β-amyloid-Derived Free Radical Oxidation

A Fundamental Process in Alzheimer’s Disease
  • D. Allan Butterfield
  • Kenneth Hensley
  • Nathan Hall
  • Ramachandran Subramaniam
  • Beverly J. Howard
  • Pamela Cole
  • Servet Yatin
  • Michael LaFontaine
  • Marni E. Harris
  • Marina Aksenova
  • Michael Aksenov
  • John M. Carney
Part of the Contemporary Neuroscience book series (CNEURO)


Alzheimer’s disease (AD) research has progressed greatly since the first description of AD by Alzheimer (1) very early in this century. Three pathological hallmarks of AD are:
  1. 1.

    The presence in certain brain regions of senile plaques (SP), entities composed of aggregated β-amyloid surrounded by dystrophic neurites and other moieties;

  2. 2.

    Neurofibrillary tangles (NFT), primarily composed of phosphorylated τ, a cytoskeletal protein, and other moieties; and

  3. 3.

    Loss of synapses (2–4).



Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Protein Oxidation Spin Label Senile Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alzheimer, L. (1907) Uber eine eigenartige erkraankung der hirnrince. Centralblatt Nervenheil Kunde Psychiat. 30, 177–179.Google Scholar
  2. 2.
    Katzman, R. and Saitoh, T. (1991) Advances in Alzheimer’s Disease, FASEB J. 4, 278–286.Google Scholar
  3. 3.
    Butterfield, D. A. (1986) Spectroscopic methods in degenerative neurological diseases, Crit. Rev. Neurobiol. 2, 169–240.Google Scholar
  4. 4.
    Sheff, S. W. and Price, D. A. (1993) Synapse loss in temporal lobe in Alzheimer’s disease, Ann. Neurol. 33, 190–199.CrossRefGoogle Scholar
  5. 5.
    Hensley, K., Butterfield, D. A., Hall, N., Cole, P., Subramaniam, R., Mark, R., Mattson, M. P., Markesbery, W. R., Harris, M. E., Aksenov, M., Aksenova, M., Wu, J. F., and Carney, J. M. (1995) Reactive oxygen species as casual agents in the neurotoxicity of the Alzheimer’s disease-associated amyloid beta peptide, Ann. NYAcad. Sci. 786, 120–124.Google Scholar
  6. 6.
    Halliwell, B. and Gutteridge, J. M. C. (1989) Free Radicals in Biology and Medicine, Clarendon, Oxford.Google Scholar
  7. 7.
    Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, P., Wu, J. F., Carney, J. M., Lovell, M., Markesbery, W. R., and Butterfield, D. A. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation, J. Neurochem. 65, 2146–2156.CrossRefPubMedGoogle Scholar
  8. 8.
    Markesbery, W. R., Lovell, M. A., and Ehmann, W. D. (1994) Brain trace metals in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 353–367.Google Scholar
  9. 9.
    Parker, W. D., Jr., Parks, J., Filley, C. M., and Kleinschmidt-Demasters, B. K. (1994) Electron transport chain defects in Alzheimer’s disease brain, Neurology 44, 1090–1096.CrossRefPubMedGoogle Scholar
  10. 10.
    Nutisya, E. M., Bowling, A. C., and Beal, M. F. (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63, 2179–2184.Google Scholar
  11. 11.
    Smith, M. A., Taneda, S., Richey, P. L., Mikyata, S., Yan, S., Stern, D., Sayer, L., Monnier, V. M., and Perry, G. (1994) Advanced maillard reaction end products are associated with Alzheimer disease pathology, Proc. Natl. Acad. Sci. USA 91, 5710–5714.CrossRefPubMedGoogle Scholar
  12. 12.
    Colton, C. A., Snell, J., Chernyshev, O., and Gilbert, D. L. (1994) Induction of superoxide anion and nitric oxide production in cultured microglia, Ann. NYAcad. Sci. 738, 54–63.CrossRefGoogle Scholar
  13. 13.
    Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A. (1994) A model for f3-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease, Proc. Natl. Acad. Sci. USA 91, 3270–3274.CrossRefPubMedGoogle Scholar
  14. 14.
    Butterfield, D. A., Hensley, K., Harris, M., Mattson, M. P., and Carney, J. M. (1994) 0- amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease, Biochem. Biophys. Res. Commun. 200, 710–715.Google Scholar
  15. 15.
    Hensley, K., Aksenova, M., Carney, J. M., and Butterfield, D. A. (1995) Amyloid 13-peptide spin trapping I: enzyme toxicity is related to free radical spin trap reactivity, NeuroReport 6, 489–493.Google Scholar
  16. 16.
    Hensley, K., Aksenova, M., Carney, J. M., and Butterfield, D. A. (1995) Amyloid 0-peptide spin trapping II: Evidence for decomposition of the PBM spin adduct, NeuroReport 6, 493–496.Google Scholar
  17. 17.
    Hensley, K., Butterfield, D. A., Aksenova, M., Harris, M., Wu, J., Floyd, R., Mattson, M., and Carney, J. M. (1995) A model for 0-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of peptide-derived free radicals to Alzheimer’s disease, Proc. Western Pharmacol. Soc. 38, 113–120.Google Scholar
  18. 18.
    Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. E., and Carney, J. M. (1995) Direct evidence of oxidative injury by the Alzheimer’s amyloid 3 peptide in cultured hippocampal neurons, Exp. Neurol. 131, 193–202.CrossRefPubMedGoogle Scholar
  19. 19.
    Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid 0-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Cat+ homeostasis and cell death, J. Neurosci. 15, 6239–6249.PubMedGoogle Scholar
  20. 20.
    Mattson, M. P., Carney, J. M., and Butterfield, D. A. (1995) Glycation: a tombstone in AD? Nature 373, 481.CrossRefPubMedGoogle Scholar
  21. 21.
    Aksenov, M. Y., Aksenova, M. V., Harris, M. E., Hensley, K., Butterfield, D. A., and Carney, J. M. (1995) Enhancement ofA0(1–40) neurotoxicity by glutamine synthetase, J. Neurochem. 65, 1899–1902.CrossRefPubMedGoogle Scholar
  22. 22.
    Subramaniam, R., Howard, B. J., Hensley, K., Aksenova, M., Carney, J. M., and Butterfield, D. A. (1995) ß-Amyloid (32–35) generates reactive free radicals that are toxic to biomolecules: implications to Alzheimer’s disease, Alzheimer’s Res. 1, 141–144.Google Scholar
  23. 23.
    Butterfield, D. A., Martin, L., Carney, J. M., and Hensley, K. (1996) Aß(25–35) peptide displays H2O2-like reactivity towards aqueous Fez+, nitroxide spin probes, and synaptosomal membrane proteins, Life Sci. 58, 217–228.CrossRefPubMedGoogle Scholar
  24. 24.
    Harris, M. E., Carney, J. M., Cole, P., Hensley, K., Howard, B. J., Martin, L., Bummer, P., Wang, Y., Pedigo, N., and Butterfield, D. A. (1995) ß-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications to Alzheimer’s disease, NeuroReport 6, 1875–1879.Google Scholar
  25. 25.
    Behl, C., Davis, J. B., Lesley, R., and Shubert, D. (1994) Hydrogen peroxide medicates amyloid ß protein toxicity, Cell 77, 817–827.CrossRefPubMedGoogle Scholar
  26. 26.
    Goodman, Y., Steiner, M. R., Steiner, S. M., and Mattson, M. P. (1994) Nordihydroguaiaretic acid protects hippocampal neurons against amyloid, (3-peptide toxicity, and attentuates free radical and calcium accumulation, Brain Res. 654, 171–176Google Scholar
  27. 27.
    Selkoe, D. J. (1994) Alzheimer’s disease: a central role for amyloid, J. Neuropathol. Exp. Neurol. 53, 438–447.CrossRefPubMedGoogle Scholar
  28. 28.
    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagoplan, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., MontoyaZavala, M., Mucke, L., Paganini, L., Permiman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, F., Vital, J., Wadsworth, S., Wolozin, B., and Zhao, J. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F ß-amyloid precursor protein, Nature 373, 523–527.CrossRefPubMedGoogle Scholar
  29. 29.
    Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. (1993) Neurodegeneration induced by ß-amyloid peptides in vitro: role of peptide assembly state, J Neurosci. 13, 1676–1687.PubMedGoogle Scholar
  30. 30.
    Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henshen, A., Yates, J., Cotman, C., and Glabe, C. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/13-amyloid peptide analogs, J Biol. Chem. 267, 546–554.PubMedGoogle Scholar
  31. 31.
    Yankner, B. A., Duffy, L. K., and Kirschnier, D. A. (1990) Neurotrophic and neurotoxic effects of amyloid ß-protein: reversal by tachykinin neuropeptides, Science 250, 279–282.CrossRefPubMedGoogle Scholar
  32. 32.
    Jarrett, J. T., Berber, E. P., and Lansbury, P. T. (1992) The carboxy terminus of the ß-amyloid protein is critical in the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease, Biochemistry 32, 4693–4697.CrossRefGoogle Scholar
  33. 33.
    Jarrett, J. T. and Lansbury, P. T. (1993) “One-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease? Cell 73, 1053–1058.Google Scholar
  34. 34.
    Tomski, S. and Murphy, R. M. (1992) Kinetics of aggregation of synthetic ß-amyloid peptides. Arch. Biochem. Biophys. 294, 630–638.CrossRefPubMedGoogle Scholar
  35. 35.
    Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., and Ryel, R. E. (1992) ß-amyloid precursor protein metabolites and loss of neuronal Cat+ homeostasis Alzheimer’s disease, Trends Neurosci. 16, 409–414.CrossRefGoogle Scholar
  36. 36.
    Butterfield, D. A. (1982) Spin labeling in disease, Biol. Magn. Reson. 4, 1–78.Google Scholar
  37. 37.
    Janzen, E. G. (1980) A Critical Review of Spin Trapping in biological systems, in Free Radicals in Biology, vol. 4 ( Pryor, W. A., ed.), Academic, New York, pp. 115–154.Google Scholar
  38. 38.
    Chan, W. K. M., Decker, E. A., Lee, J., and Butterfield, D. A. (1994) EPR spin trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides, J. Agricultural and Food Chemistry 42, 1407–1410.CrossRefGoogle Scholar
  39. 39.
    May, P. C., Gitter, B. D., Waters, D. C., Simmons, L. K., Becker, G. W., Small, J. S., and Robinson, P. M. (1992) ß-amyloid peptide in vitro toxicity: lot-to-lot variability, Neurobiol. Aging 13, 605–607.CrossRefPubMedGoogle Scholar
  40. 40.
    Simmons, L. K., May, P. C., Tomaselli, K. J., Ryel, R. E., Fuson, K. S., Brigham, E. F., Wright, S., Lieberburg, I., Becker, G. W., Brems, D. N., and Li, W. Y. (1994) Secondary structure of amyloid 13 peptide correlates with neurotoxic activity in vitro, Mol. Pharmacol. 45, 373–379.PubMedGoogle Scholar
  41. 41.
    Smith, C. D., Carney, J. M., Tatsumo, T., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. (1992) Protein oxidation in aging brain, Ann. NYAcad. Sci. 663, 110–119.CrossRefGoogle Scholar
  42. 42.
    Oliver, C. N., Ahn, B. W., Moerman, E. J., Boldstein, S., and Stadtman, E. R. (1987) Age-related changes in oxidized proteins, J. Biol. Chem. 262, 5488–5491.PubMedGoogle Scholar
  43. 43.
    Schoneich, C., Zhao, F., Madden, K. P., and Bobrowski, K. (1994) Side chain fragmentation of N-terminal threonine or serine residue induced through intramolecular protien transfer to hydioxy sulfuranyl radical formed at neighboring methionine in dipeptides, J. Am. Chem. Soc. 116, 4641–4652.CrossRefGoogle Scholar
  44. 44.
    Dado, G. R. and Gellman, S. H. (1994) Redox control of secondary structure in a designed peptide, J. Am. Chem. Soc. 115, 12609–12610.CrossRefGoogle Scholar
  45. 45.
    Pike, C. J., Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G., and Cotman, C. W. (1995) Structure—activity analyses of 13-amyloid peptides: contributions of the 1325–35 region to aggregation and neurotoxicity, J. Neurochem. 64, 253–265.CrossRefPubMedGoogle Scholar
  46. 46.
    Synder, S. W., Ladror, U. S., Wade, W. S., Wang, G. T., Barrett, L. W., Matayoshi, E. D., Huffaker, J. H., Krafft, G. A., and Holzman, T. F. (1995) Amyloid-13 aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths, Biophys. J. 67, 1216–1228.CrossRefGoogle Scholar
  47. 47.
    Naslund, J., Schierhorn, A., Hellman, U., Lanfelt, L., Roses, A. D., Tjernberg, L. O., Siberring, J., Gandy, S. E., Winblad, B., Greengard, R, Nordstedt, C., and Terenius, L. (1994) Relative abundance of alzheimer A13-amyloid peptide variants in Alzheimer disease and normal aging, Proc. Natl. Acad. Sci. USA 91, 8378–8382.CrossRefPubMedGoogle Scholar
  48. 48.
    Terzi, E., Holzemann, G., and Seelig, J. (1994) Alzheimer beta-amyloid peptide 25–35: electrostatic interactions with phospholipid membranes. Biochemistry 33, 7434–7441.CrossRefPubMedGoogle Scholar
  49. 49.
    Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L. M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunders, A. M., Goldgaber, D., and Roses, A. D. (1993) Binding of human Apolipoprotein E to synthetic amyloid 13 peptide: isofrom-specific effects and implications for late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 90, 8098–8102.CrossRefPubMedGoogle Scholar
  50. 50.
    Selkoe, D. J. (1991) The molecular pathology of Alzheimer’s disease, Neuron 6, 487–498.CrossRefPubMedGoogle Scholar
  51. 51.
    Corain, B., Iqbal, K., Nicolini, B., Wisniewshi, H., and Zatta, P., Winblad, B. (eds.) (1993) Alzheimer’s Disease: Advances in Clinical and Basic Research, Wiley, New York.Google Scholar
  52. 52.
    Smith, C. D., Carney, J. M., Starke-Reed, R E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease, Proc. Natl. Acad. Sci. USA 88, 10540–10543.CrossRefPubMedGoogle Scholar
  53. 53.
    Carney, J. M., Starke-Reed, R. E., Oliver, C. N., Landrum, R. W., Cheng, M., Wu, J. F., and Floyd, R. A. (1991) reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone, Proc. Nad. Acad. Sci. USA 88, 3633–3636.Google Scholar
  54. 54.
    Smith, C. D., Carney, J. M., Tatsumo, T., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. (1992) Protein oxidation in ageing brain, Ann. NYAcad. Sci. 663, 110–119.CrossRefGoogle Scholar
  55. 55.
    Starke-Reed, P. E. and Oliver, C. N. (1989) Protein oxidation and proteolysis during aging and oxidative stress, Arch. Biochem. Biophys. 275, 559–567.CrossRefPubMedGoogle Scholar
  56. 56.
    Prusiner, S. B. (1992) Biology and genetics of prion diseases, Biochemistry 31, 12277–12288.CrossRefPubMedGoogle Scholar
  57. 57.
    Minetti, M. and Scorza, G. (1991) Hypoxia-stimulated reduction of doxyl stearic acids in human red blood cells, Biochim. Biophys. Acta. 1074, 112–117.CrossRefPubMedGoogle Scholar
  58. 58.
    Kang, J., Lemair, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeshik, K. H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. (1987) The precursor of Alzheimer’ disease A4 protein resembles a cell-surface receptor, Nature 325, 733–736.CrossRefPubMedGoogle Scholar
  59. 59.
    Umhauer, S. A., Isbell, B. I., and Butterfield, D. A. (1992) Spin labeling or membrane proteins in mammalian brain synaptic plasma membranes: partial characterization, Anal. Lett. 25, 1201–1215.CrossRefGoogle Scholar
  60. 60.
    Hensley, K., Hall, N., Shaw, W., Carney, J. M., and Butterfield, D. A. (1994) Electron paramagnetic resonance investigation of free radical induced alterations in neocortical synaptosomal membrane protein infrastructure, Free Radical Biology and Medicine 17, 321–331.CrossRefPubMedGoogle Scholar
  61. 61.
    Hall, N. C., Carney, J. M., Cheng, M. S., and Butterfield, D. A. (1995) Ischemica/reperfusion induced changes in membrane proteins and lipids of gerbil cortical synaptosomes, Neuroscience 64, 81–89.CrossRefPubMedGoogle Scholar
  62. 62.
    Hall, N. C., Carney, J. M., Cheng, M., and Butterfield, D. A. (1995) Prevention of ischemica/ reperfusion-induced alterations in synaptosomal membrane-associated proteins and lipids by N-tert-butyl-a-phenylnitrone and diflurormethylomithine, Neuroscience 69, 591–600.CrossRefPubMedGoogle Scholar
  63. 63.
    Hall, N. C., Dempsey, R. J., Carney, J. M., Donaldson, D. L., and Butterfield, D. A. (1995) Structural alterations in synaptosomal membrane-associated proteins and lipids by transient middle cerebral artery occulusion in the cat, Neurochem. Res. 20, 1161–1169.CrossRefPubMedGoogle Scholar
  64. 64.
    Bellary, S. S., Anderson, K. W., Arden, W. A., and Butterfield, D. A. (1995) Effect of lipopolysaccharide on the physical conformation of the erythrocyte cyto skeletal proteins, Life Sci. 56, 91–98.CrossRefPubMedGoogle Scholar
  65. 65.
    Trad, C. H. and Butterfield, D. A. (1994) Menadione induced cytotoxicity effects of human erythrocyte membranes studies by electron paramagnetic resonance, Toxicol. Lett. 73, 145–155.CrossRefPubMedGoogle Scholar
  66. 66.
    Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes, J. Neurosci. 14, 2924–2932.PubMedGoogle Scholar
  67. 67.
    Harris, M. E., Wang, Y., Pedigo, N. W., Jr., Hensley, K., Butterfield, D. A., and Carney, J. M. (1996) A3(25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J. Neurochem. 67, 277–286.CrossRefPubMedGoogle Scholar
  68. 68.
    Gunnersen, D. and Haley, B. (1992) Detection of glutamine synthetace in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic marker, Proc. Natl. Acad. Sci. USA 89, 11949–11953.CrossRefPubMedGoogle Scholar
  69. 69.
    Trad, C. H., James, W., Bhardwaj, A., and Butterfield, D. A. (1995) Selective labeling of membrane protein sulfhydryl groups with methanethisulfonate spin label, J. Biochem. Biophys. Methods 30, 287–299.CrossRefPubMedGoogle Scholar
  70. 70.
    Butterfield, D. A., Lee, J., Ganapathi, S., and Bhattacharyya, D. (1994) Biofunctional membranes IV. Active site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron paramagnetic resonance and kinetics, J. Membrane Sci. 91, 47–64.CrossRefGoogle Scholar
  71. 71.
    Butterfield, D. A. and Lee, J. (1994) Active site structure and stability of the thiol protease, papain, studied by electron paramagnetic resonance employing a methanethiosulfonate spin label, Arch. Biochem. Biophys. 310, 167–171.CrossRefPubMedGoogle Scholar
  72. 72.
    Hensley, K. L. (1995) Magnetic Resonance Studies of Free Radical-Mediated Oxidative Stress in Brain: Relevance to Aging and Alzheimer’s Disease and Other Neurological Disorders, Ph. D. Thesis, University of Kentucky.Google Scholar
  73. 73.
    Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Hensley, K., Vigo-Pelfrey, C., and Carney, J. M. (1996) Glutamine synthetase-induced enhancement of A3(1–40) neurotoxicity accompanied by abrogation of fibril formation and amyloid (3-peptide fragmentation, J. Neurochem. 66, 2050–2056.CrossRefPubMedGoogle Scholar
  74. 74.
    Oda, T., Wals, P., Osterbung, H., Johnson, S., Pasinetti, G., Morgan, T., Rozovsky, I., Stein, W. B., Synder, S., Holzman, T., Krafft, G., and Finch, C. (1995) Clusterin (apoJ) Alters the aggregation of amyloid 13-peptide (A31–42) and forms slowly sedimenting A3 complexes that cause oxidative stress, Exp. Neurol. 136, 22–31.CrossRefPubMedGoogle Scholar
  75. 75.
    Smith-Swintosky, V. L., Zimmer, S., Fenton, J. W., and Mattson, M. P. (1995) Opposing actions of thrombin and protease nexin-1 on amyloid 3-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons, J. Neurochem. 65, 1415–1418.CrossRefPubMedGoogle Scholar
  76. 76.
    Tomiyama, T., Asano, S., Suwa,Y., Molia, T., Kataoka, K., Mori, H., and Endo, N. (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid i3 protein in vitro, Biochem. Biophys. Res. Commun. 204, 76–83.CrossRefGoogle Scholar
  77. 77.
    Goodman, Y. and Mattson, M. P. (1994) Staurosporine and K-252 compounds protect hippocampal neurons against amyloid (3-peptide toxicity and oxidative injury, Brain Res. 650, 170–174.CrossRefPubMedGoogle Scholar
  78. 78.
    Goodman, Y. and Mattson, M. P. (1994) Secreted forms of (3-amyloid precursor protein protect hippocampal neurons against amyloid 13-peptide-induced oxidative injury, Exp. Neurol. 128, 1–12.CrossRefPubMedGoogle Scholar
  79. 79.
    Kumar, U., Dunlop, D. M., and Richardson, J. S. (1994) The acute neurotoxic effect of f3amyloid on mature cultures of rat hippocampal neurons is attenuated by the antioxidant U-78517F, Intern. J. Neurosci. 79, 185–190.CrossRefGoogle Scholar
  80. 80.
    Tomiyama, T., Shoji, A., Kataoka, K. I., Suwa, Y., Asano, S., Kaneko, H., and Endo, N. (1996) Inhibition of amyloid (3-protein aggregation and neurotoxicity by rifampicin, J. Biol. Chem. 271, 6839–6844.CrossRefPubMedGoogle Scholar
  81. 81.
    Mason, R. P., Estermeier, J. D., Kelly, J. S., and Mason, P. E. (1996) Alzheimer’s disease amyloid (3-peptide 25–35 is localized in the membrane hydrocarbon core: X-ray diffraction analysis. Biochem. Biophys. Res. Commun. 222, 78–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • D. Allan Butterfield
  • Kenneth Hensley
  • Nathan Hall
  • Ramachandran Subramaniam
  • Beverly J. Howard
  • Pamela Cole
  • Servet Yatin
  • Michael LaFontaine
  • Marni E. Harris
  • Marina Aksenova
  • Michael Aksenov
  • John M. Carney

There are no affiliations available

Personalised recommendations