Advertisement

Energy/Glucose Metabolism in Neurodegenerative Diseases

  • John P. Blass
Part of the Contemporary Neuroscience book series (CNEURO)

Abstract

That disorders in energy/glucose metabolism can cause neurological and psychiatric disorders has been known for over a century. After the work of Claude Bernard on the importance of glucose metabolism, the German-speaking neurologists, psychiatrists, and pathologists (“alienists”) recognized on neuropathological grounds that impairing the supply of glucose and oxygen to the brain could cause a variety of neurological syndromes (1,2). That impairments of energy/glucose metabolism were important causes of diseases of the brain remained conventional wisdom through the 1950s. Among the evidence in support of this view were:
  1. 1.

    Extensive studies in aviation medicine, documenting the sensitivity of higher brain functions to reductions in oxygen tension (3);

     
  2. 2.

    The widespread use of hypoglycemic (insulin) shock therapy in the treatment of psychoses; and

     
  3. 3.

    The recognition from even early neurochemical studies that (a) mammalian brain has a second-to-second dependence on glucose/energy metabolism to maintain function, and (b) impairments of cerebral glucose/energy metabolism typically impair brain function.

     

Keywords

Spinocerebellar Ataxia Pyruvate Dehydrogenase Complex Cerebral Glucose Metabolism Culture Skin Fibroblast Friedreich Ataxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blass, J. P., Hoyer, S., and Nitsch, R. (1992) Binswanger disease: in reply, Arch. Neurol. 49, 799, 800.Google Scholar
  2. 2.
    Blass, J. P., Hoyer, S., and Nitsch, R. (1991) A translation of Otto Binswanger’s article, The Delineation of the Generalized Progressive Paralyses, Arch. Neurol. 48, 961–972.PubMedCrossRefGoogle Scholar
  3. 3.
    Gibson, G. E., Pulsinelli, W. A., and Blass, J. P. (1981) Brain dysfunction in mild to moderate hypoxia, Am. J. Med. 70, 1247–1254.PubMedCrossRefGoogle Scholar
  4. 4.
    Quastel, J. (1932) Anoxaemia and neurological disease, Lancet 2, 14–16.Google Scholar
  5. 5.
    Gibson, G. E., Blass, J. P., Huang, H.-M., and Freeman, G. B. (1991) The cellular basis of delirium and its relevance to age related disorders including Alzheimer’s disease, International Psychoger 3, 373–396.CrossRefGoogle Scholar
  6. 6.
    Falk, R. E., Cederbaum, S. D., Blass, J. P., Pruss, R. J., and Carrel, R. E. (1976) Effects of a ketogenic diet in two brothers with pyruvate dehydrogenase deficiency, Pediatrics 58, 713–721.PubMedGoogle Scholar
  7. 7.
    Blass, J. P., Gibson, G. E., Shimada, M., Kihara, T., Watanabe, M., and Kurinioto, K. (1980) Brain carbohydrate metabolism and dementia, in Biochemistry of Dementia ( Burman, D. and Pennock, C. A., eds.), Wiley, London, pp. 121–134.Google Scholar
  8. 8.
    Blass, J. P., Sheu, K.-F. R., and Cederbaum, J. M. (1988) Energy metabolism in disorders of the nervous system, Rev. Neurol. (Paris) 144, 543–563.Google Scholar
  9. 9.
    Beal, M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative diseases? Ann. Neurol. 31, 119–123.PubMedCrossRefGoogle Scholar
  10. 10.
    Blass, J. P., Sheu, K.-F. R., and Tanzi, R. (1996?) a-Ketoglutarate dehydrogenase in Alzheimer’s disease, in Energy Metabolism in Neurodegenerative Diseases (Fiskum, G., ed.), Plenum, New York, pp. 185–192.Google Scholar
  11. 11.
    Chun, K., MacKay, N., Petrova-Benedict, R., Federico, A., Fois, A., Cole, D. E., Robertson, E., and Robinson, B. H. (1995) Mutations in the X-linked E la subunit of pyruvate dehydrogenase: exon skipping, insertion of duplicate sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex, Am. J. Hum. Genet. 56, 558–569.PubMedGoogle Scholar
  12. 12.
    Wallace, D. C. (1994) Mitochondrial DNA sequence variation in human evolution and disease, Proc. Natl. Acad. Sci. USA 91, 8739–8746.PubMedCrossRefGoogle Scholar
  13. 13.
    Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y.-S., Myers, R. M., Roses, A. D., Vance, J. M., and Strittmater, W. J. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH, Nature Med. 2, 347–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Blass, J. P. (1993) Pathophysiology of the Alzheimer syndrome, Neurology 43 (Suppl. 4), S25 - S38.Google Scholar
  15. 15.
    Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S. N., and Osborne, D. (1996) Preclinical evidence of Alzheimer’s Disease in persons homozygous for the E4 allele for apolipoprotein E, N. Engl. J. Med. 334, 752–758.PubMedCrossRefGoogle Scholar
  16. 16.
    Small, G. W., Mazziotta, J. C., and Collins, M. T. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer’s disease, J. Am. Med. Assoc. 273, 942–947.CrossRefGoogle Scholar
  17. 17.
    Kennedy, A. M., Frackowiak, R. S. J., and Newman, S. K. (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease, Neurosci. Leu. 186, 1270.CrossRefGoogle Scholar
  18. 18.
    Sims, N. R. and Pulsinelli, W. A. (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat, J. Neurochem. 49, 1367–1374.PubMedCrossRefGoogle Scholar
  19. 19.
    Grafton, S. T., Maziotta, J. C., and Pahl, J. J. (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease, Arch. Neurol. 49, 1161–1167.PubMedCrossRefGoogle Scholar
  20. 20.
    Gilman, S., Junck, L., Markel, D. S., Koeppe, R. A., and Kluin, K. J. (1990) Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography, Ann. Neurol. 28, 750–757.PubMedCrossRefGoogle Scholar
  21. 21.
    Reed, L., Petit, F., and Yeaman, S. (1978) Pyruvate dehydrogenase complex: structure, function, and regulation, in Microenvironments and Metabolic Compartmentation ( Srere, P. A. and Estabrook, R. W., eds.), Academic, New York, pp. 305–321.Google Scholar
  22. 22.
    Mutisya, E. M., Bowling, A. C., and Beal, M. F. (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63, 2179–2184.PubMedCrossRefGoogle Scholar
  23. 23.
    Chandrasakaran, K., Giordano, T., Brady, D. R., Stoll, J., Martin, J., and Rapport, S. I. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer’s disease, Brain Res. (Mol. Brain Res.) 24, 336–340.CrossRefGoogle Scholar
  24. 24.
    Krystal, B. S., Chen, J., and Yu, B. P. (1994) Sensitivity of mitochondrial transcription to different free radical species, Free Radicals in Biology and Medicine 16, 323–329.CrossRefGoogle Scholar
  25. 25.
    Sorbi, S., Bird, E. D., and Blass, J. P. (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain, Ann. Neurol. 13, 72–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Parker, W. D., Boyson, S. J., and Luder, A. S. (1990) Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease, Neurology 40, 1231–1234.PubMedCrossRefGoogle Scholar
  27. 27.
    Mastrogiacomo, F. and Kish, S. J. (1994) Cerebellar a-ketoglutarate dehydrogenase activity is reduced in spinocerebellar ataxia type 1, Ann. Neurol. 5, 624–626.CrossRefGoogle Scholar
  28. 28.
    Sims, N. R., Finegan, J. M., and Blass, J. P. (1987) Altered metabolic properties of cultured skin fibroblasts in Alzheimer’s Disease, Ann. Neurol. 21, 451–457.PubMedCrossRefGoogle Scholar
  29. 29.
    Peterson, C. and Goldman, J. E. (1986) Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors, Proc. Natl. Acad. Sci. USA 83, 2758–2762.PubMedCrossRefGoogle Scholar
  30. 30.
    Sheu, K.-F. R., Cooper, A. J. L., Lindsay, J. G., and Blass, J. P. (1994) Abnormality in the a-ketoglutarate dehydrogenase complex in fibroblasts from familial Alzheimer’s disease, Ann. Neurol. 35, 312–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Sorbi, S., personal communication.Google Scholar
  32. 32.
    Parker, W. D., Filley, C. M., and Parks, J. K. (1990) Cytochrome oxidase deficiency in Alzheimer’s disease, Neurology 40, 1302–1304.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Zuylen, A. J., Bosman, G. J. C. G. M., and Ruitenbeck, W. (1992) No evidence for reduced thrombocyte cytochrome oxidase activity in Alzheimer’s disease, Neurology 42, 1246–1250.PubMedCrossRefGoogle Scholar
  34. 34.
    Bondy, S. C. (1995) The relation of oxidative stress and hyperexcitation to neurological disease, Proc. Soc. Exp. Biol. Med. 208, 337–345.PubMedGoogle Scholar
  35. 35.
    Gusella, J. F. and MacDonald, M. E. (1995) Huntington’s disease, Semin. Cell Biol. 6, 21–28.PubMedCrossRefGoogle Scholar
  36. 36.
    Plaitakis, A., Berl, S., andYahr, M. (1982) Abnormal glutamate metabolism in an adult-onset degenerative disorder, Science 216, 193–196.PubMedCrossRefGoogle Scholar
  37. 37.
    Blass, J. P., Kark, R. A. P., Menon, N., and Harris, S. H. (1976) Decreased activities of the pyruvate and ketoglutarate dehydrogenase complexes in fibroblasts from five patients with Friedreich’s ataxia, N. Engl. J. Med. 295, 62–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez-Budelli, M. and Kark, R. A. P. (1978) The potential of lipoamide dehydrogenase kinetics for genetic counseling and preclinical diagnosis in certain inherited ataxias, Neurology 27, 359–361.Google Scholar
  39. 39.
    Stumpf, D. A. and Parks, J. A. (1979) Friedreich ataxia II: Normal kinetics of lipoamide dehydrogenase, Neurology 29, 820–826.PubMedCrossRefGoogle Scholar
  40. 40.
    Cederbaum, J. M. and Blass, J. P. (1986) Mitochondrial dysfunction and spinocerebellar degeneration, Neurochem. Pathol. 4, 43–46.CrossRefGoogle Scholar
  41. 41.
    Sorbi, S., Piacentini, S., Fani, C., Tonini, S., Marini, P., and Amaducci, L. (1989) Abnormalities of mitohondrial enzymes in hereditary ataxias, Acta Neurol. Scand. 80, 103–110.PubMedCrossRefGoogle Scholar
  42. 42.
    Chun, K., MacKay, N., Petrova-Benedict, R., Federico, A., Fois, A., Cole, D. E., Robertson, E., and Robinson, B. H. (1995) Mutations in the X-linked E 1 a subunit of pyruvate dehydrogenase: exon skipping, insertion of double sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex, Am. J. Hum. Genet. 56, 558–569.PubMedGoogle Scholar
  43. 43.
    Sheu, K.-F. R., Sarkar, P., Wasco, W., Tanzi, R., and Blass, J. P. (1995) A gene locus of dihydrolipoyl succinyltransferase (DLST) is associated with Alzheimer’s Disease, J. Neurochem. 66, S l OB.Google Scholar
  44. 44.
    Ali, G., Wasco, W., Cai, X., Szabo, P., Sheu, K.-F., Cooper, A. J., et al. (1994) Isolation, cloning, and localization of the gene for the E2k component of the human a-ketoglutarate dehydrogenase complex, Somatic Cell Mol. Genet. 20, 99–104.CrossRefGoogle Scholar
  45. 45.
    Nakano, K., Takase, C., and Sakomoto, T. (1994) Isolation, characterization, and structural organization of the gene and pseudogene for the dihydrolipoylamide succinyltransferase component ofthe 2-oxoglutarate dehydrogenase complex, Eur. J. Biochem. 224, 179–186.PubMedCrossRefGoogle Scholar
  46. 46.
    Cai, X., Szabo, P., Ali, G., and Blass, J. P. (1994) A pseudogene of dihydrolipoyl succinyltransferase (E2k) found by PCR amplification and direct sequencing in rodent-human cell hybrid DNAs, Somatic Cell Mol. Genet. 20, 339–343.CrossRefGoogle Scholar
  47. 47.
    Gabuzda, D., Busciglio, J., and Chen, L. B. (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative, J. Biol. Chem. 269, 13628–13635.Google Scholar
  48. 48.
    Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, R. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15, 961–973.PubMedCrossRefGoogle Scholar
  49. 49.
    Henneberry, R. A. (1989) The role of energy in the toxicity of excitatory amino acids, Neurobiol. Aging 10, 611–616.PubMedCrossRefGoogle Scholar
  50. 50.
    Beal, M. F. (1995) Aging, energy, and oxidative stress in neurodegenative diseases, Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar
  51. 51.
    Mattson, M. P. (1994) Mechanism of neuronal degeneration and preventive approaches: Quickening the pace of AD research, Neurobiol. Aging 15 (Suppl. 2), S121 - S125.PubMedCrossRefGoogle Scholar
  52. 52.
    Gibson, G. E., Shimada, M., and Blass, J. P. (1978) Alterations in acetylcholine synthesis and in cyclic nucleotides in mild cerebral hypoxia, J. Neurochem. 31, 757–760.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang, H.-M., Toral-Barza, L., and Gibson, G. E. (1991) Cytosolic free calcium and ATP in synaptosomes after ischemia, Life Sci. 48, 1439–1445.PubMedCrossRefGoogle Scholar
  54. 54.
    Blass, J. P. and Gibson, G. E. (1979) Consequences of mild, graded hypoxia, in Advances in Neurology ( Fahn, S., ed.), Raven, New York, pp. 229–250.Google Scholar
  55. 55.
    Brouillet, E., Hantraye, R, Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., and Beal, M. F. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates, Proc. Natl. Acad. Sci. USA 92, 7105–7109.Google Scholar
  56. 56.
    Harmon, D. (1995) Role of antioxidant nutrients in aging: Overview, Age 18, 51–62.CrossRefGoogle Scholar
  57. 57.
    Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Askenova, M., Gabbita, S. P., Wu, J. F., and Carney, J. M. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation, J. Neurochem. 65, 2146–2156.PubMedCrossRefGoogle Scholar
  58. 58.
    Schellenberg, G. D. (1995) Genetic dissection of Alzheimer disease, a heterogenous disorder, Proc. Natl. Acad. Sci. USA 92, 8552–8559.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John P. Blass

There are no affiliations available

Personalised recommendations