Skip to main content

Inflammatory Mechanisms of Alzheimer’s Disease

Basic Research, Clinical Studies, and Future Directions

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Basic research and clinical studies have established that inflammation may play a role in the neurodegeneration that characterizes Alzheimer’s disease (AD). Although inflammation is most likely to arise as a secondary response to more primary events in the development of AD, it is important to recognize that, secondary or not, brain inflammation almost always carries with it the potential to do as much or more damage than the etiology that gave rise to it. For example, the inflammation engendered by a blow to the head is often of greater neurologic consequence than the blow itself. In AD, moreover, there is evidence not only for the classical destructive mechanisms of peripheral inflammation, but also for idiosyncratic interactions of complement, cytokines, acute-phase reactants, and other inflammatory elements with AD pathology. For example, amyloid β peptide (Aβ) has been found to activate complement in an antibody-independent fashion (1, 2),as well as to activate microglia, stimulating them to produce reactive nitrogen intermediates and toxic cytokines, such as TNFα (3) and IL-1 (4). Aβ deposits are present from preclinical to terminal AD. This means that the AD brain harbors pervasive, chronic stimuli that can sustain opsonization, anaphylatoxin generation, complement lysis, cytokine production, and other inflammatory sequelae throughout the disease course. Accumulated over many years, it is difficult to imagine that these mechanisms, and others that they spawn, would not contribute substantially to AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiang, H., Burdick, D., Glabe, C. G., Cotman, C. W., and Tenner, A. J. (1994) ßamyloid activates complement by binding to a specific region of the collagen-like domain of the Clq chain. J. Immunol. 152, 5050–5059.

    PubMed  CAS  Google Scholar 

  2. Rogers, J., Cooper, N. R., Webster, S., Schultz, J., McGeer, P. L., Styren, S. D., Civin, W. H., Brachova, L., Bradt, B., Ward, P., and Lieberburg, I. Complement activation by (3-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 89, 10016–10020.

    Google Scholar 

  3. Meda, L., Cassatella, M. A., Szendrei, G. I., Otvos, L., Baron, P., Villalba, M., Ferrari, D., and Rossi, F. (1991) Activation of microglial cells by (3-amyloid protein and interferon-y. Nature 374, 647–650.

    Article  Google Scholar 

  4. Araki, W., Kitaguchi, N., Tokushima, Y., Ishli, K., Aratake, H., Shimohama, S., Nakamura, S., and Kimura, J. (1991) Trophic effect of ß-amyloid precursor protein on cerebral cortical neurons in culture. Biochem. Biophys. Res. Commun. 181, 265–271.

    Article  PubMed  CAS  Google Scholar 

  5. Andersen, K., Launer, L. J., Ott, A., Hoes, A. W., Breteler, M. M. B., and Hofman, A. (1995) Do nonsteroidal antiinflammatory drugs decrease the risk for Alzheimer’s disease? Neurology 45, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  6. Breitner, J. C. S., Gau, B. A., Welsh, K. A., Plassman, B. L., McDonald, W. M., Helmas, M. J., and Anthony, J. C. (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease. Neurology 44, 227–232.

    Article  PubMed  CAS  Google Scholar 

  7. Brachova, L., Lue, L. F., Schultz, J., El Rashidy, T., and Rogers, J. (1993) Association cortex, cerebellum, and serum concentrations of Clq and factor B in Alzheimer’s disease. Mol. Brain Res. 18, 329–334.

    Article  PubMed  CAS  Google Scholar 

  8. Broe, G. A., Henderson, A. S., Creasey, H., McCusker, E., Korten, H. E., Jorm, A. F., Longley, W., and Anthony, J. C. (1990) A casecontrol study of Alzheimer’s disease in Australia. Neurology 40, 1698–1707.

    Article  PubMed  CAS  Google Scholar 

  9. Canadian Study of Health and Aging. Risk factors for Alzheimer’s disease in Canada. Neurology 44, 2073–2080.

    Google Scholar 

  10. Graves, A. B., White, E., Koepsell, T. D., Reifler, B. V., van Belle, G., Larson, E. B., and Raskind, M. (1990) A casecontrol study of Alzheimer’s disease. Ann. Neurol. 28, 766–774.

    Article  PubMed  CAS  Google Scholar 

  11. Jenkinson, M. I., Bliss, M. R., Brain, A. T., and Scott, D. L. (1989) Rheumatoid arthritis and senile dementia of the Alzheimer’s type. Br. J. Rheumatol. 28, 86, 87.

    Google Scholar 

  12. Li, G., Shen, Y. C., Chen, C. H., Zhau, Y. W., and Silverman, J. M. (1992) A case-control study of Alzheimer’s disease in China. Neurology 42, 1481, 1482.

    Google Scholar 

  13. Lucca, U., Tettamanti, M., Forloni, G., and Spagnoli, A. (1994) Nonsteroidal anti-inflammatory drug use in Alzheimer’s disease. Biol. Psychiatry 36, 854–856.

    Article  PubMed  CAS  Google Scholar 

  14. McGeer, P. L., McGeer, E. G., Rogers, J., and Sibley, J. (1990) Anti-inflammatory drugs and Alzheimer’s disease. Lancet 335, 1037.

    Article  PubMed  CAS  Google Scholar 

  15. McGeer, P. L., Harada, N., Kimura, H., McGeer, E. G., and Schulzer, M. (1992) Prevalence of dementia amongst elderly Japanese with leprosy: apparent effect of chronic drug therapy. Dementia 3, 146–149.

    Google Scholar 

  16. Myllykangas-Luosujarvi, R. and Isomaki, H. (1994) Alzheimer’s disease and rheumatoid arthritis. Br. J. Rheumatol. 33, 501–502.

    Article  PubMed  CAS  Google Scholar 

  17. Rich, J. B., Rasmusson, D. X., Folstein, M. F., Carson, K., Kawas, C., and Brandt, J. (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 45, 51–55.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and Kogan, F. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611.

    Article  PubMed  CAS  Google Scholar 

  19. Luber-Narod, J. and Rogers, J. (1988) Immune system associated antigens expressed by cells of the human central nervous system. Neurosci. Lett. 94, 17–22.

    Article  PubMed  CAS  Google Scholar 

  20. McGeer, P. L., Itagaki, S., Tago, H., and McGeer, E. G. (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 79, 195–200.

    Article  PubMed  CAS  Google Scholar 

  21. Rogers, J., Singer, R. H., Luber-Narod, J., and Bassell, G. J. (1986) Neurovirologic and neuroimmunologic considerations in Alzheimer’s disease. Neurosci. Abstract 12, 944.

    Google Scholar 

  22. Styren, S. D., Civin, W. H., and Rogers, J. (1990) Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer disease brain. Exp. Neurol. 110, 93–104.

    Article  PubMed  CAS  Google Scholar 

  23. Tooyama, I., Kimura, H., Akiyama, H., and McGeer, P. L. (1990) Reactive micro-glia express class and class 11 major histocompatibility antigens in Alzheimer disease. Brain Res. 23, 273–280.

    Article  Google Scholar 

  24. Colton, C. A. and Gilbert, D. L. (1993) Microglia, an in viva sauce of reactive oxygen species in the brain. Adv. Neural. 59, 321–326.

    CAS  Google Scholar 

  25. Sawada, M., Suzumura, A., and Marunouchi, T. (1995) Induction of functional interleukin-2 receptor in mouse microglia. J. Neurochem. 64, 1973–1979.

    Article  PubMed  CAS  Google Scholar 

  26. Walker, D. G., Kim, S. U., and McGeer, P. L. (1995) Complement and cytokine gene expression in cultured microglia derived from post-mortem human brains. J. Neurosci. Res. 40, 478–493.

    Article  PubMed  CAS  Google Scholar 

  27. Yamabe, T., Dhir, G., Cowan, E. P., Wolf, A. L., Bergey, G. K., Krumholz, A., Barry, E., Hoffman, P. M., and Dhib-Jalbut, S. (1994) Cytokine-gene expression in measles-infected adult human glial cells. J. Neuroimmunol. 49, 171–179.

    Article  PubMed  CAS  Google Scholar 

  28. Wood, J. A., Wood, P. L., Ryan, R., Graff-Radford, N. R., Pilapil, C., Robitaille, Y., and Quirion, R. (1993) Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1ß or IL-1Ra but increases in the associated acute phase proteins IL-6, a2-macroglobulin and Creactive protein. Brain Res. 629, 245–252.

    Article  PubMed  CAS  Google Scholar 

  29. Abraham, C. R., Selkoe, D. J., and Potter, H. (1988) Immunochemical identification of the serine protease inhibitor, a,-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52, 487–501.

    Article  PubMed  CAS  Google Scholar 

  30. Licastro, F., Morini, M. C., Polazzi, E., and Davis, L. J. (1995) Increased serum alpha 1-antichymotrypsin in patients with probable Alzheimer’s disease: an acute phase reaction without the peripheral acute phase response. J. Neuroimmunol. 57, 71–75.

    Google Scholar 

  31. Licastro, F., Parnetti, L., Morini, M. C., Davis, L. J., Cucinotta, D., Gaiti, A., and Senin, U. (1995) Acute phase reactant alpha 1-antichymotrypsin is increased in cerebrospinal fluid and serum of patients with probable Alzheimer disease. Alz. Dis. Assoc. Disord. 9, 112–118.

    Article  CAS  Google Scholar 

  32. Lieberman, J., Schleissner, L. Tachiki, K. H., and Kling, A. S. (1995) Serum alpha antichymotrypsin level as a marker for Alzheimer-type dementia. Neurobiol. Aging 16, 747–753.

    Article  PubMed  CAS  Google Scholar 

  33. Rozemuller, J. M., Abbink, J. J., Kamp, A. M., Stam, F. C., Hack, C. E., and Eikelenboom, P. (1991) Distribution pattern and fuctional state of alpha 1-antichymotrypsin in plaques and vascular amyloid in Alzheimer’s disease. Acta Neuropathol. 82, 200–207.

    Article  PubMed  CAS  Google Scholar 

  34. Rozemuller, J. M., Stam, F. C., and Eikelenboom, P. (1990) Acute phase proteins are present in amorphous plaques in the cerebral but not in the cerebellar cortex of patients with Alzheimer’s disease. Neurosci. Lett. 119, 75–78.

    Article  PubMed  CAS  Google Scholar 

  35. Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Volk, B., and Berger, M. (1991) Interleukin-6 and a2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett. 285, 111–114.

    Google Scholar 

  36. Strauss, S., Bauer, J., Ganter, U., Jonas, U., Berger, M., and Volk, B. (1992) Detection of interleukin-6 and a2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab. Invest. 66, 223–230.

    PubMed  CAS  Google Scholar 

  37. Van Gool, D., De Strooper, B., Van Leuven, F., Triau, E., and Dom, R. (1993) a2-macroglobulin expression in neuritic-type plaques in patients with Alzheimer’s disease. Neurobiol. Aging 14, 233–237.

    Google Scholar 

  38. Smith, M. A., Kalaria, R. N., and Perry, G. (1993) Alpha 1-trypsin immunoreactivity in Alzheimer disease. Biochem. Biophys. Res. Commun. 193, 579–584.

    Article  PubMed  CAS  Google Scholar 

  39. Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., van Duinen, S., Shelanski, M. L., and Frangione, B. (1988) Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab. Invest. 58, 454–458.

    PubMed  CAS  Google Scholar 

  40. Duong, T., Pommier, E. C., and Schiebel, A. B. (1989) Immunodetection of the amyloid P component in Alzheimer’s disease. Acta Neuropathol. 78, 429–437.

    Article  PubMed  CAS  Google Scholar 

  41. Akiyama, H., Kawamata, T., Dedhar, S., and McGeer, P. L. (1991) Immunohistochemical localization of vitronectin, its receptor and 3–3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 32, 19–28.

    Article  PubMed  CAS  Google Scholar 

  42. Eikelenboom, P., Rozemuller, J. M., Kraal, G., Stam, F. C., McBride, P. A., Bruce, M. E., and Fraser, H. (1991) Cerebral amyloid plaques in Alzheimer’s disease but not in scrapie-affected mice are closely associated with a local inflammatory process. Virch. Archiv. B Cell Pathol. 60, 329–336.

    Article  CAS  Google Scholar 

  43. Eikelenboom, P., Zhan, S. S., Kamphorst, W., van der Valk, P., and Rozemuller, J. M. (1994) Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer’s disease. Virch. Archiv. 424, 421–427.

    CAS  Google Scholar 

  44. Frohman, E. M., Frohman, T. C., Gupta, S., de Fougerolles, A., and van den Noort, E. (1991) Expression of intercellular adhesion molecule-1 (ICAM-1) in Alzheimer’s disease. J. Neurol. Sci. 106, 105–111.

    Article  PubMed  CAS  Google Scholar 

  45. Verbeek, M. M., Otte-Holler, I., Westphal, J. R., Wesseling, P., Ruiter, D. J., and de Waal, R. M. W. (1994) Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer’s disease. Am. J. Pathol. 144, 104–116.

    PubMed  CAS  Google Scholar 

  46. Rosenman, S. J., Shrikant, P., Dubb, L., Benveniste, E. N., and Ransohoff, R. M. (1995) Cytokine-induced gene expression of vascular cell adhesion molecule-1 (VCAM-1) in astrocytes and astrocytoma cell lines. J. Immunol. 154, 1888–1899.

    PubMed  CAS  Google Scholar 

  47. Cacabelos, R., Alvarez, X. A., Fernandez-Novoa, L., Franco A., Mangues, R., Pellicer, A., and Nishimura, T. (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Findings Exp. Clin. Pharmacol. 16, 141–145.

    CAS  Google Scholar 

  48. Cacabelos, R., Alverez, X. A., Franco-Maside, A., Fernandez-Novao, L., and Caamano, J. (1994) Serum tumor necrosis factor (TNF) in Alzheimer’s disease and multi-infarct dementia. Methods Findings Exp. Clin. Pharmacol. 16, 29–35.

    CAS  Google Scholar 

  49. Fillit, H., Ding, W., Buee, L., Kalman, J., Altstiel, L., Lawlor, B., and Wolf-Klein, G. (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci. Lett. 129, 318–320.

    Article  PubMed  CAS  Google Scholar 

  50. Griffin, W. S. T., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., White, C. D., and Araoz, C. (1989) Brain interleukin 1 and S-100 immuno-reactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86, 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  51. Rozemuller, J. M., Eikelenboom, P., Pals, S. T., and Stam, F. C. (1989) Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci. Lett. 101, 228–292.

    Article  Google Scholar 

  52. Griffin, W. S., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  53. Shalit, F., Sredni, B., Stern, L., Kott, E., and Huberman, M. (1994) Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neurosci. Lett. 174, 130–132.

    Article  PubMed  CAS  Google Scholar 

  54. Sharif, S. F., Hariri, R. J., Chang, V. A., Bark, P. S., Wang, R. S., and Ghajar, J. B. (1993) Human astrocyte production of tumour necrosis factor-alpha, interleukin-1 beta and interleukin-6 following exposure to lipopolysaccharide endotoxin. Neurol. Res. 15, 109–112.

    PubMed  CAS  Google Scholar 

  55. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1995) Microglial interleukin-1 alpha expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution. Neuropathol. Appl. Neurobiol. 21, 290–301.

    Article  PubMed  CAS  Google Scholar 

  56. Koller, M., Hensler, T., Konig, B., Prevost, G., Alouf, J., and Konig, W. (1993) Induction of heat-shock proteins by bacterial toxins, lipid mediators and cytokines in human leukocytes. Infect. Dis. 278, 365–376.

    CAS  Google Scholar 

  57. Griffin, W. S. T., Sheng, J. G., Gentleman, S. M., Graham, D. I., Mrak, R. E., and Roberts, G. W. (1994) Microglial interleukin-la expression in human head injury: correlations with neuronal and neuritic ß-amyloid precursor protein expression. Neurosci. Lett. 176, 133–136.

    Article  PubMed  CAS  Google Scholar 

  58. Griffin, W. S. T., Sheng, J. G., Ito, K., Skinner, R. D., Mrak, R. E., Rovnaghi, C. R., and Van Eldik, L. J. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol. Aging,in press.

    Google Scholar 

  59. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T. (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol. 26, 816–823.

    Article  PubMed  CAS  Google Scholar 

  60. Giulian, D., Woodward, J., Young, D. G., Krebs, J. F., and Lachman, L. B. (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J. Neurosci. 8, 2485–2490.

    PubMed  CAS  Google Scholar 

  61. Barnum, S. R., Jones, J. L., and Benveniste, E. N. (1993) Interleukin-1 and tumor necrosis factor-mediated regulation of C3 gene expression in human astroglioma cells. Gila 7, 225–236.

    Article  CAS  Google Scholar 

  62. Barnum, S. R. and Jones, J. L. (1995) Differential regulation of C3 gene expression in human astroglioma cells by interferon-gamma and interleukin-1 beta. Neurosci. Lett. 197, 121–124.

    Article  PubMed  CAS  Google Scholar 

  63. Marshak, D. R., Pesce, S. A., Stanley, L. C., and Griffin, W. S. T. (1991) Increased S100ß neurotrophic activity in Alzheimer disease temporal lobe. Neurobiol. Aging 13, 1–7.

    Article  Google Scholar 

  64. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T. (1996) Correlation of astrocytic S1000 expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 55, 273–279.

    Article  PubMed  CAS  Google Scholar 

  65. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1994) S1000 protein expression in Alzheimer’s disease: potential role in the pathogenesis of neuritic plaques. J. Neuro-sci. Res. 39, 398–403.

    Article  CAS  Google Scholar 

  66. Van Eldik, L. J. and Griffin, W. S. T. (1994) S100ß expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochem. Biophys. Acta 39, 398–404.

    Google Scholar 

  67. Itagaki, S., Akiyama, H., Saito, H., and McGeer, P. L. (1994) Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res. 645, 78–84.

    Article  PubMed  CAS  Google Scholar 

  68. Webster, S. D., Lue, L. F., McKinley, M., and Rogers, J. (1992) Ultrastructural localization of complement proteins to neuronal membranes and ß-amyloid peptide containing Alzheimer’s disease pathology. Neurosci. Abstract 18, 765.

    Google Scholar 

  69. Brachova, L., Lue, L. F., Byttner, S., Sue, L., Civin, W. H., Schultz, J., Tuohy, J., and Rogers, J. (1993) Reduced complement activation in nondemented patients with excessive /3-amyloid peptide deposition. Neurosci. Abstract 19, 833.

    Google Scholar 

  70. Eikelenboom, P., Hack, C. E., Rozemuller, J. M., and Stam, F. C. (1989) Complement activation in amyloid plaques in Alzheimer’s dementia. Virch. Arch. B Cell Pathol. 56, 259–262.

    Article  CAS  Google Scholar 

  71. Ishii, T. and Haga, S. (1984) Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol. (Berl.) 63, 296–300.

    Article  CAS  Google Scholar 

  72. Lue, L. F. and Rogers, J. (1992) Full complement activation fails in diffuse plaques of the Alzheimer’s disease cerebellum. Dementia 3, 308–313.

    Google Scholar 

  73. McGeer, P. L., Aklyama, H., Itagaki, S., and McGeer, E. G. (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. 107, 341–346.

    Article  PubMed  CAS  Google Scholar 

  74. Fischer, B, Schmol, H., Riederer, P., Bauer, J., Platt, D., and Popa-Wagner, A. (1995) Complement Clq and C3 mRNA expression in the frontal cortex of Alzheimer’s patients. J. Mol. Med. 73, 465–471.

    Article  PubMed  CAS  Google Scholar 

  75. Johnson, S. A., Lampert-Etchells, M., Pasinetti, G. M., Rozovsky, I., and Finch, C. E. (1992) Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning. Neurobiol. Aging 13, 641–648.

    Article  PubMed  CAS  Google Scholar 

  76. Walker, D. G. and McGeer, P. L. (1992) Complement gene expression in human brain: comparison between normal and Alzheimer disease cases. Mol. Brain Res. 14, 106–109.

    Article  Google Scholar 

  77. Dinarello, C. A. and Wolff, S. M. (1993) The role of interleukin-1 in disease. N. Engl. J. Med. 328, 106–113.

    Article  PubMed  CAS  Google Scholar 

  78. McGeer, P. L., Aklyama, H., Itagaki, S., and McGeer, E. G. (1989) Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci. 16, 516–527.

    PubMed  CAS  Google Scholar 

  79. Kalaria, R. N. and Kroon, S. N. (1992) Complement inhibitor C4-binding protein in amyloid deposits containing serum amyloid P in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 186, 461–466.

    Article  PubMed  CAS  Google Scholar 

  80. Tuohy, J. M., Schultz, J. J., Brachova, L., Lue, L. F., and Rogers, J. (1993) Evidence of increased levels of C4 binding protein in Alzheimer’s disease. Soc. Neuro-sci. Abstract 19, 834.

    Google Scholar 

  81. Akiyama, H., Yamada, T., Dawamata, T., and McGeer, P. L. (1991) Association of amyloid P component with complement proteins in neurologically diseased tissue. Brain Res. 8, 349–352.

    Article  Google Scholar 

  82. Choi-Miura, N. H., Ihara, Y., Fukuchi, K., Takeda, M., Nakano, Y., Tobe, T., and Tomita, M. (1992) SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol. 83, 260–264.

    Article  PubMed  CAS  Google Scholar 

  83. Mirra, S. S., Heyman, A., and McKeel, D. (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuro-pathological assessment of Alzheimer’s disease. Neurology 41, 479–486.

    Article  PubMed  CAS  Google Scholar 

  84. May, P. C., Lampert-Etchells, M., Johnson, S. A., Poirier, J., Masters, J. N., and Finch, C. E. (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5, 831–839.

    Article  PubMed  CAS  Google Scholar 

  85. May, P. C. and Finch, C. E. (1992) Sulfated glycoprotein 2: New relationships of this multifunctional protein to neurodegeneration. Trends Neurosci. 15, 391–396.

    Article  PubMed  CAS  Google Scholar 

  86. McGeer, P. L., Kawamata, T., and Walker, D. G. (1992) Distribution of clusterin in Alzheimer brain tissue. Brain Res. 579, 337–341.

    Article  PubMed  CAS  Google Scholar 

  87. Meri, S., Morgan, B. P., Davies, A., Daniels, R. H., Olavesen, M. G., Waldman, H., and Lachmann, P. J. (1990) Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bylayers. Immunology 71, 1–9.

    PubMed  CAS  Google Scholar 

  88. McGeer, P. L., Walker, D. G., Akiyama, H., Kawamata, T., Guan, A. L., Parker, C. J., Okada, N., and McGeer, E. G. (1991) Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain. Brain Res. 544: 315–319.

    Article  PubMed  CAS  Google Scholar 

  89. Oda, T., Wals, P., Osterburg, H. H., Johnson, S. A., Pasinetti, G. M., Morgan, T. E., Rozovsky, I., Stine, W. B., Snyder, S. W., and Holzman, T.F., et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp. Neurol. 136, 22–31.

    Article  PubMed  CAS  Google Scholar 

  90. Rogers, J., Luber-Narod, J., Styren S. D., and Civin, W. H. (1988). Expression of immune system-associated antigen by cells of the human central nervous system. Relationship to the pathology of Alzheimer disease. Neurobiol. Aging 9, 339–349.

    Article  PubMed  CAS  Google Scholar 

  91. Akiyama, H. and McGeer, P. L. (1990) Brain microglia constituvely express 0–2 integrins. J. Neuroimmunol. 30, 81–93.

    Article  PubMed  CAS  Google Scholar 

  92. Ban, E. M., Sarlieve, L. L., and Haour, F. G. (1993) Interleukin-1 binding sites on astrocytes. Neuroscience 52, 725–733.

    Article  PubMed  CAS  Google Scholar 

  93. Brenneman D. E., Page, S. W., Schultzberg, M., Thomas, F. S., Zelazowski, P., Burnet, P., Avidor, R., and Sternberg, E. M. (1993) A decomposition product of a contaminant implicated in L-tryptophan eosinophilia myalgia syndrome affects spinal cord neuronal cell death and survival through stereospecific, maturation and partly interleukin-l-dependent mechanisms. J. Pharmacol. Exp. Ther. 266, 1029–1035.

    PubMed  CAS  Google Scholar 

  94. Brenneman, D. E., Schultzberg, M., Bartfai, T., and Gozes, I. (1992) Cytokine regulation of neuronal survival. J. Neurochem. 58, 454–460.

    Article  PubMed  CAS  Google Scholar 

  95. Das, S. and Potter, H. (1995) Expression of the Alzheimer amyloid-promoting factors a,-antichymotrypsin and apolipoprotein E is induced in astrocytes by IL-1. Neuron 14, 447–456.

    CAS  Google Scholar 

  96. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. Apolipoprotein E distribution among different plaque types in Alzheimer’s disease: implications for its role in cytokine-driven plaque progression. Neuropathol. Appl. Neurobiol. in press.

    Google Scholar 

  97. Strittmatter, W.J. and Roses, A. D. (1995) Apolipoprotein E: emerging story in the pathogenesis of Alzheimer’s disease. Neuroscientist 1, 298–306.

    Article  CAS  Google Scholar 

  98. Buxbaum, J. D., Oishi, M., Chen, H.I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E., and Greengard, P. (1992) Cholinergic agonists and interleukin-1 regulate processing and secretion of the Alzheimer b/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA 89, 10,075–10, 078.

    Google Scholar 

  99. Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angeretti, N. (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Mol. Brain Res. 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  100. Goldgaber, D., Harris, H. W., Hla, T., Maciag, T., Donnelly, R. J., Jacobsen, J. S., Vitek, M. P., and Gajdusek, C. (1989) Interleukin-1 regulates synthesis of amyloid 0-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 86, 7606–7610.

    Article  PubMed  CAS  Google Scholar 

  101. Gray, C. W. and Patel, A. J. (1993) Regulation of 0-amyloid precursor protein isoform mRNAs by transforming growth factor-b1 and interleukin-10 in astrocytes. Mol. Brain Res. 19, 251–256.

    Article  PubMed  CAS  Google Scholar 

  102. Barger, S. W., Smith-Swintosky, V. L., Rydel, R. E., and Mattson, M. (1993) 0-amyloid precursor protein mismetabolism and loss of calcium homeostasis in Alzheimer’s disease. Ann. NY Acad. Sci. 695, 158–164.

    Google Scholar 

  103. Araujo, D. M. and Cotman, C. W. (1992) 0-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.

    Google Scholar 

  104. Gitter, B. D., Cox, L. M., Rydel, R. E., and May, P. C. (1995) Amyloid beta peptide (Ab) potentiates cytokine secretion by interleukin-lß activated human astrocytoma cells. Proc. Natl. Acad. Sci. USA 92, 10,738–10, 741.

    Google Scholar 

  105. Webster, S., Glabe, C., and Rogers, J. (1995) Multivalent binding of complement protein Clq to the amyloid 0-peptide promotes the nucleation phase of Ab aggregation. Biochem. Biophys. Res. Commun. 217, 869–875.

    Article  PubMed  CAS  Google Scholar 

  106. Webster, S., O’Barr, S., and Rogers, J. (1994) Enhanced aggregation and ß structure of amyloid ß peptide after coincubation with Clq. J. Neurosci. Res. 39, 448–456.

    Article  PubMed  CAS  Google Scholar 

  107. Webster, S. and Rogers, J. Relative efficacies of amyloid ß peptide (Aß) binding proteins in Aß aggregation. J. Neurosci. Res. in press.

    Google Scholar 

  108. Haga, S., Ikeda, K., Sato, M., and Ishii, T. (1993) Synthetic Alzheimer amyloid beta/A4 peptides enhance production of complement 3 component by cultured microglial cells. Brain Res. 601, 88–94.

    Article  PubMed  CAS  Google Scholar 

  109. Brown, G. C., Bolanos, J. P., Heales, S. J. R., and Clark, J. B. (1995) Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci. Lett. 193, 201–104.

    Article  PubMed  CAS  Google Scholar 

  110. Jiang, H., Robey, F. A., and Gewurz, H. (1992) Localization of sites through which C-reactive protein binds and activates complement to residues 14–26 and 76–92 of the human Clq A chain. J. Exp. Med. 175, 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  111. Fraser, P. E., Nguyen, J. T., McLachlan, D. R., Abraham, C. R., and Kirschner, D. A. (1993) a,-Antichymotrypsin binding to Alzheimer Ab peptides is sequence specific and induces fibril disaggregation in vitro. J. Neurochem. 61, 298–305.

    Google Scholar 

  112. Pike, C. J., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. (1991) In vitro aging of 0-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 56, 311–314.

    Article  Google Scholar 

  113. Schultz, J., Schaller, J., McKinley, M., Bradt, B., Cooper, N., May, P., and Rogers, J. (1994) Enhanced cytotoxicity of amyloid 0-peptide by a complement dependent mechanism. Neurosci. Lett. 175, 99–102.

    Article  PubMed  CAS  Google Scholar 

  114. Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990) Neurotrophic and neuro-toxic effects of amyloid-beta protein: reversal by tachykinin neuropeptides. Science 250, 279–282.

    Article  PubMed  CAS  Google Scholar 

  115. Ma, J., Yee, A., Brewer, H. B., Das, S., and Potter, H. (1994) Amyloid-associated proteins a,-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer ß-protein into filaments. Nature 372, 92–94.

    CAS  Google Scholar 

  116. Hamazaki, H. (1995) Amyloid P component promotes aggregation of Alzheimer’s beta-amyloid peptide. Biochem. Biophys. Res. Commun. 211, 349–353.

    Article  PubMed  CAS  Google Scholar 

  117. Tennent, G. A., Loyal, L. B., and Pepys, M. B. (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl. Acad. Sci. USA 92, 4299–4303.

    Article  PubMed  CAS  Google Scholar 

  118. Cooper, N.R. The classical complement pathway: activation and regulation of the first complement component. Adv. Immunol. 37, 151–157.

    Google Scholar 

  119. Heyman, A., Wilkinson, W. E., Stafford, J. A., Helms, M. J., Sigmon, A. H., and Weinberg, T. (1984) Alzheimer’s disease: a study of epidemiological aspects. Ann. Neurol. 15, 335–341.

    Article  PubMed  CAS  Google Scholar 

  120. French, L. R., Schuman, L. M., Mortimer, J. A., Hutton, J. T., Boatman, R. A., and Christians, B. (1985) A case-control study of dementia of the Alzheimer’s type. Am. J. Epidemiol. 121, 414–421.

    PubMed  CAS  Google Scholar 

  121. Walker, D. G., Yasuhara, O., Patston, P. A., McGeer, E. G., and McGeer, P. L. (1995) Complement Cl inhibitor is produced by brain tissue and is cleaved in Alzheimer disease. Brain Res. 675, 75–82.

    Article  PubMed  CAS  Google Scholar 

  122. Ban, E. M., Haour, F. G., and Lenstra, R. (1992) Brain interleukin-1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine 4, 48–54.

    Article  PubMed  CAS  Google Scholar 

  123. Hickey, W. F., Hsu, B. L., and Kimura, H. (1991) T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260.

    Article  PubMed  CAS  Google Scholar 

  124. Lassman, H., Zimprich, H., Rossler, K., and Vass, K. (1991) Inflammation in the nervous system. Basic mechanisms and immunological concepts. Rev. Neurol. Paris 147, 763–781.

    Google Scholar 

  125. Wekerle, H., Linington, H., Lassman, H., and Meyermann, R. (1986) Cellular immune reactivity within the CNS. Trends Neurosci. 9, 271–277.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, J., Griffin, W.S.T. (1998). Inflammatory Mechanisms of Alzheimer’s Disease. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-473-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-473-3_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5961-7

  • Online ISBN: 978-1-59259-473-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics