Skip to main content

Glutamatergic Receptor Agonists and Brain Pathology

  • Chapter
Highly Selective Neurotoxins

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Excitatory amino acids (EAAs) represent a major group of neurotoxic agents, primarily affecting the nerve cell body. The beginning of the excitotoxicity era can be traced back to early 1950s when Hayashi described convulsant properties of l-glutamic acid (GLU) and l-aspartic acid (ASP) following their administration into the cerebral cortex of dogs and monkeys (1). Later, Lucas and Newhouse reported that systemic GLU destroyed inner layers of immature mouse retina (2). Excitatory properties of GLU within the central nervous system (CNS) were described by Curtis and Watkins in 1959 (3,4). This inspired further studies on GLU and its derivatives, which ultimately led to consensus that GLU is a principal excitatory neurotransmitter acting at a majority of EAA synapses, which are present on practically every neuron in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayashi, T. (1952) A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn. J. Pharmacol. 3, 46–64.

    CAS  Google Scholar 

  2. Lucas, D. R. and Newhouse, J. P. (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Ophtalmol. 58, 193–201.

    CAS  Google Scholar 

  3. Curtis, D. R., Phillis, J. W., and Watkins, J. C. (1959) Chemical excitation of spinal neurons. Nature 183, 611–612.

    PubMed  CAS  Google Scholar 

  4. Curtis, D. R. and Watkins, J. C. (1960) The excitation and depression of spinal neurons by structurally-related amino acids. J. Neurochem. 6, 117–141.

    PubMed  CAS  Google Scholar 

  5. Olney, J. W. (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    PubMed  CAS  Google Scholar 

  6. Olney, J. W. and Sharpe, L. G. (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science 166, 386–388.

    PubMed  CAS  Google Scholar 

  7. Olney, J. W., Ho, O. L., and Rhee, V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14, 61–76.

    PubMed  CAS  Google Scholar 

  8. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.

    PubMed  CAS  Google Scholar 

  9. Seeburg, P. H. (1993) The TINS/TiPS lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365.

    PubMed  CAS  Google Scholar 

  10. Pin, J. P. and Duvoisin, R. (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26.

    PubMed  CAS  Google Scholar 

  11. Watkins, J. C. and Evans, R. H. (1981) Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204.

    PubMed  CAS  Google Scholar 

  12. Stone, T. W. (1993) Subtypes of NMDA receptors. Gen. Pharmacol. 24, 825–832.

    PubMed  CAS  Google Scholar 

  13. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10, 273–280.

    CAS  Google Scholar 

  14. Monaghan, D. T. and Cotman, C. W. (1985) Distribution of N-methyl-D-aspartatesensitive L-[3H]glutamate binding sites in rat brain. J. Neurosci. 5, 2909–2919.

    PubMed  CAS  Google Scholar 

  15. Desce, J. M., Godeheu, G., Galli, T., Artaud, F., Cheramy, A., and Glowinski, J. Presynaptic facilitation of dopamine release through D,L-a-amino-3-hydroxy-5-methyl-4isoxazole propionate receptors on synaptosomes from the rat striatum. J. Pharmacol. Exp. Ther. 259, 692–698.

    Google Scholar 

  16. Martin, D., Bustos, G. A., Bowe, M. A., Bray, S. D., and Nadler, J. V. (1991) Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CAI area. J. Neurochem. 56, 1647–1655.

    PubMed  CAS  Google Scholar 

  17. Chittajallu, R., Vignes, M., Dev, K. K., Barnes, J. M., Collingridge, G. L., and Henley, J. M. (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379, 78–81.

    PubMed  CAS  Google Scholar 

  18. Ohta, K., Araki, N., Shibata, M., Komatsumoto, S., Shimazu, K., Fukuuchi, Y. (1994) Presynaptic ionotropic glutamate receptors modulate in vivo release and metabolism of striatal dopamine, noradrenaline and 5-hydroxytryptamine: involvement of both NMDA and AMPA/kainate subtypes. Neurosci. Res. 21, 83–89.

    PubMed  CAS  Google Scholar 

  19. Fink, K., Bonisch, H., and Gothert, M. (1990) Presynaptic NMDA receptors stimulate noradrenaline release in the cerebral cortex. Eur. J. Pharmacol. 185, 115–117.

    PubMed  CAS  Google Scholar 

  20. Clow, D. W. and Jhamandas, K. (1989) Characterisation of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen. J. Pharmacol. Exp. Ther. 248, 722–728.

    PubMed  CAS  Google Scholar 

  21. Lehmann, J., Schaefer, P., Ferkany, J. W., and Coyle J. T. (1983) Quinolinic acid evokes [3H]acetylcholine release in striatal slices: mediation by NMDA type excitatory amino acid receptors. Eur. J. Pharmacol. 96, 111–115.

    PubMed  CAS  Google Scholar 

  22. Fedele, E., Versace, P., and Raiteri, M. (1993) Evaluation of the mechanisms underlying the kainate-induced impairment of [3H]dopamine release in the rat striatum. Eur. J. Pharmacol. 249, 71–77.

    PubMed  CAS  Google Scholar 

  23. Hayashi, Y., Momiyama, A., Takahashi, T., Ohishi, H., Ogawa-Meguro, R., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366, 687–690.

    PubMed  CAS  Google Scholar 

  24. O’Connor, J. J., Rowan, M. J., and Anwyl, R. (1994) Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367, 557–559.

    PubMed  Google Scholar 

  25. Di Iorio, P., Battaglia, G., Ciccarelli, R., Ballerini, P., Giuliani, P., Poli, A., Nicoletti, F., and Caciagli, F. (1996) Interaction between Al adenosine and class II metabotropic glutamate receptors in the regulation of purine and glutamate release from rat hippocampal slices. J. Neurochem. 67, 302–309.

    PubMed  Google Scholar 

  26. McBain, C. J. and Mayer, M. L. (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760.

    PubMed  CAS  Google Scholar 

  27. Hollmann, M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  28. Ciabarra, A. M., Sullivan, J. M., Gahn, L. G., Pecht, G., Heinemann, S., and Sevarino, K. A. (1995) Cloning and characterization of chi-l: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J. Neurosci. 15, 6498–6508.

    PubMed  CAS  Google Scholar 

  29. Sucher, N. J., Akbarian, S., Chi, C. L., Leclerc, C. L., Awobuluyi, M., Deitcher, D. L., Wu, M. K., Yuan, J. P., Jones, E. G., and Lipton, S. A. (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J. Neurosci. 15, 6509–6520.

    PubMed  CAS  Google Scholar 

  30. Cunningham, M. D., Ferkany, J. W., and Enna, S. J. (1994) Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci. 54, 135–148.

    PubMed  CAS  Google Scholar 

  31. Johnson, J. W. and Ascher, P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–533.

    PubMed  CAS  Google Scholar 

  32. McBain, C. J., Kleckner, N. W., Wyrick, S., and Dingledine, R. (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol. Pharmacol. 36, 556–565.

    PubMed  CAS  Google Scholar 

  33. Hashimoto, A., Nishikawa, T., Oka, T., and Takahashi, K. (1993) Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J. Neurochem. 60, 783–786.

    PubMed  CAS  Google Scholar 

  34. Schell, M. J., Molliver, M. E., and Snyder, S. H. (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. USA 92, 3948–3952.

    PubMed  CAS  Google Scholar 

  35. Stone, T. W. (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 45, 309–379.

    PubMed  CAS  Google Scholar 

  36. Ransom, R. W. and Stec, N. L. (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine and polyamines. J. Neurochem. 51, 830–836.

    PubMed  CAS  Google Scholar 

  37. Williams, K. (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal. 9, 1–13.

    PubMed  CAS  Google Scholar 

  38. Gozlan, H. and Ben-Ari, Y. (1995) NMDA receptor redox sites: are they targets for selective neuronal protection. Trends Pharmacol. Sci. 16, 368–374.

    PubMed  CAS  Google Scholar 

  39. Wang, L. Y., Orser, B. A., Brautigan, D. L., and MacDonald, J. F. (1994) Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature 369, 230–232.

    PubMed  CAS  Google Scholar 

  40. Wang, Y. T. and Salter M. W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235.

    PubMed  CAS  Google Scholar 

  41. Lieberman, D. N. and Mody, I. (1994) Regulation of NMDA channel function by endogenous Cat+-dependent phosphatase. Nature 369, 235–239.

    PubMed  CAS  Google Scholar 

  42. Ehlers, M. D., Zhang, S., Bernhadt, J. P., and Huganir, R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755.

    PubMed  CAS  Google Scholar 

  43. Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A. H., Craig, A. M., and Sheng, M. (1997) Competitive binding of a-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442.

    PubMed  CAS  Google Scholar 

  44. Jorgensen, M., Tygesen, C. K., and Andersen, P. H. (1995) Ionotropic glutamate receptors—focus on non-NMDA receptors. Pharmacol. Toxicol. 76, 312–319.

    PubMed  CAS  Google Scholar 

  45. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., Honore, T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247, 571–574.

    Google Scholar 

  46. Tarnawa, I. (1990) Reflex excitatory action of non-NMDA type excitatory amino acid antagonist, GYKI 52466. Acta Physiol. Hung. 75, 277–278.

    PubMed  Google Scholar 

  47. Dong, H., O’Brien, R. J., Fung, E. T., Lanahan, A. A., Worley, P. F., and Huganir, R. L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284.

    PubMed  CAS  Google Scholar 

  48. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717–719.

    PubMed  CAS  Google Scholar 

  49. Nicoletti, F., Bruno, V., Copani, A., Casabona, G., and Knopfel, T. (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci. 19, 267–271.

    PubMed  CAS  Google Scholar 

  50. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.

    PubMed  CAS  Google Scholar 

  51. Boss, V., Nutt, K. M., and Conn, P. J. (1994) L-cysteine sulfinic acid as an endogenous agonist of a novel metabotropic receptor coupled to stimulation of phospholipase D activity. Mol. Pharmacol. 45, 1177–1182.

    PubMed  CAS  Google Scholar 

  52. Scanziani, M., Salin, P. A., Vogt, K. E., Malenka, R. C., and Nicoll, R. A. (1997) Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630–634.

    PubMed  CAS  Google Scholar 

  53. Brakeman, P. R., Lanahan, A. A., O’Brien, R., Roche, K., Barnes, C. A., Huganir, R. L., and Worley, P. F. (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288.

    PubMed  CAS  Google Scholar 

  54. Zaczek, R. and Coyle, J. T. (1982) Excitatory amino acids analogues: neurotoxicity and seizures. Neuropharmacology 21, 15–26.

    PubMed  CAS  Google Scholar 

  55. Zaczek, R., Collins, J., and Coyle, J. T. (1981) N-methyl-D-aspartic acid: a convulsant with weak neurotoxic properties. Neurosci. Lett. 24, 181–186.

    PubMed  CAS  Google Scholar 

  56. Schwarcz, R., Brush, G. S., Foster, A. C., and French, E. D. (1984) Seizure activity and lesions after intrahippocampal quinolinic acid injection. Exp. Neurol. 84, 1–17.

    PubMed  CAS  Google Scholar 

  57. Contestabile, A., Migani, P., Poli, A., and Villani, L. (1984) Recent advances in the use of selective neuron-destroying agents for the neurobiological research.Experientia 40, 524–534.

    CAS  Google Scholar 

  58. Biziere, K. and Coyle, J. T. (1979) Effects of cortical ablation on the neurotoxicity and receptor binding of kainic acid in striatum. J. Neurosci. Res. 4, 383–398.

    PubMed  CAS  Google Scholar 

  59. Thomas, R. J. (1995) Excitatory amino acids in health and disease. J. Am. Geriatr. Soc. 43, 1279–1289.

    PubMed  CAS  Google Scholar 

  60. Doble, A. (1995) Excitatory amino acid receptors and neurodegeneration. Therapie 50, 319–337.

    PubMed  CAS  Google Scholar 

  61. Olney, J. W. (1981) Kainic acid and other excitotoxins: a comparative analysis, in Glutamate as Neurotransmitter ( DiChiara, G. and Gessa, G. J., eds.), Raven, New York, pp. 375–384.

    Google Scholar 

  62. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    PubMed  CAS  Google Scholar 

  63. Mody, I. and MacDonald, J. E (1995) NMDA receptor-dependent excitotoxicity: the role of intracellular Cat+ release. Trends Pharmacol. Sci. 16, 356–359.

    PubMed  CAS  Google Scholar 

  64. Siman, R. and Noszek, J. C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1, 279–287.

    PubMed  CAS  Google Scholar 

  65. Sanchez-Prieto, J., Budd, D. C., Herrero, I., Vazquez, E., and Nicholls, D. G. (1996) Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci. 19, 235–239.

    PubMed  CAS  Google Scholar 

  66. Chan, P. H. and Fishman, R. A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J. Neurochem. 35, 1004–1007.

    PubMed  CAS  Google Scholar 

  67. Bredt, D. S. and Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86, 9030–9033.

    PubMed  CAS  Google Scholar 

  68. Connor, J. A., Wadman, W. J., Hockberger, R. E., and Wong, R. K. (1988) Sustained dendritic gradients of Cat+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240, 649–653.

    PubMed  CAS  Google Scholar 

  69. Charriaut-Marlangue, C., Aggoun-Zouaoui, D., Represa, A., and Ben-Ari, Y. (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. Trends Neurosci. 19, 109–114.

    PubMed  CAS  Google Scholar 

  70. Morrison, R. S., Wenzel, H. J., Kinoshita, Y., Robbins, C. A., Donehower, L. A., and Schwartzkroin, P. A. (1996) Loss of the p53 tumor supressor gene protects neurons from kainate-induced cell death. J. Neurosci. 16, 1337–1345.

    PubMed  CAS  Google Scholar 

  71. Portera-Cailliau, C., Price, D. L., and Martin, L. J. (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp. Neurol. 378, 88–104.

    PubMed  CAS  Google Scholar 

  72. Turski, L. and Turski, W. A. (1993) Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology. Experientia 49, 1064–1072.

    PubMed  CAS  Google Scholar 

  73. Greene, J. G. and Greenamyre, J. T. (1996) Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol. 48, 613–634.

    PubMed  CAS  Google Scholar 

  74. Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., Todd, E. C., and Remis, R. S. (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 322, 1775–1780.

    PubMed  CAS  Google Scholar 

  75. Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde, A., and Cashman, N. R. (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N. Engl. J. Med. 322, 1781–1787.

    PubMed  CAS  Google Scholar 

  76. Spencer, P. S., Roy, D. N., Ludolph, A., Hugon, J., Dwivedi, M. P., and Schaumburg, H. H. (1986) Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA. Lancet 2 (8515), 1066–1067.

    PubMed  CAS  Google Scholar 

  77. Spencer, P. S., Nunn, R. B., Hugon, J., Ludolph, A. C., Ross, S. M., Roy, D. N, and Robertson, R. C. (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237, 517–522.

    PubMed  CAS  Google Scholar 

  78. Rothman, S. M. and Olney, J. W. (1986) Glutamate and the pathophysiology of hypoxicischemic brain damage. Ann. Neurol. 19, 105–111.

    PubMed  CAS  Google Scholar 

  79. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. (1984) Elevation of the extra-cellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.

    PubMed  CAS  Google Scholar 

  80. Silverstein, F. S., Buchanan, K., and Johnston, M. V. (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes.. 1. Neurochem. 47, 1614–1619.

    CAS  Google Scholar 

  81. Simon, R. R, Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S. (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cerebr. Blood Flow Metab. 4, 350–361.

    CAS  Google Scholar 

  82. Rothman, S. M. (1983) Synaptic activity mediates death of hypoxic neurons. Science 220, 536, 537.

    Google Scholar 

  83. Wieloch, T., Lindvall, O., Blomquist, P., and Gage, F. H. (1985) Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol. Res. 7, 24–26.

    PubMed  CAS  Google Scholar 

  84. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993) Antisense oligodeoxynucleotides to NMDA-Rl receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263.

    PubMed  CAS  Google Scholar 

  85. Clark, G. D. and Rothman, S. M. (1987) Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience 21, 665–671.

    PubMed  CAS  Google Scholar 

  86. Pulsinelli, W., Sarokin, A., and Buchan, A., (1993) Antagonism of the NMDA and nonNMDA receptors in global versus focal brain ischemia. Prog. Brain Res. 96, 125–135.

    PubMed  CAS  Google Scholar 

  87. Warner, D. S., Martin, H., Ludwig, P., McAllister, A., Keana, J. F., and Weber, E. (1995) In vivo models of cerebral ischemia: effects of parenterally administered NMDA receptor glycine site antagonists../. Cerebr. Blood Flow Metab. 15, 188–196.

    CAS  Google Scholar 

  88. Gotti, B., Duverger, D., Bertin, J., Carter, C., Dupont, R., Frost, J., Gaudilliere, B., MacKenzie, E. T., Rousseau, J., Scatton, B., and Wick, R. (1988) Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents I. Evidence for efficacy in models of focal cerebral ischemia. J. Pharmacol. Exp. Ther. 247, 1211–1221.

    PubMed  CAS  Google Scholar 

  89. Iversen, L., Mulvihill, E., Haldeman, B., Diemer, N. H., Kaiser, F., Sheardown, M., and Kristensen, P. (1994) Changes in metabotropic glutamate receptor mRNA levels following global ischemia: increase of a putative presynaptic subtype (mGluR4) in highly vulnerable rat brain areas. J. Neurochem. 63, 625–633.

    PubMed  CAS  Google Scholar 

  90. Opitz, T., Richter, P., Carter, A. J., Kozikowski, A. P., Shinozaki, H., and Reymann, K. G. (1995) Metabotropic glutamate receptor subtypes differentially influence neuronal recovery from in vitro hypoxia/hypoglycemia in rat hippocampal slices. Neuroscience 68, 989–1001.

    PubMed  CAS  Google Scholar 

  91. Danysz, W., Parsons, C. G., Bresink, I., and Quack, G. (1995) A revived target for drug development. Glutamate in CNS disorders. DNP 8, 261–277.

    Google Scholar 

  92. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Google Scholar 

  93. Ferrante, R. J., Kowall, N. W., Beal, M. E, Richardson, E. P., Jr., Bird, E. D., and Martin, J. B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230, 561–563.

    PubMed  CAS  Google Scholar 

  94. DiFiglia, M. (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci. 13, 286–289.

    PubMed  CAS  Google Scholar 

  95. Coyle, J. T. and Schwarcz, R. (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    PubMed  CAS  Google Scholar 

  96. McGeer, E. G. and McGeer, P. L. (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263, 517–519.

    PubMed  CAS  Google Scholar 

  97. Araki, M., McGeer, P. L., and McGeer, E. G. (1985) Differential effect of kainic acid on somatostatin, GABAergic and cholinergic neurons in the rat striatum. Neurosci. Lett. 53, 197–202.

    PubMed  CAS  Google Scholar 

  98. Schwarcz, R., Whetsell, W. O., Jr., and Mangano, R. M. (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318.

    PubMed  CAS  Google Scholar 

  99. Beal, M. E, Kowall, N. W., Ellison, D. W., Mazurek, M. E, Swartz, K. J., and Martin, J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    PubMed  CAS  Google Scholar 

  100. Koh, J. Y., Peters, S., and Choi, D. W. (1986) Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 234, 73–76.

    PubMed  CAS  Google Scholar 

  101. Schwarcz, R., Okuno, E., White, R. J., Bird, E. D., and Whetsell, W. O., Jr. (1988) 3-Hydroxyantranilic acid oxygenase activity is increased in the brains of Huntington disease victims. Proc. Natl. Acad. Sci. USA 85, 4079–4081.

    Google Scholar 

  102. Reynolds, G. P., Pearson, S. J., Halket, J., and Sandler, M. (1988) Brain quinolinic acid in Huntington’s disease. J. Neurochem. 50, 1959, 1960.

    Google Scholar 

  103. Heyes, M. P., Swartz, K. J., Markey, S. P., and Beal, M. F. (1991) Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s disease. Neurosci. Lett. 122, 265–269.

    PubMed  CAS  Google Scholar 

  104. Greenamyre, J. T., Penney, J. B., Young, A. B., D’Amato, C. J., Hicks, S. P., and Shoulson, I. (1985). Alterations in L-glutamate binding in Alzheimer’s and Hunting-ton’s diseases. Science 227, 1496–1499.

    PubMed  CAS  Google Scholar 

  105. Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D’Amato, C., Shoulson, I., and Penney, J. B. (1988) NMDA receptors losses in putamen from patients with Huntington’s disease. Science 241, 981–983.

    PubMed  CAS  Google Scholar 

  106. Dure, L. S., IV, Young, A. B., and Penney, J. B. (1991) Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington’s disease. Ann. Neurol. 30, 785–793.

    PubMed  Google Scholar 

  107. Gray, P. N., May, P. C., Mundy, L., and Elkins, J. (1980) L-Glutamate toxicity in Huntington’s disease fibroblasts. Biochem. Biophys. Res. Commun. 95, 707–714.

    PubMed  CAS  Google Scholar 

  108. Cross, A. J., Slater, P., and Reynold, G. P. (1986) Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease. Neurosci. Lett. 67, 198–202.

    PubMed  CAS  Google Scholar 

  109. Turski, W. A., Gramsbergen, J. B., Traitler, H., and Schwarcz, R. (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J. Neurochem. 52, 1629–1636.

    PubMed  CAS  Google Scholar 

  110. Urbanska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A. (1989) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Soc. Neurosci. Abstr. 15, 764.

    Google Scholar 

  111. Urbanska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A. (1991) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse 9, 129–135.

    PubMed  CAS  Google Scholar 

  112. Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W. (1991) Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073.

    PubMed  CAS  Google Scholar 

  113. Alavi, A., Dann, R., Chawluk, J., Alavi, J., Kushner, M., and Reivich, M. (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin. Nucl. Med. 16, 2–34.

    PubMed  CAS  Google Scholar 

  114. Beal, M. E, Hyman, B. T., and Koroshetz, W. (1993) Do defects in mitochondria) energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16, 125–131.

    PubMed  CAS  Google Scholar 

  115. Jauch, D., Urbanska, E. M., Guidetti, P., Bird, E. D., Vonsattel J. P., Whetsell, W. O., Jr., and Schwarcz, R. (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J. Neurol. Sci. 130, 39–47.

    PubMed  CAS  Google Scholar 

  116. Gandy, S. and Greengard, P. (1992) Amyloidogenesis in Alzheimer’s disease: some possible therapeutic oppotunities. Trends Pharmacol. Sci. 13, 108–113.

    PubMed  CAS  Google Scholar 

  117. Dunnett, S. B., Everitt, B. J., and Robbins, T. W. (1991) The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci. 14, 494–501.

    PubMed  CAS  Google Scholar 

  118. Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci. USA 82, 4531–4534.

    PubMed  CAS  Google Scholar 

  119. Armstrong, D. M., Ikonomovic, M. D., Sheffield, R., and Wenthold, R. J. (1994) AMPAselective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res. 639, 207–216.

    PubMed  CAS  Google Scholar 

  120. Sandhu, F. A., Porter, R. H., Eller, R. V., Zain, S. B., Salim, M., and Greenamyre, J. T. (1993) NMDA and AMPA receptors in transgenic mice expressing human (3-amyloid protein. J. Neurochem. 61, 2286–2289.

    PubMed  CAS  Google Scholar 

  121. De Boni, U. and McLachlan, D. R. (1985) Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate. J. Neurol. Sci. 68, 105–118.

    PubMed  Google Scholar 

  122. Mattson, M. P., Dou, P., and Kater, S. B. (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087–2100.

    PubMed  CAS  Google Scholar 

  123. Koh, J. Y., Yang, L. L., and Cotman, C. W. (1990) (3-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533, 315–320.

    Google Scholar 

  124. Arias, C., Arrieta, J., and Tapia, R. (1995) (3-Amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J. Neurosci. Res. 41, 561–566.

    Google Scholar 

  125. Harris, M. E., Wang, Y., Pedigo, N. W., Jr., Hensley, K., Butterfield, D. A., and Carney, J. M. (1996) Amyloid (3 peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J. Neurochem. 67, 277–286.

    PubMed  CAS  Google Scholar 

  126. Mattson, M. P. (1994) Calcium and neuronal injury in Alzheimer’s disease. Contributions of (3-amyloid precursor protein mismetabolism, free radicals and metabolic compromise. Ann. NY Acad. Sci. 747, 50–76.

    PubMed  CAS  Google Scholar 

  127. Lee, R. K., Jimenez, J., Cox, A. J., and Wurtman, R. J. (1996) Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann. NY Acad. Sci. 777, 338–343.

    PubMed  CAS  Google Scholar 

  128. Falconer, M. A. (1974) Mesial temporal (Ammon’s horn) sclerosis as a common cause of epilepsy. Aetiology, treatment and prevention. Lancet 2 (7883), 767–770.

    PubMed  CAS  Google Scholar 

  129. Ben-Ari, Y., Tremblay, E., and Ottersen, O. P. (1980) Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 5, 515–528.

    PubMed  CAS  Google Scholar 

  130. French, E. D., Aldinio, C., and Schwarcz, R. (1982) Intrahippocampal kainic acid, seizures and local neuronal degeneration: relationships assessed in unanesthesized rats. Neuroscience 7, 2525–2536.

    PubMed  CAS  Google Scholar 

  131. Bradford, H. E (1995) Glutamate, GABA and epilepsy. Prog. Neurobiol. 47, 477–511.

    PubMed  CAS  Google Scholar 

  132. During, M. J. and Spencer, D. D. (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341 (8861), 1607–1610.

    PubMed  CAS  Google Scholar 

  133. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kund, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. E (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686.

    PubMed  CAS  Google Scholar 

  134. Eastman, C. L., Urbanska, E. M., Chapman, A. G., and Schwarcz, R. (1994) Differential expression of the astrocytic enzymes 3-hydroxyantranilic acid oxygenase, kynurenine aminotransferase and glutamine synthetase in seizure-prone and non-epileptic mice. Epilepsy Res. 18, 185–194.

    PubMed  CAS  Google Scholar 

  135. Turski, W. A., Dziki, M., Urbanska, E., Calderazzo-Filho, L. S., and Cavalheiro, E. A. (1991) Seizures induced by aminooxyacetic acid in mice: pharmacological characteristics. Synapse 7, 173–180.

    PubMed  CAS  Google Scholar 

  136. Meldrum, B. S. (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44, S14 - S23.

    PubMed  CAS  Google Scholar 

  137. Rogers, S. W., Andrews, P. I., Gahring, L. C., Whisenand, T., Cauley, K., Crain, B., Hughes, T. E., Heinemann, S. E, and McNamara, J. O. (1994) Autoantibodies to glutamate receptor G1uR3 in Rasmussen’s encephalitis. Science 265, 648–651.

    PubMed  CAS  Google Scholar 

  138. Neugebauer, V., Keele, N. B., and Shinnick-Gallagher, P. (1997) Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J. Neurosci. 17, 983–995.

    PubMed  CAS  Google Scholar 

  139. Attwell, P. J., Kaura, S., Sigala, G., Bradford, H. E, Croucher, M. J., Jane, D. E., and Watkins, J. C. (1995) Blockade of both epileptogenesis and glutamate release by (1S,3S)-ACPD, a presynaptic glutamate receptor agonist. Brain Res. 698, 155–162.

    PubMed  CAS  Google Scholar 

  140. Akbar, M. T., Rattray, M., Powell, J. F., and Meldrum, B. S. (1996) Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats. Brain Res. Mol. Brain Res. 43, 105–116.

    PubMed  CAS  Google Scholar 

  141. Czuczwar, S. J. and Meldrum, B. S. (1982) Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur. J. Pharmacol. 83, 335–338.

    PubMed  CAS  Google Scholar 

  142. Turski, L., Klockgether, T., Sontag, K. H., Herrling, R L., and Watkins, J. C. (1987) Muscle relaxant and anticonvulsant activity of 3-((±)-2-carboxypiperazin-4-yl)-propyl1-phosphonic acid, a novel N-methyl-D-aspartate antagonist, in rodents. Neurosci. Lett. 73, 143–148.

    PubMed  CAS  Google Scholar 

  143. Meldrum, B. S., Croucher, M. J., Badman, G., and Collins, J. E (1983) Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci. Lett. 39, 101–104.

    PubMed  CAS  Google Scholar 

  144. Czuczwar, S. J., Cavalheiro, E. A., Turski, L., Turski, W. A., and Kleinrok, Z. (1985) Phosphonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice. Neurosci. Res. 3, 86–90.

    PubMed  CAS  Google Scholar 

  145. Czuczwar, S. J., Turski, W. A., and Kleinrok, Z. (1996) Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs. Metab. Brain Dis. 11, 143–152.

    PubMed  CAS  Google Scholar 

  146. Czuczwar, S. J., Kleinrok, Z., and Turski, W. A. (1996) Interaction of calium channel blockers and excitatory amino acid antagonists with conventional antiepileptic drugs. CNS Drug Rev. 2, 452–467.

    CAS  Google Scholar 

  147. Gasior, M., Borowicz, K., Starownik, R., Kleinrok, Z., and Czuczwar, S. J. (1996) Cat+ channel blockade and the antielectroshock activity of NMDA receptor antagonists, CGP 40116 and CGP 43487, in mice. Eur. J. Pharmacol. 312, 27–33.

    PubMed  CAS  Google Scholar 

  148. Eastman, C. L., Urbanska, E., Love, A., Kristensson, K., and Schwarcz, R. (1994) Increased brain quinolinic acid production in mice infected with a hamster neurotropic measles virus. Exp. Neurol. 125, 119–124.

    PubMed  CAS  Google Scholar 

  149. Lipton, S. A. (1996) Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol. 6, 507–517.

    PubMed  CAS  Google Scholar 

  150. Auer, R. N. and Siesjo, B. K. (1993) Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin. Endocrinol. Metab. 7, 611–625.

    PubMed  CAS  Google Scholar 

  151. Wieloch, T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230, 681–683.

    PubMed  CAS  Google Scholar 

  152. Watkins, J. C. (1984) Excitatory amino acids and central synaptic transmission. Trends Pharmacol. Sci. 5, 373–376.

    CAS  Google Scholar 

  153. Fagg, G. F., Foster, A. C., and Ganong, A. H. (1996) Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol. Sci. 7, 357–363.

    Google Scholar 

  154. Krogsgaard-Larssen, P. and Hansen, J. J. (1992) Naturally-occurring excitatory amino acids as neurotoxins and leads in drug design. Toxicol. Lett. 64/65, 409–416.

    Google Scholar 

  155. Hawkins, L. M., Beaver, K. M., Jane, D. E., Taylor, R M., Sunter, D. C., and Roberts, P. J. (1995) Characterization of the pharmacology and regional distribution of (S)[3H]-5-fluorowillardiine binding in rat brain. Br. J. Pharmacol. 116, 2033–2039.

    PubMed  CAS  Google Scholar 

  156. Ross, S. M., Roy, D. N., and Spencer, P. S. (1989) Beta-N-oxalylamino-L-alanine action of glutamate receptors. J. Neurochem. 53, 710–715.

    PubMed  CAS  Google Scholar 

  157. Zhou, I. M., Gu, Z. Q., Costa, A. M., Yamada, R. A., Mansson, P. E., Giordano, T., Skolnick, R, and Jones, K. A. (1997) (2S,4R0–4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors. J. Pharmacol. Exp. Ther. 280, 422–427.

    Google Scholar 

  158. Brauner-Osborne, H., Slok, F. A., Skjaerback, N., Ebert, B., Sekiyama, N., Nakanishi, S., and Krogsgaard-Larssen, R (1996) A new highly selective metabotropic excitatory amino acid agonist; 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid. J. Med. Chem. 39, 3188–3194.

    PubMed  CAS  Google Scholar 

  159. Ben-Ari, Y., Tremblay, E., Ottersen, O. R, and Meldrum, B. S. (1980) The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid. Brain Res. 191, 79–97.

    PubMed  CAS  Google Scholar 

  160. Campochiaro, R and Coyle, J. T. (1978) Ontogenetic development of kainate neurotoxicity: correlates with glutamatergic innervention. Proc. Natl. Acad. Sci. USA 75, 2025–2029.

    PubMed  CAS  Google Scholar 

  161. Schwarez, R., Foster, A. C., French, E., Whetsell, J. W., Jr., and Kohler, C. (1984) Excitoxic models for neurodegenerative disorders. Life Sci. 35, 85–90.

    Google Scholar 

  162. McDonald, J. W., Silverstein, F. S., and Johnston, M. V. (1988) Neurotoxicity of N-methyl-o-aspartate is markedly enhanced in developing rat central nervous system. Brain Res. 459, 200–203.

    PubMed  CAS  Google Scholar 

  163. Guldin, W. O. and Markowitsch, H. J. (1981) No detectable remote lesions following massive intrastriatal injections of ibotenic acid. Brain Res. 225, 446–451.

    PubMed  CAS  Google Scholar 

  164. Steiner, H. X., McBean, G. J., Kohler, C., Roberts, P. J., and Schwarez, R. (1984) Ibotenate-induced neuronal degeneration in immature rat brain. Brain Res. 307, 117–124.

    PubMed  CAS  Google Scholar 

  165. Ferriero, D. M., Areavi, L. J., and Simon, R. P. (1990) Ontogeny of excitotoxic injury to nicotinamide adenine dinucleotide phosphate diaphorase reactive neurons in the neonatal rat striatum. Neuroscience 36, 417–424.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Urbanska, E.M., Dekundy, A., Kleinrok, Z., Turski, W.A., Czuczwar, S.J. (1998). Glutamatergic Receptor Agonists and Brain Pathology. In: Kostrzewa, R.M. (eds) Highly Selective Neurotoxins. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-477-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-477-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-047-2

  • Online ISBN: 978-1-59259-477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics