Skip to main content

Somatic Gene Transfer and Cell Transplantation Strategies for Neurodegenerative Diseases

  • Chapter
Cell Transplantation for Neurological Disorders

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 78 Accesses

Abstract

The combination of somatic gene transfer with cell transplantation techniques defines an intriguing new therapeutic concept for the treatment of neurodegenerative diseases. The application of this hybrid technique is made possible by recent developments in several areas of biomedical research. Progress in molecular biology has led to the identification of an increasing number of genes involved in human disease. Developments in cell biology allow researchers to expand and engineer cells in culture more efficiently and methods of neural transplantation are being refined to achieve better graft placement and survival. The application of this so-called ex vivo gene therapy approach to diseases of the central nervous system (CNS) is complicated by the anatomical and functional complexity of the brain as well as the difficulty of accessing dysfunctional areas. Nevertheless, this approach has a great potential for the treatment of neurodegenerative diseases because current treatments are inadequate or not available. This chapter will focus on the development of somatic gene transfer and cell transplantation strategies for Parkinson’s disease (PD) but many of the principles outlined here are also applicable to other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ungerstedt, U. and Arbuthnott, G. W. (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493.

    CAS  PubMed  Google Scholar 

  2. Björklund, A. (1992) Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery. Curr. Opinion Neurobiol. 2, 683–689.

    Google Scholar 

  3. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J. (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra byN-methyl-4-phenyl-1,2,3,6tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    CAS  PubMed  Google Scholar 

  4. Gage, F. H. and Fisher, L. J. (1993) Genetically modified cells for intracerebral transplantation, in Restoration of Brain Function by Tissue Transplantation ( Lindvall, O., ed.), Springer-Verlag, Berlin, pp. 51–61.

    Google Scholar 

  5. Freed, W. J., Morihisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A., et al. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 292, 351–352.

    CAS  PubMed  Google Scholar 

  6. Backlund, E. O., Granberg, P. 0., Hamberger, B., Knutsson, E., Mârtensson A., et al. 1985 ) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg. 62, 169–173.

    CAS  PubMed  Google Scholar 

  7. Allen, G. S., Burns, R. S., Tulipan, N. B., and Parker, R. A. (1989) Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease. Initial clinical results in 18 patients. Arch. Neurol. 46, 487–491.

    CAS  PubMed  Google Scholar 

  8. Olanow, C. W., Koller, W., Goetz, C. G., Stebbins, G. T., Cahill, D. W., Gauger, L. L., et al. (1990) Autologous transplantation of adrenal medulla in Parkinsons disease18-month results. Arch. Neurol. 47, 1286–1289.

    CAS  PubMed  Google Scholar 

  9. Clarke, D. J., Brundin, P., Strecker, R. E., Nilsson, O. G., Björklund, A., and Lindvall, O. (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp. Brain Res. 73, 115–126.

    CAS  PubMed  Google Scholar 

  10. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Wells, T. H., Barrett, J. N., et al. (1990) Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson’s disease. Prog. Brain Res. 82, 715–721.

    CAS  PubMed  Google Scholar 

  11. Fahn, S. (1992) Fetal-tissue transplants in Parkinson’s disease. N. Engl. J. Med. 327, 1589–1590.

    CAS  PubMed  Google Scholar 

  12. Gage, F. H. (1993) Parkinson’s disease. Fetal implants put to the test. Nature 361, 405–406.

    CAS  PubMed  Google Scholar 

  13. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    CAS  PubMed  Google Scholar 

  14. Raymon, H. K., Palmer, T. D., Ray, J., and Gage, F. H. (1994) Adult rat substantia nigra cells proliferate in response to FGF-2 in vitro and survive intrastriatal grafting. Soc. Neurosci. Abstracts 20, 670.

    Google Scholar 

  15. Palmer, T. D., Ray, J., and Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474–486.

    CAS  PubMed  Google Scholar 

  16. Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G., Fisher, L. J., Suhonen, J. O., et al. (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11,879–11, 883.

    Google Scholar 

  17. Raymon, H. K., Thode, S., Winkler, J., Ray, J., Michalik, D. E., Thal, L. J., et al. (1995) In vitro and in vivo characterization of a neural progenitor population genetically-modified to express human tyrosine hydroxylase. Soc. Neurosci. Abstracts 21, 1526.

    Google Scholar 

  18. Suhr, S. T. and Gage, F. H. (1993) Gene therapy for neurologic disease. Arch. Neurol. 50, 1252–1268.

    CAS  PubMed  Google Scholar 

  19. Lovenberg, W., Levine, R. A., Robinson, D. S., Ebert, M., Williams, A. C., and Caine, D. B. (1979) Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson’s disease. Science 204, 624–626.

    CAS  PubMed  Google Scholar 

  20. Uchida, K., Takamatsu, K., Kaneda, N., Toya, S., Tsukada, Y., Kurosawa, Y., et al. (1989) Synthesis of L-3,4-dihydroxyphenylalanine by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting. J. Neurochem. 53, 728–732.

    CAS  PubMed  Google Scholar 

  21. Kang, U. J., Fisher, L. J., Joh, T. H., O’Malley, K. L., and Gage, F. H. (1993) Regulation of dopamine production by genetically modified primary fibroblasts. J. Neurosci. 13, 5203–5211.

    CAS  PubMed  Google Scholar 

  22. Horellou, P., Brundin, P., Kalen, P., Mallet, J., and Björklund, A. (1990) In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5, 393–402.

    CAS  PubMed  Google Scholar 

  23. Lindsay, R. M., Altar, C. A., Cedarbaum, J. M., Hyman, C., and Wiegand, S. J. (1993) The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp. Neurol. 124, 103–118.

    CAS  PubMed  Google Scholar 

  24. Ray, J. and Gage, F. H. (1992) Gene transfer into established and primary fibroblast cell lines: comparison of transfection methods and promoters. Biotechniques 13, 598–603.

    CAS  PubMed  Google Scholar 

  25. Treco, D. A. and Selden, R. F. (1995) Non-viral gene therapy. Mol. Med. Today 1, 314–321.

    CAS  PubMed  Google Scholar 

  26. Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.

    Google Scholar 

  27. Schofield, J. P. and Caskey, C. T. (1995) Non-viral approaches to gene therapy. Br. Med. Bull. 51, 56–71.

    CAS  PubMed  Google Scholar 

  28. Zelenin, A. V., Alimov, A. A., Titomirov, A. V., Kazansky, A. V., Gorodetsky, S. I., and Kolesnikov, V. A. (1991) High-velocity mechanical DNA transfer of the chloramphenicolacetyl transferase gene into rodent liver, kidney and mammary gland cells in organ explants and in vivo. FEBS Lett. 280, 94–96.

    CAS  PubMed  Google Scholar 

  29. Cheng, L., Ziegelhoffer, P. R., and Yang, N. S. (1993) In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc. Natl. Acad. Sci. USA 90, 4455–4459.

    CAS  PubMed  Google Scholar 

  30. Palmer, T. D., Hock, R. A., Osborne, W. R., and Miller, A. D. (1987) Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human. Proc. Natl. Acad. Sci. USA 84, 1055–1059.

    CAS  PubMed  Google Scholar 

  31. Vile, R. G. and Russell, S. J. (1995) Retroviruses as vectors. Br. Med. Bull. 51, 12–30.

    CAS  PubMed  Google Scholar 

  32. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    CAS  PubMed  Google Scholar 

  33. Kremer, E. J. and Perricaudet, M. (1995) Adenovirus and adeno-associated virus mediated gene transfer. Br. Med. Bull. 51, 31–44.

    CAS  PubMed  Google Scholar 

  34. Horellou, P., Vigne, E., Castel, M. N., Barneoud, P., Colin, P., Perricaudet, M., et al. (1994) Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson’s disease. Neuroreport 6, 49–53.

    CAS  PubMed  Google Scholar 

  35. Byrnes, A. P., Rusby, J. E., Wood, M. J., and Charlton, H. M. (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66, 1015–1024.

    CAS  PubMed  Google Scholar 

  36. Horellou, P., Revah, F., Sabate, O., Buc-Caron, M.-H., Robert, J.-J., and Mallet, J. (1996) Adenovirus: A new tool to transfer genes into the central nervous system for treatment of neurodegenerative disorders, in Genetic Manipulation of the Nervous System ( Latchman, D., ed.), Academic, San Diego, pp. 41–51.

    Google Scholar 

  37. Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., O’Malley, K. L., et al. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet 8, 148–154.

    CAS  PubMed  Google Scholar 

  38. Alexander, I. E., Russell, D. W., and Miller, A. D. (1994) DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J. Virol. 68, 8282–8287.

    CAS  PubMed  Google Scholar 

  39. Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304.

    CAS  PubMed  Google Scholar 

  40. Efstathiou, S. and Minson, A. C. (1995) Herpes virus-based vectors. Br. Med. Bull. 51, 45–55.

    CAS  PubMed  Google Scholar 

  41. During, M. J., Naegele, J. R., O’Malley, K. L., and Geller, A. I. (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266, 1399–1403.

    CAS  PubMed  Google Scholar 

  42. Maidment, N. T., Tan, A. M., Bloom, D. C., Anton, B., Feldman, L. T., and Stevens, J. G. (1996) Expression of the Lacz reporter gene in the rat basal forebrain, hippocampus, and nigrostriatal pathway using a nonreplicating herpes simplex vector. Exp. Neurol. 139, 107–114.

    CAS  PubMed  Google Scholar 

  43. Akli, S., Caillaud, C., Vigne, E., Stratford-Perricaudet, L. D., Poenaru, L., Perricaudet, M., et al. (1993) Transfer of a foreign gene into the brain using adenovirus vectors. Nat. Genet. 3, 224–228.

    CAS  PubMed  Google Scholar 

  44. Davidson, B. L., Allen, E. D., Kozarsky, K. F., Wilson, J. M., and Roessler, B. J. (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 3, 219–223.

    CAS  PubMed  Google Scholar 

  45. Huang, Q., Vonsattel, J. P., Schaffer, P. A., Martuza, R. L., Breakefield, X. O., and DiFiglia, M. (1992) Introduction of a foreign gene (Escherichia coli LacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopic study. Exp. Neurol. 115, 303–316.

    CAS  PubMed  Google Scholar 

  46. Halbert, C. L., Alexander, I. E., Wolgamot, G. M., and Miller, A. D. (1995) Adenoassociated virus vectors transduce primary cells much less efficiently than immortalized cells. J. Virol. 69, 1473–1479.

    CAS  PubMed  Google Scholar 

  47. Hock, R. A., Miller, A. D., and Osborne, W. R. (1989) Expression of human adenosine deaminase from various strong promoters after gene transfer into human hematopoietic cell lines. Blood 74, 876–881.

    CAS  PubMed  Google Scholar 

  48. Palmer, T. D., Rosman, G. J., Osborne, W. R. A., and Miller, A. D. (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA 88, 1330–1334.

    CAS  PubMed  Google Scholar 

  49. Fisher, L. J., Jinnah, H. A., Kale, L. C., Higgins, G. A., and Gage, F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6, 371–380.

    CAS  PubMed  Google Scholar 

  50. Dai, Y., Roman, M., Naviaux, R. K., and Verma, I. M. (1992) Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc. Natl. Acad. Sci. USA 89, 10,892–10, 895.

    Google Scholar 

  51. Li, M., Hantzopoulos, P. A., Banerjee, D., Zhao, S. C., Schweitzer, B. I., Gilboa, E., et al. (1992) Comparison of the expression of a mutant dihydrofolate reductase under control of different internal promoters in retroviral vectors. Hum. Gene Ther. 3, 381–390.

    CAS  PubMed  Google Scholar 

  52. Apperley, J. F., Luskey, B. D., and Williams, D. A. (1991) Retroviral gene transfer of human adenosine deaminase in murine hematopoietic cells: effect of selectable marker sequences on long-term expression. Blood 78, 310–317.

    CAS  PubMed  Google Scholar 

  53. Scharfmann, R., Axelrod, J. H., and Verma, I. M. (1991) Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA 88, 4626–4630.

    CAS  PubMed  Google Scholar 

  54. Kaplitt, M. G., Kwong, A. D., Kleopoulos, S. P., Mobbs, C. V., Rabkin, S. D., and Pfaff, D. W. (1994) Preproenkephalin promoter yields region-specific and long-term expression in adult brain after direct in vivo gene transfer via a defective herpes simplex viral vector. Proc. Natl. Acad. Sci. USA 91, 8979–8983.

    CAS  PubMed  Google Scholar 

  55. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    CAS  PubMed  Google Scholar 

  56. Hoshimaru, M., Ray, J., Sah, D. W. Y., and Gage, F. H. (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523.

    CAS  PubMed  Google Scholar 

  57. Raymon, H. K., Thode, S., Palmer, T. D., Winkler, J., Ray, J., Fisher, L. J., et al. (1996) Exogenous regulation of a human tyrosine hydroxylase transgene in genetically modified fibroblasts and neural progenitors. Symposium on ventral mesencephalic cell cultures sponsored by NINDS, March 1996.

    Google Scholar 

  58. Somia, N. V., Zoppe, M., and Verma, I. M. (1995) Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc. Natl. Acad. Sci. USA 92, 7570–7574.

    CAS  PubMed  Google Scholar 

  59. Hefti, F., Hartikka, J., and Schlumpf, M. (1985) Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons. Brain Res. 348, 283–288.

    CAS  PubMed  Google Scholar 

  60. Wolff, J. A., Fisher, L. J., Xu, L., Jinnah, H. A., Langlais, P. J., Iuvone, P. M., et al. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA 86, 9011–9014.

    CAS  PubMed  Google Scholar 

  61. Horellou, P., Guibert, B., Leviel, V., and Mallet, J. (1989) Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: regulated release of dopamine in mouse anterior pituitary AtT-20 cells. Proc. Natl. Acad. Sci. USA 86, 7233–7237.

    CAS  PubMed  Google Scholar 

  62. Senut, M.-C., Suhr, S., and Gage, F. H. (1996) Transplantation of genetically modified non-neuronal cells in the central nervous system, in Genetic Manipulation of the Nervous System ( Latchman, D., ed.), Academic, San Diego, pp. 181–202.

    Google Scholar 

  63. Aebischer, P., Buchser, E., Joseph, J. M., Favre, J., de Tribolet, N., Lysaght, M., et al. (1994) Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. A preliminary report. Transplantation 58, 1275–1277.

    CAS  PubMed  Google Scholar 

  64. Jiao, S. and Wolff, J. A. (1992) Long-term survival of autologous muscle grafts in rat brain. Neurosci. Lett. 137, 207–210.

    CAS  PubMed  Google Scholar 

  65. Partridge, T. A. and Davies, K. E. (1995) Myoblast-based gene therapies. Br. Med. Bull. 51, 123–137.

    CAS  PubMed  Google Scholar 

  66. Zhou, H. and Lund, R. D. (1993) Effects of the age of donor or host tissue on astrocyte migration from intracerebral xenografts of corpus callosum. Exp. Neurol. 122, 155–164.

    CAS  PubMed  Google Scholar 

  67. Lundberg, C., Horellou, P., Mallet, J., and Björklund, A. (1996) Generation of dopa-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene-in vitro characterization and in vivo effects in the rat Parkinson model. Exp. Neurol. 139, 39–53.

    CAS  PubMed  Google Scholar 

  68. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J. J. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316, 831–834.

    CAS  PubMed  Google Scholar 

  69. Hurtig, H., Joyce, J., Sladek, J. R., Jr., and Trojanowski, J. Q. (1989) Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson’s disease. Ann. Neurol. 25, 607–614.

    CAS  PubMed  Google Scholar 

  70. Goetz, C. G., Olanow, C. W., Koller, W. C., Penn, R. D., Cahill, D., Morantz, R., et al. (1989) Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N. Engl. J. Med 320, 337–341.

    CAS  PubMed  Google Scholar 

  71. Mahanthappa, N. K., Gage, F. H., and Patterson, P. H. (1990) Adrenal chromaffin cells as multipotential neurons for autografts. Prog. Brain Res. 82, 33–39.

    CAS  PubMed  Google Scholar 

  72. Bohn, M. C., Cupit, L., Marciano, F., and Gash, D. M. (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237, 913–916.

    CAS  PubMed  Google Scholar 

  73. Peterson, D. I., Price, M. L., and Small, C. S. (1989) Autopsy findings in a patient who had an adrenal-to-brain transplant for Parkinson’s disease. Neurology 39, 235–238.

    CAS  PubMed  Google Scholar 

  74. Date, I., Yoshimoto, Y., Miyoshi, Y., Imaoka, T., Furuta, T., Asari, S., et al. (1993) The influence of donor age on cografting of adrenal medulla with pretransected peripheral nerve. Brain Res. 624, 233–238.

    CAS  PubMed  Google Scholar 

  75. Brundin, P., Strecker, R. E., Widner, H., Clarke, D. J., Nilsson, O. G., Àstedt, B., et al. (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res. 70, 192–208.

    CAS  PubMed  Google Scholar 

  76. Sladek, J. R., Jr., Collier, T. J., Elsworth, J. D., Taylor, J. R., Roth, R. H., and Redmond, D. E., Jr. (1993) Can graft-derived neurotrophic activity be used to direct axonal outgrowth of grafted dopamine neurons for circuit reconstruction in primates? Exp. Neurol. 124, 134–139.

    PubMed  Google Scholar 

  77. Redmond, D. E., Sladek, J. R., Jr., Roth, R. H., Collier, T. J., Elsworth, J. D., Deutch, A. Y., et al. (1986) Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet 1, 1125–1127.

    CAS  PubMed  Google Scholar 

  78. Zetterström, T., Herrera-Marschitz, M., and Ungerstedt, U. (1986) Simultaneous measurement of dopamine release and rotational behaviour in 6-hydroxydopamine denervated rats using intracerebral dialysis. Brain Res. 376, 1–7.

    PubMed  Google Scholar 

  79. Bankiewicz, K. S., Plunkett, R. J., Jacobowitz, D. M., Porrino, L., Diporzio, U., London, W. T., et al. (1990) The effect of fetal mesencephalon implants on primate MPTP-induced parkinsonism—histochemical and behavioral studies. J. Neurosurg. 72, 231–244.

    CAS  PubMed  Google Scholar 

  80. Shimohama, S., Rosenberg, M. B., Fagan, A. M., Wolff, J. A., Short, M. P., Breakefield, X. O., et al. (1989) Grafting genetically modified cells into the rat brain: characteristics of E. coli beta-galactosidase as a reporter gene. Brain Res. Mol. Brain Res. 5, 271–278.

    CAS  PubMed  Google Scholar 

  81. Horellou, P., Marlier, L., Privat, A., Darchen, F., Scherman, D., Henry, J. P., et al. (1990) Exogeneous expression of L-dopa and dopamine in various cell lines following transfer of rat and human tyrosine hydroxylase cDNA: grafting in an animal model of Parkinson’s disease. Prog. Brain Res. 82, 23–32.

    CAS  PubMed  Google Scholar 

  82. Freed, W. J., Geller, H. M., Poltorak, M., Cannon-Spoor, H. E., Cottingham, S. L., LaMarca, M. E., et al. (1990) Genetically altered and defined cell lines for transplantation in animal models of Parkinson’s disease. Prog. Brain Res. 82, 11–21.

    CAS  PubMed  Google Scholar 

  83. Freed, W. J., Patel-Vaidya, U., and Geller, H. M. (1986) Properties of PC12 pheochromocytoma cells transplanted to the adult rat brain. Exp. Brain Res. 63, 557–566.

    CAS  PubMed  Google Scholar 

  84. Freed, W. J., Adinolfi, A. M., Laskin, J. D., and Geller, H. M. (1989) Transplantation of B16/C3 melanoma cells into the brains of rats and mice. Brain Res. 485, 349–362.

    CAS  PubMed  Google Scholar 

  85. Aebischer, P., Tresco, P. A., Winn, S. R., Greene, L. A., and Jaeger, C. B. (1991) Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exp. Neurol. 111, 269–275.

    CAS  PubMed  Google Scholar 

  86. Aebischer, P., Goddard, M., Signore, A. P., and Timpson, R. L. (1994) Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp. Neurol. 126, 151–158.

    CAS  PubMed  Google Scholar 

  87. Chang, P. L., Capone, J. P., and Brown, G. M. (1990) Autologous fibroblast implantation. Feasibility and potential problems in gene replacement therapy. Mol. Biol. Med. 7, 461–470.

    CAS  PubMed  Google Scholar 

  88. Kawaja, M. D., Fagan, A. M., Firestein, B. L., and Gage, F. H. (1991) Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum—an assessment of graft size and ultrastructure. J. Comp. Neurol. 307, 695–706.

    CAS  PubMed  Google Scholar 

  89. Kawaja, M. D. and Gage, F. H. (1992) Morphological and neurochemical features of cultured primary skin fibroblasts of Fischer 344 rats following striatal implantation. J. Comp. Neurol. 317, 102–116.

    CAS  PubMed  Google Scholar 

  90. Palmer, T. D., Thompson, A. R., and Miller, A. D. (1989) Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood 73, 438–445.

    CAS  PubMed  Google Scholar 

  91. Cunningham, L. A., Short, M. P., Breakefield, X. O., and Bohn, M. C. (1994) Nerve growth factor released by transgenic astrocytes enhances the function of adrenal chromaffin cell grafts in a rat model of Parkinson’s disease. Brain Res. 658, 219–231.

    CAS  PubMed  Google Scholar 

  92. Olson, L., Backlund, E. O., Ebendal, T., Freedman, R., Hamberger, B., Hansson, P., et al. (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease-one-year follow-up of 1st clinical trial. Arch. Neurol. 48, 373–381.

    CAS  PubMed  Google Scholar 

  93. Sladek, J. R., Elsworth, J. D., Roth, R. H., Evans, L. E., Collier, T. J., Cooper, S. J., et al. (1993) Fetal dopamine cell survival after transplantation is dramatically improved at a critical donor gestation age in nonhuman primates. Exp. Neurol. 122, 16–27.

    PubMed  Google Scholar 

  94. Mahalik, T. J., Finger, T. E., Stromberg, I., and Olson, L. (1985) Substantia nigra transplants into denervated striatum of the rat: ultrastructure of graft and host interconnections. J. Comp. Neurol. 240, 60–70.

    CAS  PubMed  Google Scholar 

  95. Freund, T. F., Bolam, J. P., Björklund, A., Stenevi, U., Dunnett, S. B., Powell, J. F., et al. (1985) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5, 603–616.

    CAS  PubMed  Google Scholar 

  96. Collier, T. J., Gallagher, M. J., and Sladek, C. D. (1993) Cryopreservation and storage of embryonic rat mesencephalic dopamine neurons for one year: comparison to fresh tissue in culture and neural grafts. Brain Res. 623, 249–256.

    CAS  PubMed  Google Scholar 

  97. Nikkhah, G., Cunningham, M. G., Jodicke, A., Knappe, U., and Björklund, A. (1994) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res. 633, 133–143.

    CAS  PubMed  Google Scholar 

  98. Sauer, H., Frodl, E. M., Kupsch, A., ten Bruggencate, G., and Oertel, W. H. (1992) Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Parkinson’s disease. Exp. Brain Res. 90, 54–62.

    CAS  PubMed  Google Scholar 

  99. Frodl, E. M., Duan, W. M., Sauer, H., Kupsch, A., and Brundin, P. (1994) Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology and function. Brain Res. 647, 286–298.

    CAS  PubMed  Google Scholar 

  100. Mahalik, T. J., Hahn, W. E., Clayton, G. H., and Owens, G. P. (1994) Programmed cell death in developing grafts of fetal substantia nigra. Exp. Neurol. 129, 27–36.

    CAS  PubMed  Google Scholar 

  101. Nishino, H., Hashitani, T., Kumazaki, M., Sato, H., Furuyama, F., Isobe, Y., et al. (1990) Long-term survival of grafted cells, dopamine synthesis/release, synaptic connections, and functional recovery after transplantation of fetal nigral cells in rats with unilateral 6-OHDA lesions in the nigrostriatal dopamine pathway. Brain Res. 534, 83–93.

    CAS  PubMed  Google Scholar 

  102. Madrazo, I., Francobourland, R., Ostroskysolis, F., Aguilera, M., Cuevas, C., Zamorano, C., et al. (1990) Fetal homotransplants (ventral mesencephalon and adrenal tissue) to the striatum of parkinsonian subjects. Arch. Neurol. 47, 1281–1285.

    CAS  PubMed  Google Scholar 

  103. Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., et al. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577.

    CAS  PubMed  Google Scholar 

  104. Spencer, D. D., Robbins, R. J., Naftolin, F., Marek, K. L., Vollmer, T., Leranth, C., et al. (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N. Engl. J. Med. 327, 1541–1548.

    CAS  PubMed  Google Scholar 

  105. Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., et al. (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 327, 1556–1563.

    CAS  PubMed  Google Scholar 

  106. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J. X., et al. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12

    Google Scholar 

  107. to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327 1549–1555.

    Google Scholar 

  108. Isacson, O., Deacon, T. W., Pakzaban, P., Galpern, W. R., Dinsmore, J., and Burns, L. H. (1995) Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med. 1, 1189–1194.

    CAS  PubMed  Google Scholar 

  109. Dawson, T. M., Dawson, V. L., Gage, F. H., Fisher, L. J., Hunt, M. A., and Wamsley, J. K. (1991) Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra. Exp. Neurol. 111, 282–292.

    CAS  PubMed  Google Scholar 

  110. Brundin, P., Isacson, O., Gage, F. H., and Björklund, A. (1986) Intrastriatal grafting of dopamine-containing neuronal cell suspensions: effects of mixing with target or non-target cells. Brain Res. 389, 77–84.

    CAS  PubMed  Google Scholar 

  111. Constantini, L. C., Vozza, B. M., and Snyder-Keller, A. M. (1994) Enhanced efficacy of nigral-striatal cotransplants in bilaterally dopamine-depleted rats: an anatomical and behavioral analysis. Exp. Neurol. 127, 219–231.

    Google Scholar 

  112. Aguayo, A. J., Björklund A., Stenevi, U., and Carlstedt, T. (1984) Fetal mesencephalic neurons survive and extend long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neurosci. Lett. 45, 53–58.

    CAS  PubMed  Google Scholar 

  113. de Beaurepaire, R. and Freed, W. J. (1987) Embryonic substantia nigra grafts innervate embryonic striatal co-grafts in preference to mature host striatum. Exp. Neurol. 95, 448–454.

    PubMed  Google Scholar 

  114. Dunnett, S. B., Rogers, D. C., and Richards, S. J. (1989) Nigrostriatal reconstruction after 6-OHDA lesions in rats: combination of dopamine-rich nigral grafts and nigrostriatal “bridge” grafts. Exp. Brain Res. 75, 523–535.

    CAS  PubMed  Google Scholar 

  115. Collier, T. J., Sladek, C. D., Gallagher, M. J., Gereau, R. W. T., and Springer, J. E. (1990) Diffusible factor(s) from adult rat sciatic nerve increases cell number and neurite outgrowth of cultured embryonic ventral mesencephalic tyrosine hydroxylase-positive neurons. J. Neurosci. Res. 27, 394–99.

    CAS  PubMed  Google Scholar 

  116. Collier, T. J. and Springer, J. E. (1991) Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Exp. Neurol. 114, 343–350.

    CAS  PubMed  Google Scholar 

  117. Collier, T. J., Elsworth, J. D., Taylor, J. R., Sladek, J. R., Jr., Roth, R. H., and Redmond, D. E., Jr. (1994) Peripheral nerve-dopamine neuron co-grafts in MPTPtreated monkeys: augmentation of tyrosine hydroxylase-positive fiber staining and dopamine content in host systems. Neuroscience 61, 875–889.

    CAS  PubMed  Google Scholar 

  118. Gage, F. H., Stenevi, U., Carlstedt, T., Foster, G., Björklund, A., and Aguayo, A. J. (1985) Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve “bridge” connected to the denervated striatum. Exp. Brain Res. 60, 584–589.

    CAS  PubMed  Google Scholar 

  119. Mayer, E., Fawcett, J. W., and Dunnett, S. B. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—II. Effects on nigral transplants in vivo. Neuroscience 56, 389–398.

    CAS  PubMed  Google Scholar 

  120. Sauer, H. and Brundin, P. (1991) Effects of cool storage on survival and function of intrastriatal ventral mesencephalic grafts. Restorative Neurol. Neurosci. 2, 123–135.

    CAS  Google Scholar 

  121. Steinbusch, H. W. M., Vermeulen, R. J., and Tonnaer, J. A. D. M. (1990) Basic fibroblast growth factor enhances survival and sprouting of fetal dopaminergic cells implanted in the denervated rat caudate-putamen: preliminary observations. Prog. Brain Res. 82, 81–86.

    CAS  PubMed  Google Scholar 

  122. Takayama, H., Ray, J., Raymon, H. K., Baird, A., Hogg, J., Fisher, L. J., et al. (1995) Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nat. Med. 1, 53–58.

    Google Scholar 

  123. Yurek, D. M., Collier, T. J., and Sladek, J. R., Jr. (1990) Embryonic mesencephalic and striatal co-grafts: development of grafted dopamine neurons and functional recovery. Exp. Neurol. 109, 191–199.

    CAS  PubMed  Google Scholar 

  124. Yurek, D. M., Lu, W., Hipkens, S., and Wiegand, S. J. (1996) BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. Exp. Neurol. 137, 105–118.

    CAS  PubMed  Google Scholar 

  125. Brundin, P., Barbin, G., Strecker, R. E., Isacson, O., Prochiantz, A., and Björklund, A. (1988) Survival and function of dissociated rat dopamine neurones grafted at different developmental stages or after being cultured in vitro. Brain Res. 467, 233–243.

    CAS  PubMed  Google Scholar 

  126. Sorensen, J. C., Ostergaard, K., and Zimmer, J. (1994) Grafting of dopaminergic ventral mesencephalic slice cultures to the striatum of adult rats. Exp. Neurol. 127, 199–206.

    CAS  PubMed  Google Scholar 

  127. Spector, D. H., Boss, B. D., and Strecker, R. E. (1993) A model three-dimensional culture system for mammalian dopaminergic precursor cells: application for functional intracerebral transplantation. Exp. Neurol. 124, 253–264.

    CAS  PubMed  Google Scholar 

  128. Strecker, R. E., Miao, R., and Loring, J. F. (1989) Survival and function of aggregate cultures of rat fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res. 76, 315–222.

    CAS  PubMed  Google Scholar 

  129. Anton, R., Kordower, J. H., Maidment, N. T., Manaster, J. S., Kane, D. J., Rabizadeh, S., et al. (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp. Neurol. 127, 207–218.

    CAS  PubMed  Google Scholar 

  130. Choi, H. K., Won, L. A., Kontur, P. J., Hammond, D. N., Fox, A. P., Wainer, B. H., et al. (1991) Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 552, 67–76.

    CAS  PubMed  Google Scholar 

  131. Choi, H. K., Won, L., Roback, J. D., Wainer, B. H., and Heller, A. (1992) Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Proc. Natl. Acad. Sci. USA 89, 8943–8947.

    CAS  PubMed  Google Scholar 

  132. Crawford, G. D., Jr., Le, W. D., Smith, R. G., Xie, W. J., Stefani, E., and Appel, S. H. (1992) A novel N18TG2 x mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J. Neurosci. 12, 3392–3398.

    CAS  PubMed  Google Scholar 

  133. Gritti, A., Parati, E. A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    CAS  PubMed  Google Scholar 

  134. Mayer, E., Dunnett, S. B., and Fawcett, J. W. (1993) Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neurone precursors. Brain Res. Del). Brain Res. 72, 253–258.

    CAS  Google Scholar 

  135. Mytilineou, C., Park, T. H., and Shen, J. (1992) Epidermal growth factor-induced survival and proliferation of neuronal precursor cells from embryonic rat mesencephalon. Neurosci. Lett. 135, 62–66.

    CAS  PubMed  Google Scholar 

  136. Ptak, L. R., Hart, K. R., Lin, D., and Carvey, P. M. (1995) Isolation and manipulation of rostral mesencephalic tegmental progenitor cells from rat. Cell Transplant 4, 335–342.

    CAS  PubMed  Google Scholar 

  137. Palmer, T. D., Raymon, H. K., Takahashi, J., Ray, J., and Gage, F. H. (1995) Genetically-marked clones of adult rat progenitors respond to changes in exogenous cues by differentiating into neurons or glia. Soc. Neurosci. Abstracts 21, 1526.

    Google Scholar 

  138. Raymon, H. K., Ray, J., Peterson, D. A., and Gage, F. H. (1993) Basic fibroblast growth factor induces proliferation and long-term survival of embryonic ventral mesencephalic neurons in vitro. Soc. Neurosci. Abstracts 19, 654.

    Google Scholar 

  139. Richards, L. J., Kilpatrick, T. J., and Bartlett, P. F. (1992) De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89, 8591–8595.

    CAS  PubMed  Google Scholar 

  140. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574.

    CAS  PubMed  Google Scholar 

  141. Svendsen, C. N., Fawcett, J. W., Bentlage, C., and Dunnett, S. B. (1995) Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp. Brain Res. 102, 407–414.

    CAS  PubMed  Google Scholar 

  142. di Porzio, U., Daguet, M. C., Glowinski, J., and Prochiantz, A. (1980) Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature 288, 370–3773.

    PubMed  Google Scholar 

  143. Prochiantz, A., di Porzio, U., Kato, A., Berger, B., and Glowinski, J. (1979) In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc. Natl. Acad. Sci. USA 76, 5387–5391.

    CAS  PubMed  Google Scholar 

  144. Ferrari, G., Minozzi, M. C., Toffano, G., Leon, A., and Skaper, S. D. (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dey. Biol. 133, 140–147.

    CAS  Google Scholar 

  145. Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    CAS  PubMed  Google Scholar 

  146. Silani, V., Mariani, D., Donato, F. M., Ghezzi, C., Mazzucchelli, F., Buscaglia, M., et al. (1994) Development of dopaminergic neurons in the human mesencephalon and in vitro effects of basic fibroblast growth factor treatment. Exp. Neurol. 128, 59–76.

    CAS  PubMed  Google Scholar 

  147. Spenger, C., Hyman, C., Studer, L., Egli, M., Evtouchenko, L., Jackson, C., Dahl-Jorgensen, A., et al. (1995) Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50–63.

    CAS  PubMed  Google Scholar 

  148. Hyman, C., Juhasz, M., Jackson, C., Wright, P., Ip, N. Y., and Lindsay, R. M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.

    CAS  PubMed  Google Scholar 

  149. Engele, J. and Bohn, M. C. (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia [published erratum appears in J. Neurosci. (1992) March 12 (3), 685]. J. Neurosci. 11, 3070–3078.

    CAS  PubMed  Google Scholar 

  150. Mayer, E., Dunnett, S. B., Pellitteri, R., and Fawcett, J. W. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—I. Effects in vitro. Neuroscience 56, 379–388.

    CAS  PubMed  Google Scholar 

  151. Sauer, H., Fischer, W., Nikkhah, G., Wiegand, S. J., Brundin, P., Lindsay, R. M., et al. (1993) Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts. Brain Res. 626, 37–44.

    CAS  PubMed  Google Scholar 

  152. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    CAS  PubMed  Google Scholar 

  153. Poulsen, K. T., Armanini, M. P., Klein, R. D., Hynes, M. A., Phillips, H. S., and Rosenthal, A. (1994) TGF beta 2 and TGF beta 3 are potent survival factors for mid-brain dopaminergic neurons. Neuron 13, 1245–1252.

    CAS  PubMed  Google Scholar 

  154. Henderson, C. E. (1996) Role of neurotrophic factors in neuronal development. Curr. Opinion Neurobiol. 6, 64–70.

    CAS  Google Scholar 

  155. Snyder, E. Y. (1994) Grafting immortalized neurons to the CNS. Curr. Opinion Neurobiol. 4, 742–751.

    CAS  Google Scholar 

  156. Gage, F. H., Ray, J., and Fisher, L. J. (1995) Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 18, 159–192.

    CAS  PubMed  Google Scholar 

  157. Cepko, C. (1988) Retrovirus vectors and their applications in neurobiology. Neuron 1, 345–353.

    CAS  PubMed  Google Scholar 

  158. Cepko, C. L. (1989) Immortalization of neural cells via retrovirus-mediated oncogene transduction. Annu. Rev. Neurosci. 12, 47–65.

    CAS  PubMed  Google Scholar 

  159. Lendahl, U. and McKay, R. D. (1990) The use of cell lines in neurobiology. Trends Neurosci. 13, 132–137.

    CAS  PubMed  Google Scholar 

  160. Hammond, D. N., Wainer, B. H., Tonsgard, J. H., and Heller, A. (1986) Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science 234, 1237–1240.

    CAS  PubMed  Google Scholar 

  161. Lauder, J. M. and Bloom, F. E. (1974) Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J. Comp. Neurol. 155, 469–481.

    CAS  PubMed  Google Scholar 

  162. Nikkhah, G., Eberhard, J., Olsson, M., and Björklund, A. (1995) Preservation of fetal ventral mesencephalic cells by cool storage: in-vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Res. 687, 22–34.

    CAS  PubMed  Google Scholar 

  163. Knusel, B., Michel, P. P., Schwaber, J. S., and Hefti, F. (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci. 10, 558–570.

    CAS  PubMed  Google Scholar 

  164. Knusel, B., Winslow, J. W., Rosenthal, A., Burton, L. E., Seid, D. P., Nikolics, K., et al. (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc. Natl. Acad. Sci. USA 88, 961–965.

    CAS  PubMed  Google Scholar 

  165. Casper, D., Mytilineou, C.. and Blum, M. (1991) EGF enhances the survival of dopamine neurons in rat embryonic mesencephalon primary cell culture. J. Neurosci. Res. 30, 372–381.

    CAS  PubMed  Google Scholar 

  166. Ferrari, G., Toffano, G., and Skaper, S. D. (1991) Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor. J. Neurosci. Res. 30, 493–497.

    CAS  PubMed  Google Scholar 

  167. Park, T. H. and Mytilineou, C. (1992) Protection from 1-methyl-4-phenylpyridinium (MPP+) toxicity and stimulation of regrowth of MPP(+)-damaged dopaminergic fibers by treatment of mesencephalic cultures with EGF and basic FGF. Brain Res. 599, 83–97.

    CAS  PubMed  Google Scholar 

  168. Alexi, T. and Hefti, F. (1993) Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55, 903–918.

    CAS  PubMed  Google Scholar 

  169. Magal, E., Burnham, P., Varon, S., and Louis, J. C. (1993) Convergent regulation by ciliary neurotrophic factor and dopamine of tyrosine hydroxylase expression in cultures of rat substantia nigra. Neuroscience 52, 867–881.

    CAS  PubMed  Google Scholar 

  170. Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.

    CAS  PubMed  Google Scholar 

  171. Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.

    CAS  PubMed  Google Scholar 

  172. Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    CAS  PubMed  Google Scholar 

  173. Cameron, H. A., Woolley, C. S., McEwen, B. S., and Gould, E. (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56, 337–344.

    CAS  PubMed  Google Scholar 

  174. Kuhn, H. G., Dickinson-Anson H., and Gage F. H. (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.

    CAS  PubMed  Google Scholar 

  175. Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Del,. Biol. 175, 1–13.

    CAS  Google Scholar 

  176. Palmer, T. D., Takahashi, J., and Gage, I. H. (1997) The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404.

    CAS  PubMed  Google Scholar 

  177. Nakao, N., Frodl, E. M., Widner, H., Carlson, E., Eggerding, F. A., Epstein, C. J., et al. (1995) Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson’s disease. Nat. Med. 1, 226–231.

    CAS  PubMed  Google Scholar 

  178. Farlie, P. G., Dringen, R., Rees, S. M., Kannourakis, G., and Bernard, 0. (1995) bc1–2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA 92, 4397–4401.

    Google Scholar 

  179. Fisher, L. J. and Gage, F. H. (1995) Radical directions in Parkinson’s disease. Nat. Med. 1, 201–203.

    CAS  PubMed  Google Scholar 

  180. Sanberg, P. R., Koutouzis, T. K., Freeman, T. B., Emerich, D. F., Bertino, A. M., and Cahill, D. W. (1992) Cell transplantation for Huntington’s disease. Transplant Proc. 24, 3015–3016.

    CAS  PubMed  Google Scholar 

  181. Hantraye, P., Riche, D., Maziere, M., and Isacson, 0. (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc. Natl. Acad. Sci. USA 89, 4187–4191.

    CAS  PubMed  Google Scholar 

  182. Liu, F. C., Dunnett, S. B., and Graybiel, A. M. (1993) Intrastriatal grafts derived from fetal striatal primordia—IV. Host and donor neurons are not intermixed. Neuroscience 55, 363–372.

    CAS  PubMed  Google Scholar 

  183. Peschanski, M., Cesaro, P., and Hantraye, P. (1995) Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington’s disease. Neuroscience 68, 273–285.

    CAS  PubMed  Google Scholar 

  184. Winkler, J., Suhr, S. T., Gage, F. H., Thal, L. J., and Fisher, L. J. (1995) Essential role of neocortical acetylcholine in spatial memory. Nature 375, 484–487.

    CAS  PubMed  Google Scholar 

  185. Shannon, K. M. and Kordower, J. H. (1996) Neural transplantation for Huntington’s disease—experimental rationale and recommendations for clinical Trials. Cell Transplantation 5, 339–352.

    CAS  PubMed  Google Scholar 

  186. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Google Scholar 

  187. Albin, R. L. and Tagle, D. A. (1995) Genetics and molecular biology of Huntington’s disease. Trends Neurosci. 18, 11–14.

    CAS  PubMed  Google Scholar 

  188. Duyao, M. P., Auerbach, A. B., Ryan, A., Persichetti, F., Barnes, G. T., McNeil, S. M., et al. (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269, 407–410.

    CAS  PubMed  Google Scholar 

  189. Alzheimer’s Disease Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat. Genet. 11, 219–222.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thode, S., Raymon, H.K., Gage, F.H. (1998). Somatic Gene Transfer and Cell Transplantation Strategies for Neurodegenerative Diseases. In: Freeman, T.B., Widner, H. (eds) Cell Transplantation for Neurological Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-476-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-476-4_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-043-4

  • Online ISBN: 978-1-59259-476-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics