS  Google Scholar 

  3. Lipton, S. A. and Rosenberg, P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.

    Article  PubMed  CAS  Google Scholar 

  4. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  5. Verity, M. A. (1992) Cat+ dependent processes as mediators of neurotoxicity. Neurotoxicol. 13, 139–148.

    CAS  Google Scholar 

  6. Wieloch, T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methylD-aspartate antagonist. Science 230, 681–683.

    Article  PubMed  CAS  Google Scholar 

  7. Weiss, J., Goldberg, M. P., and Choi, D. W. (1986) Ketamine protects cultured neocortical neurons from hypoxic injury. Brain Res. 380, 186–190.

    Article  PubMed  CAS  Google Scholar 

  8. Hayes, R. L., Chapouris, R., Lyeth, B. G., Jenkins, L., Robinson, S. E., Young, H. F., and Marmarou, A. (1987) Pretreatment with phencyclidine (PCP) attenuates long-term behavioral deficits following concussive brain injury in the rat. Soc. Neurosci. Abstracts 13, 1254.

    Google Scholar 

  9. Choi, D. W., Koh, J. Y., and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  10. Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24, 543–551.

    Article  PubMed  CAS  Google Scholar 

  11. Clifford, D. B., Olney, J. W., Benz, A. M., Fuller, T. A., and Zorumski, C. F. (1990) Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia 31, 382–390.

    Article  PubMed  CAS  Google Scholar 

  12. Olney, J. W., Labruyere, J., and Price, M. T. (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244, 1360–1362.

    Article  PubMed  CAS  Google Scholar 

  13. Javitt, D. C. and Zukin, S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatr. 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  14. Ellison, G. (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 20, 250–267.

    Article  PubMed  CAS  Google Scholar 

  15. Olney, J. W. and Farber, N. B. (1995) Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatr. 52, 998–1007.

    Article  PubMed  CAS  Google Scholar 

  16. Koek, W., Woods, J. H., and Winger, G. D. (1988) MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J. Pharmacol. Exp. Ther. 245, 969–974.

    Google Scholar 

  17. Balster, R. L. and Chait, L. D. (1978) The behavioral effects of phencyclidine in animals. NIDA Res. Monogr. 21, 53–65.

    PubMed  CAS  Google Scholar 

  18. Contreras, P. C., Contreras, M. L., O’Donohue, and Lair, C. C. (1988) Bicohemical and behavioral effects of sigma and PCP ligands. Synapse 2, 240–243.

    CAS  Google Scholar 

  19. Tricklebank, M. D., Singh, L., Oles, R. J., Preston, C., and Iversen, S. D. (1989) The behavioral effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur. J. Pharmacol. 167, 127–135.

    Article  PubMed  CAS  Google Scholar 

  20. Willets, J., Balster, R. L., and Leander, J. D. (1990) The behavioral pharmacology of NMDA receptor antagonists. Trends Pharmacol. Sci. 11, 423–428.

    Article  Google Scholar 

  21. Koek, W., Kleer, E., Mudar, P. J., and Woods, J. H. (1986) Phencyclidine-like catalepsy induced by the excitatory amino acid antagonist DL-2-amino-5-phosphonovalerate. Behan Brain Res. 19, 257–259.

    Article  CAS  Google Scholar 

  22. Bennett, D. A., Bernard, P. S., Amrick, C. L., Wilson, D. E., Liebman, J. M., and Hutchison, A. J. (1989) Behavioral pharmacological profile of CGS 19755, a competitive antagonist at N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther. 250, 454–460.

    PubMed  CAS  Google Scholar 

  23. Tricklebank, M. D., Singh, L., Oles, R. J., Wong, E. H., and Iversen, S. D. (1987) A role for receptors of N-methyl-D-aspartic acid in the discriminative stimulus properties of phencyclidine. Eur. J. Pharmacol. 141, 497–501.

    Google Scholar 

  24. Willets, J. and Balster, R. L. (1988) Phencyclidine-like discriminative stimulus properties of MK-801 in rats. Eur. J. Pharmacol. 146, 167–169.

    Article  Google Scholar 

  25. Brady, K. T., Balster, R. L., and May, E. L. (1982) Stereoisomers of N-allylnormetazocine: phencyclidine-like behavioral effects in squirrel monkeys and rats. Science 215, 178–180.

    Article  PubMed  CAS  Google Scholar 

  26. Shannon, H. E. (1983) Pharmacological evaluation of N-allylnormetazocine (SKF 10047) on the basis of its discriminative stimulus properties in the rat. J. Pharmacol. Exp. Ther. 225, 144–152.

    PubMed  CAS  Google Scholar 

  27. Handelmann, G. E., Contreras, P. C., and O’Donahue, T. L. (1987) Selective memory impairment by phencyclidine in rats. Eur. J. Pharmacol. 140, 69–73.

    Article  PubMed  CAS  Google Scholar 

  28. Moershbaecher, J. M. and Thompson, D. M. (1983) Differential effects of prototype opioid agonists on the acquisition of conditional discriminations in monkeys. J. Pharmacol. Exp. Ther. 226, 738–748.

    Google Scholar 

  29. Thompson, D. M. and Moershbaecher, J. M. (1984) Phencyclidine in combination with D-amphetamine: differential effects on acquisition and performance of response chains in monkeys. Pharm. Biochem. Behay. 20, 619–627.

    Article  CAS  Google Scholar 

  30. Thompson, D. M., Winsauer, P. J., and Mastropaolo, J. (1987) Effects of phencyclidine, ketamine and MDMA on complex operant behavior in monkeys. Pharm. Biochem. Behay. 26, 401–405.

    Article  CAS  Google Scholar 

  31. Wozniak, D. E, Brosnan-Watters, G., Nardi, A., McEwen, M., Corso, T. D., Olney, J. W., and Fix, A. S. (1996) MK-801 neurotoxicity in male mice-histologic effects and chronic impairment in spatial learning. Brain Res. 707, 165–179.

    Article  PubMed  CAS  Google Scholar 

  32. Schuman, E. M. and Madison, D. V. (1991) A requirement for the intracellular messenger nitric oxide in long term potentiation. Science 254, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  33. Stringer, J. L., Greenfield, L. J., Hackett, J. T., and Guyenet, P. G. (1983) Blockade of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro. Brain Res. 280, 127–138.

    Article  PubMed  CAS  Google Scholar 

  34. Osawa, Y. and Davila, J. C. (1993) Phencyclidine, a psychotomimetic agent and drug of abuse, is a suicide inhibitor of brain nitric oxide synthase. Biochem. Biophys. Res. Commun. 194, 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  35. Balster, R. L. and Woolverton, W. L. (1980) Continuous access phencyclidine self-administration by rhesus monkeys leading to physical dependence. Psychopharmacology 70, 5–10.

    Article  PubMed  CAS  Google Scholar 

  36. Marquis, K. L. and Moreton, J. E. (1987) Animal models of intravenous phencyclidine self-administration. Pharm. Biochem. Behay. 27, 385–389.

    Google Scholar 

  37. Corbett, D. (1989) Possible abuse potential of the NMDA antagonist MK-801. Behavioral Brain Res. 34, 239–246.

    Article  CAS  Google Scholar 

  38. Herberg, L. J. and Roce, I. C. (1989) The effect of MK-801 and other antagonists of NMDAtype glutamate receptors on brain stimulation reward. Psychopharmacology 99, 87–90.

    Article  PubMed  CAS  Google Scholar 

  39. Geifenstein, F. E., Devault, M., Yoshitake, J., and Gajewski, J. E. (1958) A study of 1-arylcyclohexyl-amine for anesthesia. Anesth. Analg. 37, 283.

    Google Scholar 

  40. Burns, R. S. (1981) The effects of phencyclidine in man: a review, in PCP (Phencyclidine): Historical and Current Perspectives ( Domino, E. F., ed.), NPP Books, Ann Arbor, MI, pp. 449–464.

    Google Scholar 

  41. Allen, R. M. and Young, S. J. (1978) Phencyclidine-induced psychosis. Am. J. Psychiatr. 135, 1081–1084.

    PubMed  CAS  Google Scholar 

  42. Erard, R., Luisada, P. V. and Peele, R. (1980) The PCP psychosis: prolonged intoxication or drug-precipitated functional illness? J. Psychiatr. Drugs 12, 235–251.

    CAS  Google Scholar 

  43. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B. Jr., and Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatr. 51, 199–214.

    Article  PubMed  CAS  Google Scholar 

  44. Dalgarno, P. J. and Shewan, D. (1996) Illicit use of ketamine in Scotland. J. Psychol. 28, 191–199.

    CAS  Google Scholar 

  45. Wong, E. H. F., Kemp, J. A., Priestley, T., Knight, A. R., Woodruff, G. N., and Iverson, L. L. The anticonvulsant MK-801 is a potent N-methyl-n-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83, 7104–7108.

    Google Scholar 

  46. Kornhuber, J., Weller, M., Schoppmeyer, K., and Reiderer, P. (1994) Amantidine and memantine are NMDA receptor antagonists with neuroprotective properties. J. Neural Transm. 43 (Suppl.), 91–104.

    Google Scholar 

  47. Lodge, D. and Anis, N. A. (1982) Effects of phencyclidine on excitatory amino acid activation of spinal interneurons in the cat. Eur. J. Pharmacol. 77, 203–204.

    Article  PubMed  CAS  Google Scholar 

  48. Vincent, J. P., Kartalovski, B., Geneste, P., Kamenka, J. M., and Lazdunski, M. (1979) Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc. Natl. Acad. Sci. USA 6, 4678–4682.

    Article  Google Scholar 

  49. Zukin, S. R. and Zukin, R. S. (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proc. Natl. Acad. Sci. USA 76, 5372–5376.

    Article  PubMed  CAS  Google Scholar 

  50. Lodge, D. and Johnson, K. M. (1990) Noncompetitive excitatory amino acid receptor antagonists. Trends Pharamacol. Sci. 11, 81–86.

    Article  CAS  Google Scholar 

  51. Sonders, M. S., Keana, J. F., and Weber, E. (1988) Phencyclidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. Trends Neurosci. 1, 37–40.

    Article  Google Scholar 

  52. Akunne, H. C., Reid, A. A., Thurkauf, A., Jacobson, A. E., deCosta, B. R., Rice, K. C., Heyes, M. P., and Rothman, R. B. (1991) 3[H]-1-[1-(2-thienyl)cyclohexyl] piperidine labels two high affinity binding sites associated with biogenic amine reuptake complex. Synapse 8, 289–300.

    Google Scholar 

  53. Albuquerque, E. X., Aguayo, L. G., Warnick, J. E., Weinstein, H., Glick, S. D., Maayani, S., Ickowicz, R. K., and Blaustein, M. P. (1981) The behavioral effects of phencyclidines may be due to their blockade of potassium channels Proc. Natl. Acad. Sci. USA 78, 7792–7796.

    Article  PubMed  CAS  Google Scholar 

  54. Johnson, K. M. and Jones, S. M. (1990) Neuropharmacology of phencyclidine: basic mechanisms and therapeutic potential. Ann. Rev. Pharmacol. Toxicol. 30, 707–750.

    Article  CAS  Google Scholar 

  55. Schoepfer, R., Monyer, H., Sommer, B., Wisden, W., Sprengel, R., Kuner, T., Lomeli, H., Herb, A., Kohler, M., and Burnashev, N. (1994) Molecular biology of glutamate receptors. Prog. Neurobiol. 42, 353–357.

    Article  PubMed  CAS  Google Scholar 

  56. Reynolds, I. J. (1990) Modulation of NMDA receptor responsiveness by neurotransmitters, drugs and chemical modification. Life Sci. 47, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  57. Bigge, C. F. (1993) Structural requirements for the development of potent N-methyl-Daspartic acid (NMDA) receptor antagonists. Biochem. Pharmacol. 45, 1547–1561.

    Article  PubMed  CAS  Google Scholar 

  58. Rajdev, S. and Reynolds, I. J. (1994) Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neurons in vitro: effect of chemical ischemia. Neuroscience 62, 667–679.

    Article  PubMed  CAS  Google Scholar 

  59. Reynolds, I. J. and Rajdev, S. (1994) Calcium, magnesium and glutamate receptors, in Direct and Allosteric Control of Glutamate Receptors. ( Palfreyman, M. G., Reynolds, I. J., and Skolnick, P., eds.), CRC, Boca Raton, FL, pp. 39–56.

    Google Scholar 

  60. Honey, C. R., Miljkovic, Z., and MacDonald, J. F. (1985) Ketamine and phencyclidine cause a voltage-dependent block of responses to L-aspartic acid. Neurosci. Lett. 61, 135–139.

    Article  PubMed  CAS  Google Scholar 

  61. MacDonald, J. F., Miljkovic, Z., and Pennefather, P. (1987) Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J. Neurophysiol. 58, 251–266.

    PubMed  CAS  Google Scholar 

  62. Maragos, W. E, Penney, J. B. and Young, A. B. (1988) Anatomic correlation of NMDA and 3H-TCP-labeled receptors in rat brain. J. Neurosci. 8, 493–501.

    PubMed  CAS  Google Scholar 

  63. Maayani, S., Weinstein, H., Ben-Zvi, N., Cohen, S., and Sokolovsky, M. (1974) Psychotomimetics as anticholinergic agents. I. 1-Cyclohexylpiperidine derivatives: anti-cholinesterase activity and antagonistic activity to acetylcholine. Biochem. Pharmacol. 23, 1263–1281.

    Google Scholar 

  64. Murray, T. F. (1983) A comparison of phencyclidine with other psychoactive drugs on cholinergic dynamics in the rat brain, in Phencyclidine and Related Arylcyclohexylamines. ( Kamenka, J. M., Domino, E. F., and Geneste, P., eds.), NPP Books, Ann Arbor, MI, pp. 547–567.

    Google Scholar 

  65. Castellani, S., Adams, P. M, and Giannini, A. J. (1982) Physostigmine treatment of acute phencyclidine intoxication. J. Clin. Psychiatr. 43, 10–11.

    Google Scholar 

  66. Albuquerque, E. X., Tsai, M. C., Aronstam, R. S., Eldefrawi, A. T., and Eldefrawi, M. E. (1980) Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor. Mol. Pharmacol. 18, 167–178.

    PubMed  CAS  Google Scholar 

  67. Greenberg, B. D. and Segal, D. S. (1985) Acute and chronic behavioral interactions between phencyclidine (PCP) and amphetamine: evidence for a dopaminergic role in some PCP-induced behaviors. Pharm. Biochem. Behay. 23, 99–105.

    Article  CAS  Google Scholar 

  68. Ary, T. E. and Komiskey, H. L. (1982) Phencyclidine-induced release of 3H-dopamine from chopped striatal tissue. Neuropharmacology 21, 639–645.

    Article  PubMed  CAS  Google Scholar 

  69. Bowyer, J. E., Spuhler, K. P., and Weiner, N. (1984) Effects of phencyclidine, amphetamine and related compounds on dopamine release from and uptake into striatal synaptosomes. J. Pharmacol. Exp. Ther. 229, 671–680.

    PubMed  CAS  Google Scholar 

  70. Snell, L. D., Yi, S. J., and Johnson, K. M. (1988) Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur. J. Pharmacol. 145, 223–226.

    Article  PubMed  CAS  Google Scholar 

  71. French, E. D., Ferkany, J., Abreu, M., and Levenson, S. (1991) Effects of competitive NMDA antagonists on midbrain dopamine neurons: an electrophysiological and behavioral comparison to phencyclidine. Neuropharmacology 30, 1039–1046.

    Google Scholar 

  72. Deutch, A. Y., Tam, S. Y., Freeman, A. S., Bowers, M. B. Jr., and Roth, R. H. (1987) Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting patterns to striatal response. Eur. J. Pharmacol. 134, 257–264.

    Article  PubMed  CAS  Google Scholar 

  73. Liljequist, S., Ossowska, K., Grabowskaanden, M., and Anden, N. E. (1991) Effect of the NMDA receptor antagonist, MK-801, on locomotor activity and on the metabolism of dopamine in various brain areas of mice. Eur. J. Pharmacol. 195, 55–61.

    Article  PubMed  CAS  Google Scholar 

  74. Healy, D. J. and Meadorwoodruff, J. H. (1996) Dopamine receptor gene expression in hippocampus is differentially regulated by the NMDA receptor antagonist MK-801. Eur. J. Pharmacol. 306, 257–264.

    Article  PubMed  CAS  Google Scholar 

  75. Olds, M. E. (1996) Dopaminergic basis for the facilitation of brain stimulation reward by the NMDA receptor antagonist, MK-801. Eur. J. Pharmacol. 306, 23–32.

    Article  PubMed  CAS  Google Scholar 

  76. Koek, W., Colpaert, E C., Woods, J. H., and Kamenka, J. M. (1989) The phencyclidine (PCP) analog N11-(2-benzo(B)thiophenyl) cyclohexyl]piperidine shares cocaine-like but not other characteristic behavioral effects with PCP, ketamine and MK-801. J. Pharmacol. Exp. Ther. 250, 1019–1027.

    Google Scholar 

  77. Lacey, M. G. and Henderson, G. (1986) Actions of phencyclidine on rat locus coeruleus neurons in vitro. Neuroscience 17, 485–494.

    Article  PubMed  CAS  Google Scholar 

  78. Hitzemann, R. J., Loh, H. H., and Domino, E. F. (1973) Effect of phencyclidine on the accumulation of 14C-catecholamines formed from 14C-tyrosine. Arch. Int. Pharmacodyn. 202, 252–258.

    PubMed  CAS  Google Scholar 

  79. Palmer, M. P., Bickford, P. C., Hoffer, B. J., and Freedman, R. (1983) Electrophysiological evidence for presynaptic actions of phencyclidine on noradrenergic transmission in rat cerebellum and hippocampus, in Phencyclidine and Related Arylcyclohexylamines: Present and Future Applications. ( Kamenka, J. M., Domino, E. F. Geneste, P., eds.), NPP Books, Ann Arbor, MI, pp. 443–470.

    Google Scholar 

  80. Hass, D. A. and Harper, D. G. (1992) Ketamine: a review of its pharmacological properties and use in ambulatory anesthesia. Anesth. Prog. 39, 61–68.

    Google Scholar 

  81. Vaupel, D. B. (1983) Naltrexone fails to antagonize the sigma effects of PCP and SKF 10,047 in the dog. Eur. J. Pharmacol. 92, 269–274.

    Article  PubMed  CAS  Google Scholar 

  82. Largent, B. L., Gundlach, A. L., and Snyder, S. H. (1986) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H1SKF 10,047, (+)43H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J. Pharmacol. Exp. Ther. 238, 739–748.

    PubMed  CAS  Google Scholar 

  83. Wong, E. H. and Nielsen, M. (1989) The N-methyl-D-aspartate receptor channel complex and the sigma site have different target sizes. Eur. J. Pharmacol. 172, 493–496.

    Article  PubMed  CAS  Google Scholar 

  84. Fidecka, S. (1987) Opioid mechanisms of some behavioral effects of ketamine. Pol. J. Pharmacol. Pharm. 39, 353–360.

    PubMed  CAS  Google Scholar 

  85. Seiler, N. and Grauffel, C. (1992) Antagonism of phencyclidine-induced hyperactivity in mice by elevated brain GABA concentrations. Pharm. Biochem. Behay. 41, 603–606.

    Article  CAS  Google Scholar 

  86. Myslobodsky, M. S., Ackerman, V., Golovchinsky, V., and Engel, J., Jr. (1979) Ketamine-induced rotation: interaction with GABA-transaminase inhibitors and picrotoxin. Pharm. Biochem. Behay. 11, 483–486.

    Article  CAS  Google Scholar 

  87. Wood, J. D. and Hert, L. (1990) Ketamine-induced changes in GABA system of mouse brain. Neuropharmacology 19, 805–808.

    Article  Google Scholar 

  88. Nabeshima, T., Yamaguchi, K., Hiramatsu, M., Amano, M., Furukawa, H., and Kameyama, T. (1984) Serotonergic involvement in phencyclidine-induced behaviors. Pharm. Biochem. Behay. 21, 401–408.

    Article  CAS  Google Scholar 

  89. Nabeshima, T., Hiramatsu, M., Furukawa, H., and Kameyama, T. (1985) Effects of acute and chronic administrations of phencyclidine on the levels of serotonin and 5-hydroxyindoleacetic acid in discrete brain areas of mouse. Life Sci. 36, 939–946.

    Article  PubMed  CAS  Google Scholar 

  90. Nabeshima, T., Noda, Y., Yamaguchi, K., Ishikawa, K., Furukawa, H., and Kameyama, T. (1985) Acute and chronic phencyclidine administration changes serotonin receptors in rat brain. Eur. J. Pharmacol. 109, 129, 130.

    Google Scholar 

  91. Whitton, P. S., Biggs, C. S., Pearce, B. R., and Fowler, L. J. (1992) MK-801 increases extracellular 5-hydroxytryptamine in rat hippocampus and striatum in vivo. J. Neurochem. 58, 1573–1575.

    Article  PubMed  CAS  Google Scholar 

  92. Schmidt, C. J. and Fadayel, G. M. (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J. Pharmacol. Exp. Ther. 277, 1541–1549.

    PubMed  CAS  Google Scholar 

  93. Longuemare, M. C., Keung, E. C., Chun, S., Sharp, F. R., Chan, P. H., and Swanson, R. A. (1996) MK-801 reduces uptake and stimulates efflux of excitatory amino acids via membrane depolarization. Am. J. Physiol. 39, C1398 — C1404.

    Google Scholar 

  94. Tourneur, Y., Romey, G., and Lazdunski, M. (1982) Phencyclidine blockade of sodium and potassium channels in neuroblastoma cells. Brain Res. 245, 154–158.

    Article  PubMed  CAS  Google Scholar 

  95. Bolger, G. T., Rafferty, M. F., and Skolnick, P. (1986) Enhancement of brain calcium antagonist binding by phencyclidine and related compounds. Pharm. Biochem. Behay. 24, 417–423.

    Article  CAS  Google Scholar 

  96. Misra, A. L., Pontani, R. B., and Bartolomeo, J. (1979) Persistence of phencyclidine (PCP) and metabolites in brain and adipose tissue and implications for long-lasting behavioral effects. Res. Commun. Chem. Pathol. Pharmacol. 24, 431–445.

    PubMed  CAS  Google Scholar 

  97. Wallace, M. C., McCormack, A., and McCulloch, J. (1989) 3H-MK-01: an in vivo ligand for glutamate mechanisms in the normal and ischemic brain. J. Cereb. Blood Flow Metab. 9, S745.

    Google Scholar 

  98. Fix, A. S., Wozniak, D. F., Truex, L. L., McEwen, M., Miller, J. P., and Olney, J. W. (1995) Quantitative analysis of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulate/retrosplenial cortex. Brain Res. 696, 194–204.

    Article  PubMed  CAS  Google Scholar 

  99. Gao, X. M., Shirakawa, O., Du, R, and Tamminga, C. A. (1993) Delayed regional metabolic actions of phencyclidine. Eur. J. Pharmacol. 241, 7–15.

    Article  PubMed  CAS  Google Scholar 

  100. Ellison, G. (1994) Competitive and non-competitive NMDA antagonists induce similar limbic degeneration. Neuroreport 5, 2688–2692.

    Article  PubMed  CAS  Google Scholar 

  101. Ellison, G. and Switzer, R. C. (1993) Dissimilar patterns of degeneration in brain following four different addictive stimulants. Neuroreport 5, 17–20.

    Article  PubMed  CAS  Google Scholar 

  102. Corso, T., Neafsy, E. L., and Collins, M. (1992) Ethanol-induced degeneration of dentate gyrus, entorhinal cortex and other olfactory related areas in rats, effects of co-administration of MK-801, DNQX or nimodipine. Soc. Neurosci. Abstracts 18, 540.

    Google Scholar 

  103. Horvath, Z. and Buzsaki, G. (1993) MK-801-induced neuronal damage in normal rats. Soc. Neurosci. Abstracts 19, 354.

    Google Scholar 

  104. Mattson, M. P., Rychlik, B., and Cheng, B. (1992) Degenerative and axon outgrowth-altering effects of phencyclidine in human fetal cerebral cortical cells. Neuropharmacol. 31, 279–291.

    Article  CAS  Google Scholar 

  105. Olney, J. W., Labruyere, J., Wang, G., Wozniak, D. F, Price, M. T., and Sesma, M. A. (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  106. Farber, N. B., Price, M. T., Labruyere, J., Nemnich, J., St. Peter, H., Wozniak, D. F, and Olney, J. W. (1993) Antipsychotic drugs block phencyclidine receptor-mediated neurotoxicity. Biol. Psychiatr. 34, 119–121.

    CAS  Google Scholar 

  107. Farber, N. B., Foster, J., Duhan, N. L., and Olney, J. W. (1995) Alpha 2-adrenergic agonists prevent MK-801 neurotoxicity. Neuropsychopharmacology 12, 347–349.

    Article  PubMed  CAS  Google Scholar 

  108. Bowen, W. D., Kirschner, B. N., Newman, A. H., and Rice, K. C. (1988) Sigma receptors negatively modulate agonist-stimulated phosphoinositide metabolism in rat brain. Eur. J. Pharmacol. 149, 399, 400.

    Google Scholar 

  109. Sharp, J. W., Petersen, D. L., and Langford, M. T. (1995) DNQX inhibits phencyclidine (PCP) and ketamine induction of the hsp70 heat shock gene in the rat cingulate and retrosplenial cortex. Brain Res. 687, 114–124.

    Article  PubMed  CAS  Google Scholar 

  110. Duval, D., Roome, N., Gauffeny, C., Nowicki, J. P., and Scatton, B. (1992) SL 82.0715, an NMDA antagonist acting at the polyamine site, does not induce neurotoxic effects on rat cortical neurons. Neurosci. Lett. 137, 193–197.

    Google Scholar 

  111. Auer, R. N. (1994) Assessing structural changes in the brain to evaluate neurotoxicological effects of NMDA receptor antagonists. Psychopharmacol. Bull. 30, 585–591.

    PubMed  CAS  Google Scholar 

  112. Auer, R. N. (1996) Effect of age and sex on N-methyl-D-aspartate antagonist-induced neuronal necrosis in rats. Stroke 27, 743–746.

    Article  PubMed  CAS  Google Scholar 

  113. Honack, D. and Loscher, W. (1993) Sex differences in NMDA receptor mediated responses in rats. Brain Res. 620, 167–170.

    Article  PubMed  CAS  Google Scholar 

  114. Nabeshima, T., Yamaguchi, K., Yamada, K., Hiramatsu, M., Kuwabara, Y., Furukawa, H., and Kameyama, T. (1984) Sex-dependent differences in the pharmacological actions and pharmacokinetics of phencyclidine in rats. Eur. J. Pharmacol. 97, 217–227.

    Google Scholar 

  115. Smith, S. S. (1989) Estrogen administration increases neuronal response to excitatory amino acids as a long term effect. Brain Res. 503, 354–357.

    Article  PubMed  CAS  Google Scholar 

  116. Weiland, N. G. (1992) Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CAl region of the hippocampus. Endocrinology 131, 622–628.

    Google Scholar 

  117. Massa, S. M., Swanson, R. A., and Sharp, F. R. (1996) The stress gene response in brain. Cerebrovas. Brain Metabol. Rev. 8, 95–158.

    CAS  Google Scholar 

  118. Sharp, F. R., Jasper, R, Hall, J., Noble, L., and Sagar, S. M. (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann. Neurol. 30, 801–809.

    Google Scholar 

  119. Sharp, F. R., Butman, M., Wang, S., Koistinaho, J., Graham, S. H., Sagar, S. M., Noble, L., Berger, P., and Longo, F. M. (1992) Haloperidol prevents induction of the hsp70 heat shock gene in neurons injured by phencyclidine (PCP), MK801, and ketamine. J. Neurosci. Res. 33, 605–616.

    Google Scholar 

  120. Sharp, R R., Butman, M., Koistinaho, J., Aardalen, K., Nakki, R., Massa, S. M., Swanson, R. A., and Sagar, S. M. (1994) Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience 62, 1079–1092.

    Article  PubMed  CAS  Google Scholar 

  121. Nakki, R, Koistinaho, J., Sharp, F. R., and Sagar, S. M. (1995) Cerebellar toxicity of phencyclidine. J. Neurosci. 15, 2097–2108.

    Google Scholar 

  122. Popoli, P. Pezola, A., Benedetti, M., and Scotti-de-Caroles, A. (1992) Verapamil and flunarizine inhibit phencyclidine-induce defects: an EEG and behavioral study in rats. Neuropharmacology 31 1185–1191.

    Google Scholar 

  123. Popoli, P., Pezola, A., and Scotti-de-Caroles, A. (1993) Influence of non L-type calcium channel antagonists on phencyclidine-induced effects in rats. Life Sci. 52, 2055–2061.

    Article  PubMed  CAS  Google Scholar 

  124. Eddleston, M. and Mucke, L. (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54, 15–36.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas, W. E. (1992) Brain macrophages: evaluation of microglia and their function. Brain Res. Rev. 17, 61–74.

    Article  PubMed  CAS  Google Scholar 

  126. Fix, A. S., Ross, J. F., Stitzel, S. R., and Switzer, R. C. (1996) Integrated evaluation of central nervous system lesions: stains for neurons, astrocytes, and microglia reveal the spatial and temporal features of MK-801-induced neuronal necrosis in the rat cerebral cortex. Toxicol. Pathol. 24, 291–304.

    Google Scholar 

  127. Nakki, R., Nickolenko, J., Chang, J., Sagar, S. M., and Sharp, E. R. (1996) Haloperidol prevents ketamine-and phencyclidine-induced HSP70 protein expression but not microglial activation. Exp. Neurol. 137, 234–241.

    Article  PubMed  CAS  Google Scholar 

  128. Hughes, P. and Dragunow, M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47, 133–178.

    PubMed  CAS  Google Scholar 

  129. Sagar, S. M., Sharp, F. R., and Curran, T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331.

    Google Scholar 

  130. Nakki, R., Sharp, F. R., Sagar, S. M., and Honkaniemi, J. (1996) Effects of phencyclidine on immediate early gene expression in the brain. J. Neurosci. Res. 45, 13–27.

    Article  PubMed  CAS  Google Scholar 

  131. Nakki, R., Sharp, F. R., and Sagar, S. M. (1996) Fos expression in the brainstem and cerebellum following phencyclidine and MK801. J. Neurosci. Res. 43, 203–212.

    Article  PubMed  CAS  Google Scholar 

  132. Gao, X. M., Hoshomoto, T., and Tamminga, C. A. (1994) Time dependent changes in expression of immediate early genes in rat brain after phencyclidine. Soc. Neurosci. Abstracts 20, 732.

    Google Scholar 

  133. Gass, P., Herdegen, T., Bravo, R., and Kiessling, M. (1993) Induction and suppression of immediate early genes in specific rat brain regions by the non-competitive Nmethyl-D-aspartate receptor antagonist MK-801. Neuroscience 53, 749–758.

    Article  PubMed  CAS  Google Scholar 

  134. Hughes, P., Dragunow, M., Beilharz, E., Lawlor, P., and Gluckman, P. (1993) MK801 induces immediate-early gene proteins and BDNF mRNA in rat cerebrocortical neurons. Neuroreport 4, 183–186.

    Article  PubMed  CAS  Google Scholar 

  135. McCulloch, J. and Iversen, L. L. (1991) Autoradiographic assessment of the effects of Nmethyl-D-aspartate (NMDA) receptor antagonists in vivo. Neurochem. Res. 16, 951–963.

    Article  PubMed  CAS  Google Scholar 

  136. Nehls, D. G., Kurumaji, A., Park, C. K., and McCulloch, J. (1988) Differential effects of competitive and non-competitive N-methyl-D-aspartate antagonists on glucose use in the limbic system. Neurosci. Lett. 91, 204–210.

    Google Scholar 

  137. Kurumaji, A. and McCulloch, J. (1989) Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetized with halothane. J. Cereb. Blood Flow Metabol. 9, 786–794.

    Article  CAS  Google Scholar 

  138. Meibach, R. C., Glick, S. D., Cox, R., and Maayani, S. (1979) Localization of phencyclidine-induced changes in brain energy metabolism. Nature 282, 625–626.

    Article  PubMed  CAS  Google Scholar 

  139. Crosby, G., Crane, A. M., and Skoloff, L. (1982) Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56, 437–443.

    Article  PubMed  CAS  Google Scholar 

  140. Tamminga, C. A., Thaker, G. K., Alphs, L. D., Buchanan, R. W., Kirkpatrick, B., Carpenter, W. T., and Chase, T. N. (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatr. 49, 522–530

    Article  PubMed  CAS  Google Scholar 

  141. Kurumaji, A., Nehls, D. G., Park, C. K., and McCulloch, J. (1989) Effects of NMDA antagonists MK-801 and CPP, upon local cerebral glucose use. Brain Res. 496, 268–284.

    Article  PubMed  CAS  Google Scholar 

  142. Hargreaves, R. J., Rigby, M., Smith, D., and Hill, R. G. (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br. J. Pharmacol. 110, 36–42.

    Article  PubMed  CAS  Google Scholar 

  143. Sayed, Y. and Garrison, J. M. (1983) The dopamine hypothesis of schizophrenia and the antagonistic action of neuroleptic drugs—a review. Psychopharmacol. Bull. 19, 283–288.

    PubMed  CAS  Google Scholar 

  144. Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186.

    Article  PubMed  CAS  Google Scholar 

  145. Angrist, B. Sathananthan, G., Wilk, S., and Gershon, S. (1974) Amphetamine psychosis: behavioral and biochemical aspects. J. Psychiatr. Res. 1113–23.

    Google Scholar 

  146. Kay, S. R., Fiszbein, A., and Opler, L. A. (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276.

    Article  PubMed  CAS  Google Scholar 

  147. Itil, T., Keskiner, A., Kiremitci, N., and Holden, J. M. (1967) Effect of phencyclidine in chronic schizophrenics. Can. Psychiatr. Assoc. J. 12, 209–212.

    PubMed  CAS  Google Scholar 

  148. Kornetsky, C. (1976) Hyporesponsivity of chronic schizophrenic patients to dextroamphetamine. Arch. Gen. Psychiatr. 33, 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  149. Ogawa, S., Okuyama, S., Araki, H., Nakazato, A., and Otomo, S. (1994) A rat model of phencyclidine psychosis. Life Sci. 55, 1605–1610.

    Article  PubMed  CAS  Google Scholar 

  150. Noda, Y., Yamada, K., Furukawa, H., and Nabeshima, T. (1995) Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br. J. Pharmacol. 116, 2531–2537.

    Article  PubMed  CAS  Google Scholar 

  151. Banerjee, S. P., Zuck, L. G., Yablonsky-Alter, E., and Lidsky, T. I. (1995) Glutamate agonist activity: implications for antipsychotic drug action and schizophrenia. Neuroreport 6, 2500–2504.

    Article  PubMed  CAS  Google Scholar 

  152. Lahti, A. C., Holcomb, H. H., Medoff, D. R., and Tamminga, C. A. (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6, 869–872.

    Article  PubMed  CAS  Google Scholar 

  153. Tamminga, C. A., Thaker, G. K., Buchanan, R., Kirkpatrick, B., Alphs, L. D., Chase, T. N., and Carpenter, W. T. (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatr. 49, 522–530.

    Google Scholar 

  154. Squires, R. F., Lajtha, A., Saederup, E., and Palkovits, M. (1993) Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses? Neurochem. Res. 18, 219–223.

    Article  PubMed  CAS  Google Scholar 

  155. Welch, M. J. and Correa, G. A. (1980) PCP intoxication in young children and infants. Clin. Pediatr. 19, 511–514.

    Article  Google Scholar 

  156. Quirion, R., DiMaggio, D. A., French, E. D., Contreras, P. C., Shiloach, J., Pert, C. B., Everist, H., Pert, A., and O’Donohue T. L. (1984) Evidence for an endogenous peptide ligand for the phencyclidine receptor. Peptides 5, 967–973.

    Article  PubMed  CAS  Google Scholar 

  157. Contreras, P. C., DiMaggio, D. A., and O’Donohue, T. L. (1987) An endogenous ligand for the sigma opioid binding site. Synapse 1, 57–61.

    Article  PubMed  CAS  Google Scholar 

  158. Zukin, S. R., Zukin, R. S., Vale, W., Rivier, J., Nichtenhauser, R., Snell, L. D., and Johnson, K. M. (1987) An endogenous ligand of the brain sigma/PCP receptor antagonizes NMDA-induced neurotransmitter release. Brain Res. 416, 84–89.

    Article  PubMed  CAS  Google Scholar 

  159. Javitt, D. C., Zylberman, I., Zukin, S. R., Heresco-Levy, U., and Lindenmayer, J. P. (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am. J. Psychiatr. 151, 1234–1236.

    PubMed  CAS  Google Scholar 

  160. Valentine, J. L. Mayersohn, M., Wessinger, W. D., Arnold, L. W., and Owens, S. M. (1996) Antiphencyclidine monoclonal Fab fragments reverse phencyclidine-induced behavioral effects and ataxia in rats. J. Pharmacol. Exp. Ther. 278 709–716.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rajdev, S., Sharp, F.R. (1998). Neurotoxiciy of NMDA Receptor Antagonists. In: Kostrzewa, R.M. (eds) Highly Selective Neurotoxins. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-477-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-477-1_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-047-2

  • Online ISBN: 978-1-59259-477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics