Skip to main content

Calcium Channel Antagonists in Mood Disorders

  • Chapter
Antidepressants

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Mood disorders have been the focus of intense research and drug development efforts. Since the introduction of imipramine, the first tricyclic antidepressant, in 1956, numerous compounds have been developed and others have faded from the market. In fact, until the advent of the selective serotonin reuptake inhibitors (SSRIs) in the late 1980s, there had been no clear advances in the pharmacotherapy of mood disorders. Despite the fact that SSRIs offer convenient dosing and a wider index than tricyclic antidepressants (TCAs) or monoamine oxidase inhibitors, the tricyclic antidepressants remain a mainstay of treatment in major depressive disorder and in the depressed phase of bipolar illness. Lithium salts retain their prominent position in the therapy and prophylaxis of bipolar disorder. Two anticonvulsants, sodium valproate and carbamazepine, are acknowledged as alternatives in the almost 50% of bipolar patients who do not respond satisfactorily to lithium (1). Pharmacotherapy remains the most effective mode of treatment in mood disorders, despite the potential toxicity associated with all of these drugs (2). However, out of a concern for serious adverse effects of classic antidepressants, some physicians, especially those involved with primary care in an outpatient setting, may tend to undermedicate patients. It is therefore understandable that efforts continue to develop alternative medications to those already existing. Such drugs would have to be both clinically efficient and safer to use than those currently available. This chapter describes evidence, from both animal experiments and clinical trials, that a group of drugs designated as the calcium channel antagonists has shown promise in this respect. These drugs are similar to lithium in their pharmacodynamic profile of psychotropic activity, but differ in their mechanism of action at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Post, R. M., Ketter, T. A., Pazzaglia, P. J., George, M. S., Marangell, L., and Denicoff, K. (1993) New developments in the use of anticonvulsants as mood stabilizers. Neuropsychobiology 27, 132–137.

    Article  PubMed  CAS  Google Scholar 

  2. Potter, W. Z., Rudorfer, M. V., and Manji, H. (1991) The pharmacological treatment of depression. New Engl. J. Med. 325, 633–642.

    Article  PubMed  CAS  Google Scholar 

  3. Vos, R. (1991) Verapamil: dying drug or sleeping beauty? in Drugs Looking for Diseases ( Vos, R., ed.), Kluver Academic, Dordrecht, pp. 123–303.

    Chapter  Google Scholar 

  4. Kazda, S. (1991) The story of nifedipine, in Adalat ( Lichtlen, P. R. and Reale, A., eds.). Springer, Berlin, pp. 9–26.

    Chapter  Google Scholar 

  5. Fleckenstein, A. (1983) History of calcium antagonists. Cir Res. 52,(Suppl. 1), 3–16.

    Google Scholar 

  6. Chibata, I., Iwasawa, Y., Kobayashi, H., Nagao, T., Noda, K., Senuma, M., Shinaki, T., Suzuki, H., Takeda, M., Tanaka, T., and Yamada S., eds. (1987) Diltiazem. Tanabe Seiyaku, Osaka.

    Google Scholar 

  7. Bossert, F. and Vater, W. (1989) 1,4-Dihydropyridines—A basis for developing new drugs. Med. Res. Rev. 9, 291–324.

    Google Scholar 

  8. Spedding, M. and Paoletti, R. (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol. Rev. 44, 363–376.

    PubMed  CAS  Google Scholar 

  9. Wehringer, E. (1987) Cat+ channel ligands: synthetic approaches, in Structure and Physiology of the Slow Inward Calcium Channel (Venter, J. C. and Triggle, D., eds.), Alan R. Liss, New York, pp. 1–27.

    Google Scholar 

  10. Bechem, M., Hebisch, S., and Schramm, M. (1988) Cat+ agonists: new, sensitive probes for Cat+ channels. Trends Pharmacol. Sci. 9, 257–261.

    Article  CAS  Google Scholar 

  11. Scott, R. H., Pearson, H. A., and Dolphin, A. C. (1991) Aspects of vertebrate neuronal voltage-activated calcium currents and their regulation. Prog. Neurobiol. 36, 485–520.

    Article  PubMed  CAS  Google Scholar 

  12. Triggle, D. J. (1993) Calcium, calcium channels, and calcium antagonists. Drugs Develop. 2, 3–13.

    CAS  Google Scholar 

  13. Fisher, M. and Grotta, J. (1993) New uses for calcium channel blockers. Therapeutic implications. Drugs 46, 961–975.

    Article  PubMed  CAS  Google Scholar 

  14. Raftery, E. B. (1984) Cardiovascular drugs withdrawal syndromes. A potential problem with calcium antagonists? Drugs 28, 371–374.

    Article  PubMed  CAS  Google Scholar 

  15. Hermann, P. and Morselli, P. L. (1985) Pharmacokinetics of diltiazem and other calcium entry blockers. Acta Pharmacol. Toxicol. 57 (Suppl. 2), 10–20.

    CAS  Google Scholar 

  16. Dubovsky, S. L., Franks, R. D., and Allen, S. (1987) Verapamil: a new antimanic drug with potential interactions with lithium. J. Clin. Psychiatr. 48, 371–372.

    CAS  Google Scholar 

  17. Price, W. A. and Giannini, A. J. (1986) Neurotoxicity caused by lithium-verapamil synergism. J. Clin. Pharmacol. 26, 717–719.

    PubMed  CAS  Google Scholar 

  18. MacPhee, G. J. A., Thompson, G. G., McInnes, G. T., and Brodie, M. J. (1986) Verapamil potentiates carbamazepine neurotoxicity: a clinically important inhibitory interaction. Lancet 1, 700–703.

    Article  PubMed  CAS  Google Scholar 

  19. Pucilowski, O. (1992) Psychopharmacological properties of calcium channel inhibitors. Psychopharmacology 109, 12–29.

    Article  PubMed  CAS  Google Scholar 

  20. Dick, R. S. and Barold, S. S. (1989) Diltiazem induced parkinsonism. Am. J. Med. 87, 95–96.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Albea, E., Jimenez-Jimenez, F. J., Ayuso-Peralta, L., Cabrera-Valdivia, F., Vaquero, A., and Tejeiro, J. (1993) Parkinsonism unmasked by verapamil. Clin. Neuropharmacol. 16, 263–265.

    Google Scholar 

  22. Hoschl, C. (1991) Do calcium antagonists have a place in the treatment of mood disorders? Drugs 42, 721–729.

    Article  PubMed  CAS  Google Scholar 

  23. Little, H. J. (1995) The role of calcium channels in drug dependence. Drug Alcohol Depend. 38, 173–194.

    Article  PubMed  CAS  Google Scholar 

  24. Silverstone, R. H. and Grahame-Smith, D. G. (1992) A review of the relationship between calcium channels and psychiatric disorders. J. Psychopharmacol. 6, 462–482.

    Article  PubMed  CAS  Google Scholar 

  25. Dubovsky, S. L. (1993) Calcium antagonists in manic-depressive illness. Neuropsychobiology 27, 184–192.

    Article  PubMed  CAS  Google Scholar 

  26. Dubovsky, S. L. (1994) Why don’t we hear more about the calcium antagonists? Editorial. Biol. Psychiatry 35, 149–150.

    Article  PubMed  CAS  Google Scholar 

  27. Furberg, C. D., Psaty, B. M., and Meyer, J. V. (1995) Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation 92, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  28. Opie, L. H. and Messerli, F. H. (1995) Nifedipine and mortality. Grave defects in the dossier (editorial). Circulation 92, 1068–1073.

    Article  PubMed  CAS  Google Scholar 

  29. Tsien, R. W., Ellinor, R T., and Horne, W. A. (1991) Molecular diversity of voltage-dependent Cat+ channels Trends Pharmacol. Sci. 12, 349–354.

    Article  PubMed  CAS  Google Scholar 

  30. Striessnig, J., Glossmann, H., and Catterall, W. A. (1990) Identification of a phenylalkylamine binding region within the alphal subunit of skeletal muscle Cat+ channels. Proc. Natl. Acad. Sci. USA 87, 9108–9112.

    Article  PubMed  CAS  Google Scholar 

  31. Striessnig, J., Murphy, B. J., and Catterall, W. A. (1991) Dihydropyridine receptor of L-type Cat+ channels• identification of binding domains for [3H](+)-PN200–110 and [3H]azidopine within the al subunit. Proc. Natl. Acad. Sci. USA 88, 10, 769–773.

    Google Scholar 

  32. Mori, Y, Niidome, T., Fujita, Y., Mynlieff, M., Dirksen, R. T., Beam, K. G., Iwabe, N., Miyata, T., Furutama, D., Furuichi, T., and Mikoshiba, K. (1993) Molecular diversity of voltage-dependent calcium channels Ann. NY Acad. Sci. 707, 87–108.

    Article  PubMed  CAS  Google Scholar 

  33. Snutch, T. R, Tomlinson, W. J., Leonard, J. P., Gilbert, M. M. (1991) Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7, 45–57.

    Article  PubMed  CAS  Google Scholar 

  34. Sanna, E., Head, G. A., and Hanbauer, I. (1986) Evidence fora selective localization of voltage sensitive Ca2+ channels in nerve cell bodies of corpus striatum. J. Neurochem. 47, 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  35. Westenbroek, R. E., Ahlijanian, M. K., and Catterall, W. A. (1990) Clustering of L-type calcium channels at the base of major dendrites in hippocampal pyramidal neurones. Nature 347, 281–284.

    Article  PubMed  CAS  Google Scholar 

  36. Cortes, R., Supavilai, P., Karobath, M., and Palacios J. M. (1984) Calcium antagonist binding sites in the rat brain: quantitative autoradiographic mapping using the 1,4-dihydropyridines [3H] PN 200–110 and [3H] 108–068. J. Neural Transm. 60, 169–197.

    Article  PubMed  CAS  Google Scholar 

  37. Ferry, D. R., Goll, A., Gadow, C., and Glossmann, H. (1984) (—)3H-Desmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem sites. Naunyn-Schmiedeberg’s Arch. Pharmacol. 327, 183–187.

    Google Scholar 

  38. Murphy, K. M. M., Gould, R. J., and Snyder, S. H. (1982) Autoradiographic visualization of [3H]nitrendipine binding sites in rat brain: localization to synaptic zones. Eur. J. Pharmacol. 81, 517–519.

    Article  PubMed  CAS  Google Scholar 

  39. Kerr, L. M., Filloux, F., Olivera, B. M., Jackson, H., and Wamsley, J. K. (1988) Autoradiographic localization of calcium channels with [125I]w-conotoxin in rat brain. Eur. J. Pharmacol. 146, 181–183.

    Article  PubMed  CAS  Google Scholar 

  40. Takemura, M., Fukui, H., and Wada, H. (1987) Different localization of receptors for coconotoxin and nitrendipine in rat brain. Biochem. Biophys. Res. Commun. 149, 982–988.

    Article  PubMed  CAS  Google Scholar 

  41. Thayer, S. A., Murphy, S. N., and Miller, R. J. (1986) Widespread distribution of dihydropyridine-sensitive calcium channels in the central nervous system. Mol. Pharmacol. 30, 505–509.

    PubMed  CAS  Google Scholar 

  42. Baraban, J. M., Worley, P. E, and Snyder, S. H. (1989) Second messenger system and psychoactive drug action: focus of the phosphoinositide system and lithium. Am. J. Psychiatry 146, 1251–1260.

    PubMed  CAS  Google Scholar 

  43. Kass, R. S. (1987) Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K8644: implications for channel gating. Circ. Res. 61, 11–I5.

    Google Scholar 

  44. Willner, P. (1990) Animal models of depression: an overview. Pharmacol. Ther. 45, 425–455.

    Article  PubMed  CAS  Google Scholar 

  45. Borsini, F. and Meli, A. (1988) Is the forced swim test a suitable model for revealing antidepressant activity? Psychopharmacology 94, 147–160.

    Article  PubMed  CAS  Google Scholar 

  46. Bidzinski, A., Jankowska, E., and Pucilowski, O. (1990) Antidepressant-like action of nicardipine, verapamil and hemicholinium-3 injected into the anterior hypothalamus in the rat forced swim test. Pharmacol. Biochem. Behay. 36, 795–798.

    Article  CAS  Google Scholar 

  47. Czyrak, A., Mogilnicka, E., and Maj, J. (1989) Dihydropyridine calcium channel antagonists as antidepressant drugs in mice and rats. Neuropharmacology 28, 229–233.

    Article  PubMed  CAS  Google Scholar 

  48. Eroglu, L. and Esin, Y. (1990) Effects of long-term nifedipine treatment in rats. Psychiatry Res 32, 203–205.

    Article  PubMed  CAS  Google Scholar 

  49. Kostowski, W., Dyr, W., and Pucilowski, O. (1990) Activity of diltiazem and nifedipine in some animal models of depression. Pol. J. Pharmacol. Pharm. 42, 121–128.

    PubMed  CAS  Google Scholar 

  50. Mogilnicka, E., Czyrak, A., and Maj, J. (1987) Dihydropyridine calcium antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eux J. Pharmacol. 138, 413–416.

    Article  CAS  Google Scholar 

  51. Tazi, A., Farh, M., and Hakkou, F. (1991) Psychopharmacological profile of a calcium channel antagonist, nifedipine. Fundam. Clin. Pharmacol. 5, 229–236.

    Article  PubMed  CAS  Google Scholar 

  52. Czyrak, A., Mogilnicka, E., Siwanowicz, J., and Maj, J. (1990) Some behavioral effects of repeated administration of calcium channel antagonists. Pharmacol. Biochem. Behay. 35, 557–560.

    Google Scholar 

  53. Geoffroy, M., Mogilnicka, E., Nielsen, M., and Rafaelsen, O. J. (1988) Effect of nifedipine on the shuttlebox escape deficit induced by inescapable shock in the rat. Eur. J. Pharmacol. 154, 277–283.

    Article  PubMed  CAS  Google Scholar 

  54. Martin, P., Laurent, S., Massol, J., Childs, M., and Puech, A. L. (1989) Effects of dihydropyridine drugs on reversal by imipramine of helpless behavior in rats. Eur. J. Pharmacol. 162, 185–188.

    Article  PubMed  CAS  Google Scholar 

  55. Risch, N. and Botstein, D. (1996) A manic depressive history. Nature Gen. 12, 351–353.

    Article  CAS  Google Scholar 

  56. Overstreet, D. H. (1993) The Flinders sensitive line rat: a genetic animal model of depression. Neurosci. Biobehay. Rev. 17, 51–68.

    Article  CAS  Google Scholar 

  57. Overstreet, D. H., Pucilowski, O., Rezvani, A. H., and Janowsky, D. S. (1995) Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacology 121, 27–37.

    Article  PubMed  CAS  Google Scholar 

  58. Pucilowski, O., Overstreet, D. H., Rezvani, A. H., and Janowsky, D. S. (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol. Behay. 54, 1215–1220.

    Article  CAS  Google Scholar 

  59. Pucilowski, O. and Overstreet, D. H. (1993) Effect of chronic antidepressant treatment on responses to apomorphine in selectively bred rat strains. Pharmacol. Biochem. Behay. 32, 471–475.

    CAS  Google Scholar 

  60. Pucilowski, O., Overstreet, D. H., Rezvani, A. H., and Janowsky, D. S. (1990) Effect of verapamil on submissive behavior in genetically bred hypercholinergic rats in a water competition test. Eur. J. Pharmacol. 187, 507–511.

    Article  PubMed  CAS  Google Scholar 

  61. Kostowski, W., Plewako, M., and Bidzinski, A. (1984) Brain serotonergic neurons: their role in a form of dominance-subordination behavior in rats. Physiol. Behay. 33, 365–371.

    Article  CAS  Google Scholar 

  62. Malatynska, E. and Kostowski, W. (1984) The effect of antidepressant drugs on dominance behavior in rats competing for food. Pol. J. Pharmacol. Pharm. 36, 531–540.

    PubMed  CAS  Google Scholar 

  63. Plewako, M. and Kostowski, W. (1984) The effect of lesions of the locus coeruleus and treatment with drugs affecting brain noradrenergic neurotransmission on dominant-subordinate behavior in rats competing for water. Pol. J. Pharmacol. Pharm. 36, 555–560.

    PubMed  CAS  Google Scholar 

  64. Willner, P., Muscat, R., and Papp, M. (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci. Biobehay. Rev. 16, 525–534.

    Article  CAS  Google Scholar 

  65. Hoschl, C. (1983) Verapamil for depression? Am. J. Psychiatry 140, 1100.

    PubMed  CAS  Google Scholar 

  66. Pollack, M. H. and Rosenbaum, J. F. (1987) Verapamil in the treatment of recurrent unipolar depression. Biol. Psychiatry 22, 779–782.

    Article  PubMed  CAS  Google Scholar 

  67. Jacques, R. M. and Cox S. J. (1991) Verapamil in major (psychotic) depression. Br. J. Psychiatry 158, 124–125.

    Article  PubMed  CAS  Google Scholar 

  68. Hoschl, C., Blahos, J., and Kabes, J. (1986) The use of calcium channel blockers in psychiatry, in Biological Psychiatry 1985 ( Shagass, C. E., Josiassen, R. C., and Bridger, W. H., eds.). Elsevier, New York, pp. 329–331.

    Google Scholar 

  69. Hoschl, C. and Kozeny, J. (1989) Verapamil in affective disorders: a double-blind, controlled study. Biol. Psychiatry 25, 128–140.

    Article  PubMed  CAS  Google Scholar 

  70. Eccleston, D. and Cole, A. J. (1990) Calcium-channel blockade and depressive illness. Br. J. Psychiatry 156, 889–891.

    Article  PubMed  CAS  Google Scholar 

  71. Hullett, F. J., Potkin, S. G., Levy, A. B., and Ciasca, R. (1988) Depression associated with nifedipine-induced calcium channel blockade. Am. J. Psychiatry 145, 1277–1279.

    Google Scholar 

  72. Long, T. D. and Kathol, R. G. (1993) Critical review of data supporting affective disorder caused by nonpsychotropic medication. Ann. Clin. Psychiatry 5, 259–270.

    Article  PubMed  CAS  Google Scholar 

  73. Patten, S. B., Williams, J. V., and Love, E. J. (1995) Self-reported depressive symptoms in association with medication exposures among medical inpatients: a cross-sectional study. Can. J. Psychiatry 40, 264–269.

    PubMed  CAS  Google Scholar 

  74. Creese, I. and Iversen, S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 83, 419–436.

    Article  PubMed  CAS  Google Scholar 

  75. Pucilowski, O. (1987) Monoaminergic control of affective aggression. Acta Neurobiol. Exp. 47, 213–238.

    CAS  Google Scholar 

  76. Ansah, T.-A., Wade, L. H., and Shockley, D. C. (1993) Effects of calcium channel entry blockers on cocaine and amphetamine-induced motor activities and toxicities. Life Sci. 53, 1947–1956.

    Article  PubMed  CAS  Google Scholar 

  77. Moore, N. A., Rees, G., Sanger, G., and Awere, S. (1993) Effect of L-type calcium channel modulators on stimulant-induced hyperactivity. Neuropharmacology 32, 719–720.

    Article  PubMed  CAS  Google Scholar 

  78. Pani, L., Kuzmin, A., Diana, M., De Montis, G., Gessa, G. L., and Rossetti, Z. L. (1990) Calcium receptor antagonists modify cocaine effects in the central nervous system differently. Eur. J. Pharmacol. 190, 217–221.

    Article  PubMed  CAS  Google Scholar 

  79. Mecke, E., Kauppila, T., Carlson, S., and Pertovaara, A. (1991) Differential effects of verapamil, a calcium channel antagonist, on morphine and cocaine-induced analgesia and locomotor behavior in rats. Neurosci. Res. Commun. 9, 137–141.

    CAS  Google Scholar 

  80. Grebb, J. A. (1986) Nifedipine and flunarizine block amphetamine-induced behavioral stimulation in mice. Life Sci. 38, 2375–2381.

    Article  PubMed  CAS  Google Scholar 

  81. Pucilowski, O., Plaznik, A., and Overstreet, D. H. (1995) Isradipine suppresses amphetamine-induced conditioned place preference and locomotor stimulation in the rat. Neuropsychopharmacology 12, 239–244.

    Article  PubMed  CAS  Google Scholar 

  82. Renwart, N., Frances, H., and Simon, R (1986) The calcium entry blockers: anti-manic drugs? Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 717–722.

    Article  PubMed  CAS  Google Scholar 

  83. Argiolas, A., Melis, M. R., and Gessa, G. L. (1989) Calcium channel inhibitors prevent apomorphine-and oxytocin-induced penile erection and yawning in male rats. Eur J. Pharmacol. 166, 515–518.

    Article  PubMed  CAS  Google Scholar 

  84. Bourson, A. and Moser, R C. (1990) Yawning induced by apomorphine, physostigmine or pilocarpine is potentiated by dihydropyridine calcium channel blockers. Psychopharmacology 100, 168–172.

    Article  PubMed  CAS  Google Scholar 

  85. Kostowski, W. and Krzascik, R. (1992) Effect of certain calcium channel inhibitors on D2 receptor-mediated responses: haloperidol-induced catalepsy and apomorphine-induced locomotor changes. Biog. Amines 8, 277–287.

    CAS  Google Scholar 

  86. Shah, A. B., Poiletman, R. M., and Shah, N. S. (1983) The influence of nisoldipine-a “calcium entry blocker”-on drug-induced stereotyped behavior in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 7, 165–173.

    Article  PubMed  CAS  Google Scholar 

  87. Kostowski, W., Krzascik, R, and Pucilowski, O. (1990) Effect of calcium channel inhibitors on D-1 receptor-mediated responses: SKF 38393-induced grooming and SCH 23390-induced catalepsy in rats. Biog. Amines 7, 49–56.

    CAS  Google Scholar 

  88. Pucilowski, O. and Eichelman, B. (1991) Nicardipine protects against chronic ethanol-or haloperidol-induced behavioral supersensitivity to apomorphine-induced aggression. Neuropsychopharmacology 5, 55–60.

    PubMed  CAS  Google Scholar 

  89. Pucilowski, O. and Kostowski, W. (1988) Diltiazem suppresses apomorphine-induced fighting and pro-aggressive effect of withdrawal from chronic ethanol or haloperidol in rats. Neurosci. Lett. 93, 96–100.

    Article  PubMed  CAS  Google Scholar 

  90. Post, R. M. and Weiss, S. R. B. (1989) Non-homologous animal models of affective illness: Clinical relevance of sensitization and kindling, in Animal Models of Depression ( Koob, G., Ehlers, C., and Kupfer, D. J., eds.), Birkhauser, Boston, pp. 30–54.

    Chapter  Google Scholar 

  91. Karler, R., Turkanis, S. A., Partlow, L. M., and Calder, L. D. (1991) Calcium channel blockers and behavioral sensitization. Life Sci. 49, 165–170.

    Article  PubMed  CAS  Google Scholar 

  92. Martin-Iverson, M. T. and Reimer, A. R. (1994) Effects of nimodipine and/or haloperidol on the expression of conditioned locomotion and sensitization to cocaine in rats. Psychopharmacology 114, 315–320.

    Article  PubMed  CAS  Google Scholar 

  93. Reimer, A. R. and Martin-Iverson, M. T. (1994) Nimodipine and haloperidol attenuate behavioral sensitization to cocaine but only nimodipine blocks the establishment of conditioned locomotion induced by cocaine. Psychopharmacology 113, 404–410.

    Article  PubMed  CAS  Google Scholar 

  94. Vezzani, A., Wu, H. Q., Stasi, M. A., Angelico, P., and Samanin, W. (1988) Effect of various calcium channel blockers on three different models of limbic seizures in rats. Neuropharmacology 27, 451–458.

    Article  PubMed  CAS  Google Scholar 

  95. Yamada, N. and Bilkey, D. K. (1991) Nifedipine has paradoxical effect on the development of kindling but not on kindled seizures in amygdala-kindled rats. Neuropharmacology 30, 501–505.

    Article  PubMed  CAS  Google Scholar 

  96. Koob, G. F. (1992) Neural mechanisms for drug reinforcement. Ann. NYAcad. Sci. 654, 171–191.

    Article  CAS  Google Scholar 

  97. Wise, R. A. (1990) The role of reward pathways in the development of drug dependence, in International Encyclopedia of Pharmacology and Therapeutics, sect. 130 ( Balfour, D. J. K., ed.), Pergamon, Elmsford, NY, pp. 23–58.

    Google Scholar 

  98. Pucilowski, O., Garges, P. L., Rezvani, A. H., Hutheson, S., and Janowsky, D. S. (1993) Verapamil suppresses d-amphetamine-induced place preference conditioning. Eur. J. Pharmacol. 240, 89–92.

    Article  PubMed  CAS  Google Scholar 

  99. Kuzmin, A., Zvartau, E., Gessa, G. L., Martellotta, M. C., and Fratta, W. (1992) Calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenous self-administration in drug-naïve mice. Pharmacol. Biochem. Behay. 41, 497–500.

    Article  CAS  Google Scholar 

  100. Martellotta, M. C., Kuzmin, A., Muglia, R, Gessa, G. L., and Fratta, W. (1994) Effects of the calcium antagonist isradipine on cocaine intravenous self-stimulation in rats. Psychopharmacology 113, 378–380.

    Article  PubMed  CAS  Google Scholar 

  101. Pani, L., Kuzmin, A., Martellotta, M. C., Gessa, G. L., and Fratta, W. (1991) The calcium antagonist PN 200–110 inhibits the reinforcing properties of cocaine. Brain Res. Bull. 26, 445–447.

    Article  PubMed  CAS  Google Scholar 

  102. Calcagnetti, D. J. and Schechter, M. D. (1994) Isradipine produces neither a conditioned place preference nor aversion. Life Sci. 54, PL81–PL86.

    Google Scholar 

  103. Pucilowski, O., Rezvani, A. H., and Overstreet, D. H. (1996) The role of taste aversion in calcium channel inhibitor-induced suppression of saccharin and alcohol drinking in rats. Physiol. Behay. 59, 319–324.

    Article  CAS  Google Scholar 

  104. Carman, J. S. and Wyatt, R. J. (1979) Use of calcitonin in psychotic agitation or mania. Arch. Gen. Psychiatry 36, 72–75.

    Article  PubMed  CAS  Google Scholar 

  105. Caillard, V. (1985) Treatment of mania using a calcium antagonist. Preliminary trial. Neurosychobiology 14, 23–26.

    Article  CAS  Google Scholar 

  106. Dubovsky, S. L., Franks, R. D., Lifschitz, M. L., and Coen, P. (1982) Effectiveness of verapamil in the treatment of a manic patient. Am. J. Psychiatry 139, 502–504.

    Google Scholar 

  107. Dubovsky, S. L. and Franks, R. D. (1983) Intracellular calcium ions in affective disorders: a review and a hypothesis. Biol. Psychiatry 18, 781–797.

    PubMed  CAS  Google Scholar 

  108. Giannini, A. J., Houser, W. L., Loiselle, R. H., and Price, W. A. (1984) Antimanic effects of verapamil. Am. J. Psychiatry 139, 502–504.

    Google Scholar 

  109. Gitlin, M. J. and Weiss, J. (1984) Verapamil as maintenance treatment in bipolar illness: a case report. J. Clin. Psychopharmacol. 4, 341–343.

    Article  PubMed  CAS  Google Scholar 

  110. Brunet, G., Cerlich, B., Robert, R, Dumas, S., Souetre, E., and Darcourt, G. (1990) Open trial of a calcium antagonist, nimodipine, in acute mania. Clin. Neuropharmacol. 13, 224–228.

    Google Scholar 

  111. Manna, V. (1991) Disurbi affectivi bipolari e ruolo del calcio intraneuronale: effetti terapeutici del trattamento con sali di litio e/o calcio antagonista in pazienti con rapida inversione di polarita. Minerva Medica 82, 757–763.

    PubMed  CAS  Google Scholar 

  112. Pazzaglia, R J., Post, R. M., Ketter, T. A., Goerge, M. S., and Marangell, L. B. (1993) Preliminary controlled trial of nimodipine in ultra-rapid cycling affective dysregulation. Psychiatr. Res. 49, 257–272.

    Article  CAS  Google Scholar 

  113. Dose, M., Emrich, W. L., Cording-Tommel, C., and von Zerssen, D. (1986) Use of calcium antagonists in mania. Psychoneuroendocrinology 11, 241–243.

    Article  PubMed  CAS  Google Scholar 

  114. Dubovsky, S. L., Franks, R. D., Allen, S., and Murphy J. (1986) Calcium antagonists in mania: a double-blind study of verapamil. Psychiatr. Res. 18, 309–320.

    Article  CAS  Google Scholar 

  115. Giannini, A. J., Loiselle, R. H., Price, W. A., and Giannini, M. C. (1985) Comparison of antimanic efficacy of clonidine and verapamil. J. Clin. Pharmacol. 25, 307–308.

    PubMed  CAS  Google Scholar 

  116. Garza-Trevino, E. S., Overall, J. E., and Hollister, L. E. (1992) Verapamil versus lithium in acute mania. Am. J. Psychiatry 149, 121–122.

    PubMed  CAS  Google Scholar 

  117. Brotman, A. W., Farhadi, A. M., and Gelenberg, A. J. (1986) Varapamil treatment of acute mania. J. Clin. Psychiatry 47, 136–138.

    PubMed  CAS  Google Scholar 

  118. Lenzi, A., Marazziti, D., Rafaelli, S., and Cassano, G. B. (1995) Effectiveness of the combination verapamil and chlorpromazine in the treatment of severe manic or mixed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 19, 519–528.

    Article  PubMed  CAS  Google Scholar 

  119. Wehr, T., Sack, D., Rosenthal, N., and Cowdry, R. (1988) Rapid cycling affective disorder: contributing factors and treatment responses in 51 patients. Am. J. Psychiatry 145, 179–184.

    PubMed  CAS  Google Scholar 

  120. Jacobsen, F. M., Sack, D. A., and James, S. P. (1987) Delirium induced by verapamil. Am. J. Psychiatry 144–248.

    Google Scholar 

  121. Kennedy, S., Ozersky, S., and Robillard, M. (1986) Refractory bipolar illness may not respond to verapamil. J. Clin. Psychopharmacol. 6, 316–317.

    Article  PubMed  CAS  Google Scholar 

  122. Dubovsky, S. L., Christiano, J., Daniell, L. C., Franks, R. D., Murphy, J., Adler, L., Baker, N., and Harris, A. (1989) Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatry 46, 632–638.

    Article  PubMed  CAS  Google Scholar 

  123. Dubovsky, S. L., Lee, C., Christiano, J., and Murphy, J. (1991) Elevated platelet intracellular calcium concentration in bipolar depression. Biol. Psychiatry 29, 441–450.

    Article  PubMed  CAS  Google Scholar 

  124. Dubovsky, S. L., Murphy, J., Thomas, M., and Rademacher, J. (1992) Abnormal intracellular calcium ion concentration in platelets and lymphocytes of bipolar patients. Am. J. Psychiatry 149, 118–120.

    PubMed  CAS  Google Scholar 

  125. Bothwell, R. A., Eccleston, D., and Marshall, E. (1994) Platelet intracellular calcium in patients with recurrent affective disorders. Psychopharmacology 114, 375–381.

    Article  PubMed  CAS  Google Scholar 

  126. Dubovsky, S. L., Lee, C., Christiano, J., and Murphy, J. (1991) Lithium decreases platelet intracellular calcium ion concentrations in bipolar patients. Lithium 2, 167–174.

    CAS  Google Scholar 

  127. Dubovsky, S. L., Thomas, M., Hijazi, A., and Murphy, J. (1994) Intracellular calcium signalling in peripheral cells of patients with bipolar affective disorder. Eur. Arch. Psychiatry Clin. Neurosci. 243, 229–234.

    Article  PubMed  CAS  Google Scholar 

  128. Eckert, A., Gann, H., Riemann, D., Aldenhoff, J., and Muller, W. E. (1994) Platelet and lymphocyte free intracellular calcium in affective disorders. Eur. Arch. Psychiatr. Clin. Neurosci. 243, 235–239.

    Article  CAS  Google Scholar 

  129. Danoff, S. K. and Ross, C. A. (1994) The inositol triphosphate receptor gene family: implications for normal and abnormal brain function. Prog. Neuropsychopharmacol. Biol. Psychiatry 18, 1–16.

    Article  PubMed  CAS  Google Scholar 

  130. Miller, R. J. (1991) The control of neuronal Ca2+ homeostasis. Prog. Neurobiol. 37, 255–285.

    Article  PubMed  CAS  Google Scholar 

  131. Shearman, M. S., Sekiguchi, K., and Nishizuka, Y. (1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol. Rev. 41, 211–237.

    PubMed  CAS  Google Scholar 

  132. Hidaka, H. and Okazaki, K. (1993) Neurocalcin family: a novel calcium-binding protein abundant in bovine central nervous system. Neurosci. Res. 16, 73–77.

    Article  PubMed  CAS  Google Scholar 

  133. Hosey, M. M., Borsotto, M., and Lazdunsky, M. (1986) Phosphorylation and dephosphorylation of the dihydropyridine-sensitive voltage-dependent Calf channel in skeletal muscle membranes by cAMP- and Cat+-dependent processes. Proc. Natl. Acad. Sci. USA 83, 3733–3737.

    Article  PubMed  CAS  Google Scholar 

  134. Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  135. Pape, H. C. and Mager, R. (1992) Nitric oxide controls oscillatory activity in thalamocortical neurons. Neuron 9, 441–448.

    Article  PubMed  CAS  Google Scholar 

  136. Chapman, P F., Atkins, C. M., Allen, M. T., Haley, J. E., and Steinmetz, J. E. (1992) Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport 3, 567–570.

    Article  PubMed  CAS  Google Scholar 

  137. Calapai, G., Squadrit, F., Altavilla, D., Zingarelli, B., Campo, G. M., Cilia, M., and Caputi, A. P. (1992) Evidence that nitric oxide modulates drinking behavior. Neuropharmacology 31, 761–764.

    Article  PubMed  CAS  Google Scholar 

  138. Morley, J. E. and Flood, J. F. (1991) Evidence that nitric oxide modulates food intake in mice. Life Sci. 49, 707–711.

    Article  PubMed  CAS  Google Scholar 

  139. Quock, R. M. and Nguyen, E. (1992) Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci. 51, PL255–PL260.

    Google Scholar 

  140. Rezvani, A. H., Grady, D. R., Peek, A. E., and Pucilowski, O. (1995) Inhibition of nitric oxide synthesis attenuates alcohol consumption in two strains of alcohol-preferring rats. Pharmacol. Biochem. Behay. 50, 265–270.

    Article  CAS  Google Scholar 

  141. Mannhold, R. (1984) Calmodulin-structure, function and drug action. Drugs Future 9, 677–690.

    Google Scholar 

  142. Ogata, N., Yoshii, M., and Narahashi, T. (1989) Psychotropic drugs block voltage-gated ion channels in neuroblastoma cells. Brain Res. 476, 140–144.

    Article  PubMed  CAS  Google Scholar 

  143. Kamatachi, G. L. and Ticku, M. K. (1991) Tricyclic antidepressants inhibit Cat+-activated K+ efflux in cultured spinal cord neurons. Brain Res. 545, 59–65.

    Article  Google Scholar 

  144. Barkai, A. J. and Nelson, H. D. (1990) Alterations by antidepressants of cerebrospinal fluid formation and calcium distribution dynamics in the intact rat brain. Biol. Psychiatry 22, 892–898.

    Article  Google Scholar 

  145. Chen, G., Manji, H., Bitran, J. A., Masana, M. I., and Potter, W. Z. (1991) Down regulation of protein kinase C isoenzyme by chronic ECS. Biol. Psychiatry 29 (Suppl. 9A), 80A.

    Google Scholar 

  146. Antkiewicz-Michaluk, L., Michaluk, J., Romanska, I., and Vetulani, J. (1990) Effects of repetitive electroconvulsive treatment on reactivity to pain and on [3H]nitrendipine binding sites in cortical and hippocampal mebranes. Psychopharmacology 101, 240–243.

    Article  PubMed  CAS  Google Scholar 

  147. Gleiter, C. H., Cain, C. J., Weiss, S. R. B., Post, R. M., and Marangos, P. J. (1989) Differential effects of acute and repeated electrically and chemically induced seizures on [3H]-nimodipine and [125Ij-w-conotoxin GVIA binding in rat brain. Epilepsia 30, 487–492.

    Article  PubMed  CAS  Google Scholar 

  148. Bolger, G. T., Weissmen, B. A., Bacher, J., and Isaac, L. (1987) Calcium antagonist binding in cat brain tolerant to electroconvulsive shock. Pharmacol. Biochem. Behay. 27, 217–221.

    Google Scholar 

  149. Antkiewicz-Michaluk, L., Romanska, I., Michaluk, J., and Vetulani, J. (1991) Role of calcium channels in effects of antidepressant drugs on responsiveness to pain. Psychopharmacology 105, 269–274.

    Google Scholar 

  150. Koenig, M. L. and Jope, R. S. (1988) Effects of lithium on synaptosomal Cat+ fluxes. Psychopharmacology 96, 267–272.

    Article  PubMed  CAS  Google Scholar 

  151. Molchan, S. E., Manji, H., Chen, G., Dou, L., Little, J., Potter, W. Z., and Sunderland, T. (1993) Effects of chronic lithium treatment on platelet PKC isoenzymes in Alzheimer’s and elderly control subjects. Neurosci. Lett. 162, 187–191.

    Article  PubMed  CAS  Google Scholar 

  152. Berridge, M. J. (1989) Inositol triphosphate, calcium, lithium and cell signalling. DAMA 262, 1834–1841.

    CAS  Google Scholar 

  153. DeFeudis, F. V. (1987) Interactions of Cat+ antagonists at 5-HT2 and H2 receptors and GABA uptake sites. Trends Pharmacol. Sci. 8, 200–201.

    Article  CAS  Google Scholar 

  154. Fairhurst, A. S., Whittaker, M. L., and Ehlert, F. J. (1980) Interactions of D600 (methoxyverapamil) and local anesthetics with rat brain alpha-adrenergic and muscarinic receptors. Biochem. Pharmacol. 29, 155–162.

    Article  PubMed  CAS  Google Scholar 

  155. Green, A. R., DeSouza, R. J., Davies, E. M., and Cross, A. J. (1990) The effect of Cat+ antagonists and hydralazine on central 5-hydroxytryptamine biochemistry and function in rats and mice. Br. J. Pharmacol. 99, 41–46.

    Article  PubMed  CAS  Google Scholar 

  156. Morgan, P. F., Tamborska, E., Patel, J., and Marangos, P. J. (1987) Interactions between calcium channel compounds and adenosine systems in brain of rat. Neuropharmacology 26, 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  157. Brown, N. L., Sirugue, O., and Worcel, M. (1986) The effects of some slow channel blocking drugs on high affinity serotonin uptake by rat brain synaptosomes. Eur. J. Pharmacol. 123, 161–165.

    Article  PubMed  CAS  Google Scholar 

  158. MacGee, R., Jr. and Schneider, J. E. (1979) Inhibition of high affinity synaptosomal uptake systems by verapamil. Mol. Pharmacol. 16, 877–885.

    Google Scholar 

  159. Dominic, J. A., Boume, D. W. A., Tan, T. G., Kirsten, E. B., and McAllister, R. J., Jr. (1981) The pharmacology of verapamil. III. Pharmacokinetics in normal subjects after intravenous administration. J. Cardiovasc. Pharmacol. 3, 25–38.

    Article  PubMed  CAS  Google Scholar 

  160. Stoll, A. L., Cohen, B. M., and Hanin, I. (1991) Erythrocyte choline concentrations in psychiatric disorders. Biol. Psychiatr. 29, 309–321.

    Article  CAS  Google Scholar 

  161. Bidzinski, A. (1988) The effect of some antidepressants and neuroleptics on choline uptake in human erythrocytes. New Trends Exp. Clin. Psychiatry 4, 111–118.

    Google Scholar 

  162. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J. (1972) A cholinergicadrenergic hypothesis of mania and depression. Lancet 2, 632–635.

    Article  PubMed  CAS  Google Scholar 

  163. Janowsky, D. S. and Risch S. C. (1987) Acetylcholine mechanisms in affective disorders, in Psychopharmacology: The Third Generation of Progress ( Meltzer, H. Y., ed.), Raven, New York, pp. 527–534.

    Google Scholar 

  164. Bidzinski, A., Puzynski, S., and Mrozek, S. (1989) Choline transport in erythrocytes of healthy controls and patients with endogenous major depression. New Trends Exp. Clin. Psychiatry 5, 179–185.

    Google Scholar 

  165. Jankowska, E., Pucilowski, O., and Kostowski, W. (1991) Chronic oral treatment with diltiazem or verapamil decreases isolation-induced activity impairment in elevated plus maze. Behay. Brain Res. 43, 155–158.

    Article  CAS  Google Scholar 

  166. Disterhoft, J. F., Moyer, J. R., Jr., Thompson, L. T., and Kowalska, M. (1993) Functional aspects of calcium-channel modulation. Clin. Neuropharmacol. 16 (Suppl. 1), S 12–S24.

    Article  Google Scholar 

  167. Pucilowski, O., Rezvani, A. H., and Janowsky, D. S. (1992) Suppression of alcohol and saccharin preference in rats by a novel Ca2+ channel inhibitor, Goe 5438. Psychopharmacology 107, 447–452.

    Article  PubMed  CAS  Google Scholar 

  168. Pucilowski, O., Rezvani, A. H., Overstreet, D. H., and Janowsky, D. S. (1994) Calcium channel inhibitors attenuate consumption of ethanol, sucrose and saccharin solutions in rats. Behay. Pharmacol. 5, 494–501.

    CAS  Google Scholar 

  169. Post, R. M. and Silberstein, S. D. (1994) Shared mechanisms in affective illness, epilepsy, and migraine. Neurology 44 (Suppl. 7), 537–547.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pucilowski, O. (1997). Calcium Channel Antagonists in Mood Disorders. In: Skolnick, P. (eds) Antidepressants. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-474-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-474-0_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-048-9

  • Online ISBN: 978-1-59259-474-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics