Skip to main content

The Potential Contribution of Sigma Receptors to Antidepressant Actions

  • Chapter
Antidepressants

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The origin of the concept of the σ-receptor is closely linked with the unraveling of the complexity of the opiate receptor. The potent effects of the naturally occurring opiates have been recorded since antiquity, but it was only inn the late nineteenth century that the scientific basis for action of the morphine-like opioids was laid. There were several reasons for this development, but undoubtedly the need to produce effective antitussive agents to facilitate the healing of tubercular pulmonary lesions motivated such changes. In addition, the increase in opiate abuse, particulary in the United States, emphasized the need to understand the pharmacological basis of opiate abuse and thereby provide a rational basis for its treatment. An outcome from such studies was the synthesis of several opiate receptor antagonists. One of the first of these was nalorphine, which Lasagna and Beecher (1) demonstrated to have analgesic activity, but which would also precipitate abstinence symptoms in morphine-dependent subjects. Further development of nalorphine as an analgesic was prevented by the dysphoric effects it caused in many subjects. The search for drugs that combined the potent analgesic effect of morphine with a negligible abuse potential eventually led to the synthesis of pentazocine and cyclazocine (2). Again, it was found that the analgesic effects of these drugs were combined with dysphoric effects that were dose-related, the morphine-like effects being most pronounced at low doses and the dysphoric-hallucinogenic effects at high doses. Furthermore, it was found that pentazocine, like nalophine, would precipitate withdrawal in morphine-dependent subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lasagna, L. and Beecher, H. K. (1954) The analgesic effectiveness of nalorphine and nalorphine-morphine combinations in man. J. Pharmacol. Exp. Ther. 112, 356–363.

    PubMed  CAS  Google Scholar 

  2. Harris, L. S. and Pierson A. K. (1964) Some narcotic antagonists in the benzomorphan series. J. Pharmacol. Exp. Ther 143, 141–148.

    PubMed  CAS  Google Scholar 

  3. Martin, W. R., Eades, C. G., Thompson, W. O., Thompson, J. A., Huppler, R. E., and Gilbert, R E. (1976) The effect of morphine and nalophrine-like drugs in the non dependent and morphine dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, 517–532.

    PubMed  CAS  Google Scholar 

  4. Magnan, J., Patterson, S. J., Tavani, A., and Zosterlitz, H. W. (1982) The binding specturm of narcotic analgesic drugs with different agonists and antagonists properties.NaunynSchmeideberg s Arch. Pharmacol. 319, 197–319.

    CAS  Google Scholar 

  5. Zukin, S. R., Tempel, A., Gardner, E. L., and Zukein, R. S. (1986) Interaction of 3H (—) SKF 10,047 with brain a-receptors: characterization and autoradiogrphic visualization. J. Neurosci. 46, 1032–1041.

    CAS  Google Scholar 

  6. Quirion, R., Chicheportiche, R., Contreras, R. C., Johnson, K. M., and Lodge, D. (1987). Classification and nomenclature of phencyclidine and a-receptor sites. Trends Neurosci. 10, 444–446.

    Article  CAS  Google Scholar 

  7. Walker, J. M., Matsumato, R. R., Bowen, W. D., Gans, D. L., Jones, K. D., Walker, F. O. (1988) Evidence for a role of haloperidol-sensitive a `opiate’ receptors in the motor effects of antipsychotic drugs. Neurology 38, 961–965.

    Article  PubMed  CAS  Google Scholar 

  8. Deutsch S. I., Weizman, A., Goldman, M. E., and Morihisa, J. M. (1988) The a-receptor: a novel site implicated in psychosis and antipsychotic drug efficacy. Clin. Neuropharmacol. 11, 105–119.

    Article  PubMed  CAS  Google Scholar 

  9. Contreras, R. C., Ragan, D. M., Bremer, M. E., Lanthorn, T. H., Gay, N. M., Iyengar, S., et al. (1991) Evaluation of U50, 488H analogues anti-ischaemic activity in the gerbil. Brain Res. 546, 798–782.

    Article  Google Scholar 

  10. Walker, J. M., Bowen, W. D., Walker, F. O., Matsumoto, R. R., de Costa, B., and Rice, K. C. (1990) a-receptors: biology and function. Pharmacol. Rev. 42, 356–401.

    Google Scholar 

  11. Quirion, R., Bowen, W. D., Itzhak, Y., Junien, J. L., Musacchio, R. B., et al. (1992) A proposal for the classification if a binding sites. Trends Pharmacol. Sci. 13, 85–87.

    Article  PubMed  CAS  Google Scholar 

  12. Tam, S. W. and Cook, L. (1984) a opiates and certain antipsychotic drugs mutually inhibit (+) 3H SKF 10,047 and 3H-haloperidol binding in guinea pig brain membranes. Proc. Natl. Acad. Sci. USA 81, 5618–5621.

    Google Scholar 

  13. Klein, M., Carroll, R. D., and Musacchio, J. M. (1991) SKF S25-A and cytochrome P450 ligands inhibit with high affinity the binding of 3H-dextromethorphan and ligands to guinea pig brain. Life Sci. 48, 543–550.

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt, A., Lebel, L., Koe, B. K., Seeger, T., and Heym, J. (1989) Sertraline potently displaces (+) 3H-3 PPP binding to sites in rat brain. Eur. J. Pharmacol. 165, 335–336.

    Article  PubMed  CAS  Google Scholar 

  15. Ferris, C. D., Hirsch, D. J., Brooks, B. R, and Snyder, S. H. (1991) a-receptors: from molecule to man. J Neurochem. 57, 729–737.

    Google Scholar 

  16. Itzhak, Y., Mash, D., Zhang, S. H., and Stin, I. (1991) Characterization of MPTP binding sites in C57BL/6 mouse brain; mutual effects of monoamine oxidase inhibitors and a ligands on MPTP and a binding sites. Mol. Pharmacol. 39, 385–393.

    PubMed  CAS  Google Scholar 

  17. Gray, N. M., Contreras, R. C., Allen, S. E., and Taylor, D. P. (1990) Hi antihistamines interact with central a-receptors. Life Sci. 47, 175–180.

    Article  PubMed  CAS  Google Scholar 

  18. McCann, D. J. and Su, T. R. (1990) Haloperidol-sensitive (+) 3H-SKF 10,047 binding sites (a sites) exhibit a unique distribution in rat brain subcellular fractions. Eur. J. Pharmacol. (Mol. Pharmacol.) 188, 211–218.

    Article  CAS  Google Scholar 

  19. Su, T.-P., Weissman, A. D., and Yeh, S.-Y. (1986) Endogenous ligands fora opioid receptors in the brain (“aphin”): evidence from binding assays. Life Sui. 38, 2199–2210.

    Article  CAS  Google Scholar 

  20. Contreras, P. C., Di Maggio, D. A., and O’Donohue, T. L. (1987) An endogenous ligand for the a opioid binding site. Synapse 1, 57–61.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, A. Z., Mitchell, K. N., Cook, L., and Tam, S. W. (1988) Human endogenous brain ligands fora and phencyclidine receptors, in: r and Phencyclidine-like Compounds as Molecular Probes in Biology ( Domino, E. F. and Kameuka, J. M., eds.). NPP Books, Ann Arbor, MI, pp. 335–343.

    Google Scholar 

  22. Patterson, T. A., Connor, M., and Chavkin, C. (1994) Recent evidence for endogneous substances for a-receptors, in: receptors ( Itzhak, Y., ed.). Academic, New York, pp. 171–189.

    Google Scholar 

  23. Junien, J. L., Gue, M., and Bueno, L. (1991) Neuropeptide-Y and a ligand JO 1784 act through a Gi protein to block the psychological stress and CRF induced colonic motor activation in rats. Neuropharmacology 30, 119–124.

    Article  Google Scholar 

  24. Monnet, F. P., Debonnel, G., and de Montigny, C. (1990) Neuropeptide-Y selectively potentiates NMDA induced neuronal activation. Eur. J. Pharmacbl. 182, 207–208.

    Article  CAS  Google Scholar 

  25. Su, T.-P., London, E. D., and Jaffe, J. H. (1988) Steroid binding at a-receptors suggests a link between endocrine, necrosis and immune systems. Science 240, 219–221.

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz, S., Pohl, P., and Zhou., G. Z. (1990) Steroid binding at a `opioid’ receptors. Science 246, 1635–1637.

    Article  Google Scholar 

  27. Monnet, F. P., Mahe, V., Robel, P., and Beulien, E. D. (1995) Netirosteroids, via a-receptors, modulate the 3H-norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc. Natl. Acad. Sci. USA 92, 3774–3778.

    Article  PubMed  CAS  Google Scholar 

  28. Bergeron, R., de Montigny, C., and Debonnel, G. (1996) Biphasé effects of a ligands on the neuronal response to N-methyl-D-aspartate. Naunyn-Schmiedeberg’s Arch. Pharmacol. 351, 252–260.

    Google Scholar 

  29. Connor, M. A. and Chavkin, C. (1992) Ionic zinc may function asi a endogenous ligand for the haloperidol sensitive a-2 receptor in rat brain. Mol. Pharmacol. 42, 471–479.

    PubMed  CAS  Google Scholar 

  30. Heilig, M., Wahlestedt, C., Ekman, R., and Widerlov, E. (1988) Antidepressant drugs increase the concentration of neuropeptide-Y like immuno reactivity in the rat brain. Eur. J. Pharmacol. 147, 465–467.

    Article  PubMed  CAS  Google Scholar 

  31. Wahstedt, C., Blendy, J. A., Kellar, K. T., Heilig, M., Widerlöv, E., and Ekman, R. (1990) Electroconvulsive shocks increase the concentration of neocortical and hippocampal NPYlike immunoreactivity in the rat. Brain Res. 507, 65–68.

    Google Scholar 

  32. Widdowson, P. S. and Halaris, A. E. (1994) Increased levels of NPY immunoreactivity in rat brain limbic structures following antidepressant treatment. (Abst), J. Neurochem. 52 (Suppl.) S 77.

    Google Scholar 

  33. van Riezen, H. and Leonard, B. E. (1991) Effects of psychotropic drugs on the behaviour and neurochemistry of olfactory bulbectomized rats. Pharmacol. Ther. 47, 21–34.

    Article  Google Scholar 

  34. Halliday, G. M., Li, Y. W., Oliver, J. R., Jh, T. J., Cotton, R. G., et al. (1988) The distrib-ution of NPY-like immunoreactive neurons in the human medulla oblongata. Neuroscience 26, 179–191.

    Article  PubMed  CAS  Google Scholar 

  35. Finta, E. P., Regenold, J. J., and Ines, P. (1992) Depression by NPY of noradrenergic inhibitory postsynaptic potentials of the locus coeruleus neurone. Naunyn-Schmiedeberg s Arch. Pharmacol. 346, 472–474.

    Article  CAS  Google Scholar 

  36. Berrettini, W. H., Doran, A. R., Kelsoe, J. Y., Roy, A., and Pickar, D. (1987) Cerebrospinal fluid NPY in depression and schizophrenia. Neuropsychopharmacology 1, 81–83.

    Google Scholar 

  37. Widerlöv, E., Lindstrom, L. H., Wahlested, C., and Ekman, R. (1988) NPY and PYY as possible cerebrospinal fluid markers for major depression and schizophrenia respectively. J. Psychiatr. Res. 22, 69–79.

    Google Scholar 

  38. Gjerris, A., Widerlov, E., Werdelin, L., and Ekman, R. (1992) Cerebrospinal fluid concentrations of NPY in depressed patients and controls. J. Psychiatr. Neurosci. 17, 23–27.

    CAS  Google Scholar 

  39. Widdowson, R S., Ordway, G. A., and Halaris, A. E. (1992) Reduced neuropeptide Y concentrations in suicide brains. J. Neurochem. 59, 730–780.

    Google Scholar 

  40. Ordway, G. A., Stockmeier, C. A., Meltzer, H. Y., Overholser, J. C., et al. (1995) NPY in frontal cortex is not altered in major depression. J. Neurochem. 65, 1646–1650.

    Article  PubMed  CAS  Google Scholar 

  41. O’Neill, B., O’Conner, W. T., and Leonard, B. E. (1987) Depressed neutrophil phagocytosis in the rat following olfactory bulbectomy reversed by chronic desipramine treatment. Med. Sci. Res. 15, 267, 268.

    Google Scholar 

  42. Song, C. and Leonard, B. E. (1994) The effects of chronic lithium chloride administration on some behavioral and immunological changes in the bilaterally olfactory bulbectomized rat. J. Psychopharmacol. 8, 40–47.

    Article  CAS  Google Scholar 

  43. Song, C. and Leonard, B. E. (1995) The effect of olfactory bulbectomy in the rat, alone or in combination with antidepressants and endogenous factors, an immune function. Human Psychopharmacol. 10, 7–18.

    Article  CAS  Google Scholar 

  44. Song, C., Earley, B., and Leonard, B. E. (1996) The effects of the central administration of NPY on behaviour, neurotransmitter and immune functions in the olfactory bulbectomized rat model of depression. Brain Behay. Immun. 10, 1–16.

    Article  CAS  Google Scholar 

  45. Gue, M., Yoneda, H., Monnikes, H., Junien, J. L., and Tache, Y. (1992) Central NPY and 6 ligand JO 1784 reverse CRF induced inhibition of gastric acid secretion in rats. Br. J. Pharmacol. 107, 642–647.

    Article  PubMed  CAS  Google Scholar 

  46. Leonard, B. E. (1994) Effect of antidepressants on specific neurotransmitters: are such effects relevant to their specific action? in: Handbook of Depression and Anxiety—a Biological Approach ( van den Boer, J. A. and Sitsen, J. M. A., eds.). Marcel Dekker, New York, pp. 379–404.

    Google Scholar 

  47. Leonard, B. E. (1995) Mechanisms of action of antidepressants. CNS Drugs 4 (Suppl 1), 1–12.

    Google Scholar 

  48. Healy, D., Carney, P. A., and Leonard, B. E. (1983) Monoamine related markers of depression: changes following treatment. J. Psychiatr Res. 17, 251–260.

    Article  CAS  Google Scholar 

  49. Healy, D., Carney R. A., O’Halloran, A., and Leonard, B. E. (1995) Peripheral adrenoceptors and serotonin receptors in depression. Changes associated with response to treatment with trazodone or amitriptyline. J. Affect. Dis. 9, 285–296.

    Article  Google Scholar 

  50. Vetulani, J., Stawarz, R. J., Dingell, J. V., and Sulser, E (1976) A possible common mechanism of action of antidepressant treatments. Naunyn-Schmiedeberg’s Arch. Pharmac. 293, 109–114.

    Article  CAS  Google Scholar 

  51. Sarai, K., Frazer, A., Brunswick, D., and Mendels, D. (1978) Desipramine induced decrease in beta adrenergic receptor binding in rat cerebral cortex. Neuropharmacology 27, 2179–2187.

    CAS  Google Scholar 

  52. Wolfe, B. B., Harden, T. K., Sporn, J. R., and Molinoff, R B. (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmacol. Exp. Ther. 207, 446–457.

    PubMed  CAS  Google Scholar 

  53. Stockmeier, C. A. and Kellar, K. T. (1989) Serotonin depletion unmarks serotonergic component of 3H-dihydroalprenolol binding in rat brain. Mol. Pharmacol. 36, 903–911.

    PubMed  CAS  Google Scholar 

  54. Paul, I. A., Duncan, G. E., Powell, K. R., Mueller, R. A, Hong, J.-S., and Breese, G. R. (1988) Regionally specific neuronal adaptation of beta adrenergic and 5HT2 receptors after antidepressant administration in the forced swim test and after chronic antidepressant drug treatment. J. Pharmacol. Exp. Ther 246, 956–962.

    PubMed  CAS  Google Scholar 

  55. Paul, I. A., Duncan, G. E., Mueller, R. A., Hong, J. S., and Breese, G. R. (1991) Adaptation in response to chronic imipramine and electroconvulsive shock: evidence for separate mechanisms. Eur. J. Pharmacol. 205, 135–143.

    Article  PubMed  CAS  Google Scholar 

  56. Largent, B. L., Wikstrom, H., Gunlach, A. L., and Snyder, S. H.1(1987) Structural determinants of a-receptor affinity. Mol. Pharmacol. 32, 772–784.

    Google Scholar 

  57. Itzhak, Y. and Kassim, C. O. (1990) Clorgyline displays high affinity fora sites in C57BL/6 mouse brain. Eur. J. Pharmacol. 176, 107–108.

    Article  PubMed  CAS  Google Scholar 

  58. Ivory, J. D. (1994) The effects of putative antipsychotic drugs and antidepressants on a-receptors in the rat brain. M.Sc. Thesis, National University of Ireland.

    Google Scholar 

  59. Kitamura, Y., Zhao, X.-H., Takei, M., et al. (1991) Effects of antidepressants on the glutaminergic system in mouse brain. Neurochem. Int. 3, 247–253.

    Article  Google Scholar 

  60. Nowak, G., Trullas, R., Layer, R. T., and Skolnick, R. (1993) Adaptative changes in the NMDA receptor complex after chronic treatment with imipramine and 1-aminocyclopyropanecarboxylase acid. J. Pharmacol. Exp. Ther. 265, 1380–1386.

    PubMed  CAS  Google Scholar 

  61. Paul, I. A., Nowak, G., Layer, R. T., Popik, R, and Skolnick, R. (1994) Adaptation of the NMDA receptor complex following chronic antidepressant treatnnents. J. Pharmacol. Exp. Ther. 269, 95–102.

    PubMed  CAS  Google Scholar 

  62. Bergeron, R., Debonnel, G., and de Montigny, C. (1993) Modification of the NMDA response by antidepressant a-receptor ligands. Eur. J. Pharmacol. 240, 319–323.

    Article  PubMed  CAS  Google Scholar 

  63. Rao, T. S., Cler, J. A., Mick, S. J., Ragan, D. M., et al. (1990) Opipramol, a potent a ligand, is an antiischaemic agent. Neuropharmacology 29, 1199–11204.

    Google Scholar 

  64. Redmond, A., Kelly, J. R, and Leonard, B. E. (1996) Behavioural effects of chronic glycine in the olfactory bulbectomized rat in the `open field’ test and oh phencyclidine induced hyperactivity. Med. Sci. Res. 24, 55–56.

    CAS  Google Scholar 

  65. Yamamoto, H., Yamamoto, Y., Sagi, N., Klenerova, V., Goji. K. et al. (1995) a ligands indirectly modulate the NMDA receptor ion channels complex oni intact neuronal cells via a-1 sites. J. Neurosci. 15, 731–736.

    Google Scholar 

  66. Bowen, W. D., Tolentino, R, and Varghese, R. (1989) Investigation of the mechanism by which a ligands inhibit stimulation of phosphoinositide metabolism by muscarinic cholinergic agonists. Prog. Clin. Biol. Res. 328, 21–24.

    Google Scholar 

  67. Matsumoto, R. R. and Walker, J. M. (1992) Ionophoretic effects’ of putative a ligands on rubral neurons in the rat. Brain Res. Bull. 29, 419–425.

    Article  PubMed  CAS  Google Scholar 

  68. Leonard, B. E. and Faherty C. (1996) SSRIs and movement disorders: is serotonin the culprit? Human Psychopharmacol. 11 (Suppl. 2), S75—S82.

    Google Scholar 

  69. a. Faherty, C. J., Harkin, A. J., and Leonard, B. E. (1997) The functional modulation of a-receptors following chronic SSRI treatment. Eur. J. Pharmacol.,in press.

    Google Scholar 

  70. Walker, J. M., Bowen, W. D., Patrick, S. L., Williams, W. E. and Marsearella, S. W. (1993) A comparison of (—) deoxybenzomorphans devoid of opiate activity with their dextro rotatory phenolic counterparts suggest a role fora type receptors for psychtomimetic opiaties and antipsychotic drugs. Proc. Natl. Acad. Sci. USA 83, 8784–8788.

    Google Scholar 

  71. Patrick, S. L., Walker, J. M., Pekel, J. M., Lockwood, M., and Patrick, R. O. (1993) Increases in rat striatal extracellular dopamine and vacuous chewing produced by two a ligands. Eur J. Pharmacol. 231, 243–249.

    Article  PubMed  CAS  Google Scholar 

  72. Steinfels, G. F., Tam, W. T., and Cook, L. (1989) Electrophysiological effects of selective a-receptor agonists, antagonists and the selective phencyclidine receptor agonist MK 801, on mid brain dopamine. Neuropsychopharmacology 2, 201–208.

    Article  PubMed  CAS  Google Scholar 

  73. Iyengar, S., Dilworth, V., Mick, S. J., and Contrecras, R. C. (1990) a-receptors modulate both A9 and A10 dopaminergic neurons in the rat brain: functional interactions with NMDA receptors. Brain Res. 523, 322–326.

    Google Scholar 

  74. Bowen, W. D., Einstein, G., and Walfe, S. A. (1992) a-1 and 6–2 binding sites of rat kidney. Soc. Neurosci. Abstracts 18, 456.

    Google Scholar 

  75. Tam, S. W., Steinfels, G. F., Gilligan, P. J., Schmidt, W. K., and Cook, L. (1992) DUP 734, a a and 5HT2 receptor antagonist: receptor binding, electrophysiological and neuropharmacological profiles. J. Pharmacol. Exp. Ther. 263, 1167–1174.

    PubMed  CAS  Google Scholar 

  76. Karbon, E. W., Bailey, M., Borowsky, S., Abreu, M., Martin, L., et al. (1991) In vitro and in vivo binding properties of NPC 16377, a potent and selective ligand fora binding sites. Soc. Neurosci. Abstracts 17, 334.

    Google Scholar 

  77. Roman, F. J., Pascaud, X., Martin, B., Vanche, D., and Junien, J. L. (1990) JO 1784, a potent and selective ligand for rat and mouse a sites. J. Pharm. Pharmacol. 42, 439–440.

    Article  PubMed  CAS  Google Scholar 

  78. Su, T.-P., Wu, X.-Z., Cone, E. J., Shulcla, K., Dodge, A. L., and Parish, D. W., (1991) a compounds derived from phencyclidine. Identification of PRE-084 a new selective a ligand. J. Pharmacol. Exp. Ther. 259, 543–550.

    Google Scholar 

  79. Largent, B. L., Wikstrom, H., Snowman, A H, and Snyder, S. H. (1988) Novel antipsychotic drugs share high affinity for a-receptors. Eur. J. Pharmacol. 155, 345–347.

    Article  PubMed  CAS  Google Scholar 

  80. McCann, D. J., Weissman, A. D., and Su, J.-R. (1994) a-1 and a-2 sites in rat brain: comparison of regional, ontogenetic and subcellular patterns. Synapse 17, 182–189.

    Google Scholar 

  81. Leonard, B. E. and Nicholson, C. D. (1994) a ligands as potential psychotropic drugs. J. Psychopharmacol. 8, 64–65.

    Google Scholar 

  82. Song, C., Earley, B., and Leonard, B. E. (1997) Effect of chronic pretreatment with the sigma ligand Jo 1784 on CRF-induced changes in behavior, neurotransmitter and immunological function in the rat. Neuropsychobiol.,in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leonard, B.E. (1997). The Potential Contribution of Sigma Receptors to Antidepressant Actions. In: Skolnick, P. (eds) Antidepressants. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-474-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-474-0_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-048-9

  • Online ISBN: 978-1-59259-474-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics