Skip to main content

Antidepressants: Beyond the Synapse

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

In this chapter, we discuss the actions of antidepressants in the context of central nervous system (CNS) plasticity. The term “plasticity” implies that the CNS can adapt to conditions that threaten the physical and psychic/emotional well-being of the organism by altering programs of gene expression in specific neuronal and glial cell populations (13). These changes affect the construction and pruning of synaptic connections, the concentrations of enzymes and ion channel proteins, the rates of synthesis, release, and degradation of neurotransmitters and neuromodulators, and the densities and activities of their receptors. Ultimately, changes in programs of gene expression determine the intensities of incoming signals, the sensitivities of neuronal systems to those signals, and the nature, amplitude, and duration of CNS responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goelet, P., Castellucci, V. F., Schacher, S., and Kandel, E. R. (1986) The long and the short of long-term memory—a molecular framework. Nature 322, 419–422.

    Article  PubMed  CAS  Google Scholar 

  2. Comb, M., Hyman, S. E., and Goodman, H. M. (1987) Mechanisms of trans-synaptic regulation of gene expression. Trends Neurosci. 10, 473–478.

    Article  CAS  Google Scholar 

  3. Morgan, J. I. and Curran, T. (1988) Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium 9, 303–311.

    Article  PubMed  CAS  Google Scholar 

  4. Vetulani, J. and Sulser, F. (1975) Action of various antidepressant treatment reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature 257, 495–496.

    Article  PubMed  CAS  Google Scholar 

  5. Sachar, E. J., Hellman, L., Roffwarg, H. P., Halpern, F. S., Fukushima, D. K., and Gallagher, T. F. (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch. Gen. Psychiatry 28, 19–24.

    Article  PubMed  CAS  Google Scholar 

  6. Duman, R. S. (1995) Regulation of intracellular signal transduction and gene expression by stress, in Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to PTSD ( Friedman, M. J., Charney, D. S., and Deutch, A. Y., eds.). Lippincott-Raven, Philadelphia.

    Google Scholar 

  7. Sheng, M. and Greenberg, M. E. (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485.

    Article  PubMed  CAS  Google Scholar 

  8. Morgan, J. I. and Curran, T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Ann. Rev. Neurosci. 14, 421–451.

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto, K. R. (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19, 209–252.

    Article  PubMed  CAS  Google Scholar 

  10. Goodwin, F. K., Wirz-Justice, A., and Wehr, T. A. (1982) Evidence that the pathophysiology of depression and the mechanism of action of antidepressant drugs both involve alterations in circadian rhythms, in Typical and Atypical Antidepressants: Clinical Practice ( Costa, E. and Racagni, G., eds.), Raven, New York.

    Google Scholar 

  11. Mendlewicz, J. (1991) Sleep-related chronobiological markers of affective illness. Mt. J. Psychophysiol. 10, 245–252.

    Article  CAS  Google Scholar 

  12. Linkowski, P., Mendlewicz, J., Kerkofs, M., Leclercq, R., Golstein, J., Brasseur, M., Copinschi, G., and Van Cauter, E. (1987) 24-hour profiles of adrenocor-ticotropin, cortisol, and growth hormone in major depressive illness: effect of antidepressant treatment. J. Clin. Endocrinol. Metab. 65, 141–152.

    Google Scholar 

  13. Goetz, U. and Tolle, R. (1987) Circadian rhythm of free urinary cortisol, temperature and heart rate in endogenous depressives and under antidepressant therapy. Neuropsychobiology 18, 175–184.

    Article  Google Scholar 

  14. Nicholson, S., Lin, J.-H., Mahmoud, S., Campbell, E., Gillham, B., and Jones, M. (1985) Diurnal variations in responsiveness of the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 40, 217–224.

    Article  PubMed  CAS  Google Scholar 

  15. Ozaki, N., Duncan, W. C., Jr., Johnson, K. A., and Wehr, T. A. (1993) Diurnal variations in serotonin and dopamine levels in discrete brain regions of Syrian hamsters and their modification by chronic clorgyline treatment. Brain Res. 627, 41–48.

    Article  PubMed  CAS  Google Scholar 

  16. Green, C. B., Cahill, G. M., and Bexharse, J. C. (1995) Regulation of tryptophan hydroxylase expression by retinal circadian oscillator in vitro. Brain Res. 677, 283–290.

    Article  PubMed  CAS  Google Scholar 

  17. Kwak, S. P., Morano, M. I., Young, E. A., Watson, S. J., and Akil, H. (1993) Diurnal CRH mRNA rhythm in the hypothalamus: decreased expression in the evening is not dependent on endogenous glucocorticoids. Neuroendocrinology 57, 96–105.

    Article  PubMed  CAS  Google Scholar 

  18. Holmes, M. C., French, K. L., and Seckl, J. R. (1995) Modulation of serotonin and corticosteroid receptor gene expression in the rat hippocampus with circadian rhythm and stress. Br Res. Mol. Br. Res. 28, 186–192.

    Article  CAS  Google Scholar 

  19. Rusak, B., McNaughton, L., Robertson, H. A., and Hunt, S. P. (1992) Circadian variation in photic regulation of immediate-early gene mRNAs in rat suprachiasmatic nucleus cells. Br. Res. Mol. Br Res. 14, 124–130.

    Article  CAS  Google Scholar 

  20. Kitayama, I., Janson, A. M., Cintra, A., Fuxe, K., Agnati, L. F., Ögren, S. O., Harfstrand, A., Eneroth, P., and Gustafsson, J. A. (1988) Effects of chronic imipramine treatment on glucocorticoid receptor immunoreactivity in various regions of the rat brain. J. Neural. Transm. 73, 191–203.

    Article  PubMed  CAS  Google Scholar 

  21. Budziszewska, B., Siwanowicz, J., and Przegalinski, E. (1994) The effect of chronic treatment with antidepressant drugs on the corticosteroid receptor levels in the rat hippocampus. Pol. J. Phannacol. 46, 147–152.

    CAS  Google Scholar 

  22. Pepin, M. C., Beanlien, S., and Barden, N. (1989) Antidepressants regulate glucocorticoid receptor messenger RNA concentrations in primary neural cultures. Mol. Brain Res. 6, 77–83.

    Article  PubMed  CAS  Google Scholar 

  23. Barden, N., Reul, J. M. H. M., and Holsboer, E (1995) Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? TINS 18, 6–11.

    PubMed  CAS  Google Scholar 

  24. Doig, R. J., Mummery, R. V., Wills, M. R., and Elkes, A. (1966) Plasma cortisol levels in depression. Br. J. Psychiatry 112, 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  25. Fullerton, D. T., Wenzel, F. J., Ohrenz, F. N., and Fahs, H. (1968) Circadian rhythm of adrenal cortical activity in depression. Arch. Gen. Psychiatry 19, 674–688.

    Article  PubMed  CAS  Google Scholar 

  26. Conroy, R. T. W. L., Hughes, B. D., and Mills, J. N. (1968) Circadian rhythms of plasma 11-hydroxycorticosteroids in psychiatric disorders. Br J. Med. 3, 405–407.

    Article  CAS  Google Scholar 

  27. Riederer, P., Birkmayer, W., Neumeyer, E., Ambrozi, L., and Linauer, W. (1974) The daily rhythm of HVA, VMA (VA) and 5-HIAA in depression syndrome. J. Neural Trans. 35, 23–45.

    Article  CAS  Google Scholar 

  28. Wehr, T. A., Muscettola, G., and Goodwin, F. K. (1980) Urinary methoxy-4-hydroxyphenylglycol circadian rhythm. Arch. Gen. Psychiatry 37, 254–263.

    Article  Google Scholar 

  29. Vetulani, J., Stawarz, R. J., Dingell, J. V., and Sulser, F. (1976) A possible common mechanism of action of antidepressant treatments. Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. NaunynSchmiedeberg’s Arch. Pharmacol. 293, 109–114.

    Article  CAS  Google Scholar 

  30. Wolfe, B. B., Harden, T. K., Sporn, J. R., and Molinoff, P. B. (1978) Presynaptic modulation of ß-adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmacol. Exp. Ther. 207, 446–457.

    PubMed  CAS  Google Scholar 

  31. Sellinger, M. D., Mendels, J., and Frazer, A. (1980) The effect of psychoactive drugs on 3-adrenergic receptor binding sites in rat brain. Neuropharmacol. 19, 447–454.

    Article  Google Scholar 

  32. Banerjee, S. P., Kung, L. S., Riggi, S. J., and Chanda, S. K. (1977) Development of 13 adrenergic receptor subsensitivity by antidepressants. Nature 268, 455–456.

    Article  PubMed  CAS  Google Scholar 

  33. Pryor, J. C. and Sulser, F. (1991) Evolution of monoamine hypotheses of depression, in Biological Aspects of Affective Disorders ( Horton, R. W. and Katona, C., eds.), Academic, London, pp. 77–94.

    Google Scholar 

  34. Wong, D. T., Bymaster, F. P., and Engleman, E. A. (1996) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci. 57, 411–441.

    Article  Google Scholar 

  35. Eison, A., Yocca, F. D., and Gianutsos, G. (1991) Effect of chronic administration of antidepressant drugs on 5HT2 mediated behavior in the rat following noradrenergic or serotonergic denervation. J. Neural Transm. 8, 19–32.

    Article  Google Scholar 

  36. Todd, K. G., McManus, D. J., and Baker, G. B. (1995) Chronic administration of the antidepressants phenelzine, desipramine, clomipramine or maprotiline decreases binding of 5HT2A receptors without affecting benzodiazepine binding sites in rat brain. Cell Mol. Neu-robiol. 15, 361–370.

    Google Scholar 

  37. Goodnough, D. B. and Baker, G. B. (1994) 5HT2 and 13-adrenergic receptor regulation in rat brain following chronic treatment with desipramine and fluoxetine alone and in combination. J. Neurochem. 62, 2262–2268.

    Google Scholar 

  38. Hyttel, J., Fredricson, O. K., and Arnt, J. (1984) Biochemical effects and drug levels in. rats after long-term treatment with the specific 5-HT-uptake inhibitor, citalopram. Psychopharmacology 83, 20–27.

    Article  PubMed  CAS  Google Scholar 

  39. Kellar, K. J., Cascio, C. S., Butler, J. A., and Kurtzke, R. N. (1981) Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur. J. Pharmacol. 69, 515–518.

    Article  PubMed  CAS  Google Scholar 

  40. Briley, M. and Moret, C. H. (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin. Neuropharmacol. 16, 387–400.

    Article  PubMed  CAS  Google Scholar 

  41. Nalepa, I., Manier, D. H., Gillespie, D. G., Rossby, S. P., Schmidt, D. E., and Sulser, F. (1997) Dual signaling by venlafaxine: I. The ß adrenoceptor desensitization hypothesis revisited. Eur. Neuropsychopharmacol., submitted.

    Google Scholar 

  42. Westphal, R. S., Backstrom, J. R., and Sanders-Bush, E. (1995) Increased basal phosphorylation of the constitutively active serotonin 2C receptor accompanies agonist-mediated desensitization. Mol. Pharmacol. 48, 200–205.

    PubMed  CAS  Google Scholar 

  43. Sibley, D. R., Strasser, R. H., Benovic, J. L., Daniel, K., and Lefkowitz, R. J. (1986) Phosphorylation/dephosphorylation of the b-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc. Natl. Acad. Sci. USA 83, 9408–9412.

    Google Scholar 

  44. Benovic, J. L., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. (1986) B-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonistoccupied form of the receptor. Proc. Natl. Acad. Sci. USA 83, 2797–2801.

    Article  PubMed  CAS  Google Scholar 

  45. Hausdorff, W. R, Caron, M. G., and Lefkowitz, R. J. (1990) Turing off the signal-desensitization of 3-adrenergic receptor function. FASEB J. 4, 2881–2888.

    PubMed  CAS  Google Scholar 

  46. Premont, R. T., Inglese, J., and Lefkowitz, R. J. (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 9, 175–182.

    PubMed  CAS  Google Scholar 

  47. Ferguson, S. G., Menard, L., Barak, L. S., Koch, W. J., Colapietro, A. M., and Caron, M. G. (1995) Role of phosphorylation in agonist-promoted (3-adrenergic receptor sequestration. J. Biol. Chem. 270, 24,782–24, 789.

    Google Scholar 

  48. Honegger, U. E., Roscher, A. A., and Wiesmann, U. N. (1983) Evidence for lysosomotropic action of desipramine in cultured human fibroblasts. J. Pharmacol. Exp. Ther. 225, 436–441.

    PubMed  CAS  Google Scholar 

  49. Duman, R. S., Terwilliger, R. Z., and Nestler, E. J. (1989) Chronic antidepressant regulation of GSa and cyclic AMP-dependent protein kinase. Pharmacologist 31, 182.

    Google Scholar 

  50. Lesch, K. P. and Manji, H. K. (1992) Signal-transducing G proteins and antidepressant drugs: evidence of modulation of a subunit gene expression in rat brain. Biol. Psychiatry 32, 549–579.

    Article  PubMed  CAS  Google Scholar 

  51. Li, P. P., Young, L. T., and Warsh, J. J. (1994) Effects of antibipolar and antidepressant drugs on the levels of signal transducing G proteins and their messenger ribonucleic acid transcripts. Neuropsychopharmacology 10, 380S.

    Google Scholar 

  52. Rasenick, M. M. (1994) G proteins as the molecular target of antidepressant action: chronic treatment increases coupling between Gs and adenylate cyclase. Neuropsychopharmacology 10, 5805.

    Google Scholar 

  53. Dwivedi, Y, Pandey, S. C., and Pandey, G. N. (1995) Effect of chronic administration of antidepressants on the levels of various subtypes of G-proteins in rat brain. Soc. Neurosci. 21, 731.8 Abstract.

    Google Scholar 

  54. Emamghoreishi, M., Warsh, J. J., Sibony, D., and Li, P. P. (1996) Lack of effect of chronic antidepressant treatment on Gs and Gi a-subunit protein and mRNA levels in the rat cerebral cortex. Neuropsychopharmacology 15, 281–287.

    Article  PubMed  CAS  Google Scholar 

  55. Chen, J. and Rasenick, M. M. (1995) Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. J. Pharmacol. Exp. Ther. 275, 509–517.

    PubMed  CAS  Google Scholar 

  56. Menkes, D. B., Rasenick, M. M., Wheeler, M. A., and Bitensky, M. W. (1983) Guanosine triphosphate activation of brain adenylate cyclase• enhancement by long-term antidepressant treatment. Science 219, 65–67.

    Article  PubMed  CAS  Google Scholar 

  57. Avissar, S. and Schreiber, G. (1992) Interaction of antibipolar and antidepressant treatments with receptor-coupled G proteins. Pharmacopsychiatry 25, 44–50.

    Article  PubMed  CAS  Google Scholar 

  58. Manji, H. K., Potter, W. Z., and Lenox, R. H. (1995) Signal transduction pathways. Molecular targets for lithium actions. Arch. Gen. Psychiatry 52, 531–543.

    Article  PubMed  CAS  Google Scholar 

  59. Coleman, D. E. and Sprang, St. R. (1996) How G proteins work: continuing story. TIBS 21, 41–44.

    PubMed  CAS  Google Scholar 

  60. Shih, M. and Malbon, C. C. (1994) Oligodeoxygnucleotides antisense to mRNA encoding protein kinase A, protein kinase C and ß-adrenergic receptor kinase reveal distinctive cell-type specific roles in agonist-induced desensitization. Proc. Natl. Acad. Sci. USA 91, 12,193–12, 197.

    Google Scholar 

  61. Döbbeling, U. and Berchtold, M. W. (1996) Down-regulation of the protein kinase A pathway by activators of protein kinase C and intracellular Cat+ fibroblast cells. FEBS Lett. 391, 131–133.

    Article  PubMed  Google Scholar 

  62. Assie, M. B., Broadhurst, A., and Briley, M. (1988) Is down-regulation of ß-adrenoceptors necessary for antidepressant activity? in New Concepts in Depression ( Briley, M. and Fil-lion, G., eds.). Macmillan, London, pp. 161–166.

    Google Scholar 

  63. Hoeffler, J. P., Deutsch, P. J., Lin, J., and Habener, J. E (1989) Cyclic adenosine monophosphate and phorbol esters—responsive signal transduction pathways converge at the level of transcriptional activation by the interactions of DNA-binding proteins. Mol. Endocrinol. 3, 868–880.

    Article  PubMed  CAS  Google Scholar 

  64. Nishizuka, Y. (1992) Intracellular signaling by hydrolysis phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  65. Faisst, S. and Meyers, S. (1992) Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 20, 3–26.

    Article  PubMed  CAS  Google Scholar 

  66. Hunter, T. and Karin, M. (1992) The regulation of transcription by phosphorylation. Cell 70, 375–387.

    Article  PubMed  CAS  Google Scholar 

  67. Jans, D. A. (1995) The regulation of protein transport to the nucleus by phosphorylation. Biochem. J. 311, 705–716.

    PubMed  CAS  Google Scholar 

  68. Vandromme, M., Gauthier-Rouviere, C., Lamb, N., and Fernandez, A. (1996) Regulation of transcription factor localization: fine tuning of gene expression. TIBS 21, 59–64.

    PubMed  CAS  Google Scholar 

  69. Hagiwara, M., Brindle, P., Harootunian, A., Armstrong R., Rivier, J., Vale, W., Tsien, R., and Montminy, M. R. (1993) Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol. Cell. Biol. 13, 4852–4859.

    PubMed  CAS  Google Scholar 

  70. Nestler, E. J., Terwilliger, R. Z., and Duman, R. S. (1989) Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J. Neurochem. 53, 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  71. Lee, K. A. W. and Masson, N. (1993) Transcriptional regulation by CREB and its relatives. Biochem Biophys. Acta 1174, 221–233.

    Google Scholar 

  72. Nestler, E. J., McMahon, A., Sabban, E. L., Tallman, J. T., and Duman, R. S. (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc. Natl. Acad. Sci. USA 87, 7522–7526.

    Article  PubMed  CAS  Google Scholar 

  73. Brady, L. S., Whitfield, H. J., Jr., Fox, R. J., Gold, R W., and Herkenham, M. (1991) Longterm antidepressant administration alters corticotropin releasing hormone, tyrosine hydroxylase and mineralocorticoid receptor gene expression in rat brain. J. Clin. Invest. 87, 831–837.

    Article  PubMed  CAS  Google Scholar 

  74. Peiffer, A., Veilleaux, S., and Barden, N. (1991) Antidepressant and other centrally acting drugs regulate glucocorticoid receptor messenger RNA levels in rat brain. Psychoneuroendocrinology 16, 505–515.

    Article  PubMed  CAS  Google Scholar 

  75. Hosoda, K. and Duman, R. S. (1993) Regulation of 3i-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J. Neurochem. 69, 1335–1343.

    Article  Google Scholar 

  76. Toth, M. and Shenk, T. (1994) Antagonist-mediated down-regulation of 5-hydroxytryptamine type 2 receptor gene expression: modulation of transcription. Mol. Pharmacol. 45, 1095–1100.

    PubMed  CAS  Google Scholar 

  77. Rossby, S. P., Nalepa, I., Huang, M., Burt, A., Perrin, C., Schmidt, D. E., and Sulser, E (1995) Norepinephrine-independent regulation of GRII mRNA in vivo by a tricyclic antidepressant. Brain Res. 687, 79–82.

    Article  PubMed  CAS  Google Scholar 

  78. Rossby, S. P., Perrin, C., Burt, A., Nalepa, I., Schmidt, D., and Sulser, F. (1996) Fluoxetine increases steady-state levels of preproenkephalin mRNA in rat amygdala by a serotonin dependent mechanism. J. Serotonin Res. 3, 69–74.

    Google Scholar 

  79. Rossby, S. R. and Sulser, F. (1993) Die Wirkmechanismen von Antidepressiva: ein historischer Rückblick und neue neurobiologische Aspekte. ZNS Journal, Forum für Psychiatrie und Neurologie 1, 10–19.

    Google Scholar 

  80. Schwaninger, M., Schöfl, C., Blume, R., Rössig, L., and Knepel, W. (1995) Inhibition by antidepressant drugs of cyclic AMP response element-directed gene transcription. Mol. Pharmacol. 47, 1112–1118.

    PubMed  CAS  Google Scholar 

  81. Nibuya, M., Nestler, E. J., and Duman, R. S. (1996) Chronic antidepressant administration increases the expression of CREB in rat hippocampus. J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  82. Nibuya, M., Morinobu, S., and Duman, R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatment. J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  83. Brown, J. R., Ye, H., Bronson, R. T., Dikkes, P., and Greenberg, M. E. (1996) A defect in nurturing in mice lacking the immediate early gene fos B. Cell 86, 297–309.

    Article  PubMed  CAS  Google Scholar 

  84. Seckl, J. R. and Fink, G. (1992) Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology 55, 621–626.

    Article  PubMed  CAS  Google Scholar 

  85. Brady, L. S., Gold, P. W., Herkenham, M., Lynn, A. B., and Whitfield, H. J. (1992) The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res. 572, 117–125.

    Article  PubMed  CAS  Google Scholar 

  86. Schweitzer, J. W., Schwartz, R., and Friedhoff, A. J. (1979) Intact presynaptic terminals required for 13-adrenergic receptor regulation by desipramine J. Neurochem. 33, 377–379.

    Article  PubMed  CAS  Google Scholar 

  87. Janowsky, A. J., Steranka, L. R., Gillespie, D. D., and Sulser, F. (1982) Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem. 39, 290–292.

    Article  PubMed  CAS  Google Scholar 

  88. Pepin, M. C., Govindan, M. V., and Barden, N. (1992) Increased glucocorticoid receptor gene promoter activity after antidepressant treatment. Mol. Pharmacol. 41, 1016–1022.

    PubMed  CAS  Google Scholar 

  89. Nobukuni, Y., Smith, C. L., Hager, G. L., and Detera-Wadleigh, S. D. (1995) Characterization of the human glucocorticoid receptor promoter. Biochemistry 34, 8207–8214.

    Article  PubMed  CAS  Google Scholar 

  90. Milner, R. J. and Sutcliffe, J. G. (1983) Gene expression in rat brain. Nucleic Acid Res. 11, 5497–5520.

    Article  PubMed  CAS  Google Scholar 

  91. Hyman, St. E. and Nestler, E. J. (1993) The Molecular Foundation of Psychiatry. American Psychiatric, Washington, D.C.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossby, S.P., Sulser, F. (1997). Antidepressants: Beyond the Synapse . In: Skolnick, P. (eds) Antidepressants. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-474-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-474-0_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-048-9

  • Online ISBN: 978-1-59259-474-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics